• Nem Talált Eredményt

CENTRAL RESEARCH INSTITUTE FORPHYSICSBUDAPEST

N/A
N/A
Protected

Academic year: 2022

Ossza meg "CENTRAL RESEARCH INSTITUTE FORPHYSICSBUDAPEST"

Copied!
32
0
0

Teljes szövegt

(1)

F, IGLÓI J, KOLLÁR

CLUSTER PERTURBATION THEORY FOR CLASSICAL FLUIDS II.

APPLICATIONS FOR A HARD SPHERE REFERENCE SYSTEM

^Hungarian ^Academy o f Sciences

CENTRAL RESEARCH

INSTITUTE FOR PHYSICS

BUDAPEST

(2)
(3)

CLUSTER PERTURBATION THEORY FOR CLASSICAL FLUIDS II.

APPLICATIONS FOR A HARD SPHERE REFERENCE SYSTEM

F. Iglói, J. Kollár

Central Research Institute for Physics H-1525 Budapest 114, P.O.B. 49, Hungary

HU ISSN 0368 5330 ISBN 963 371 767 1

(4)

The thermodynamic properties and the radial distribution functions for systems with inverse power potential and for a Lennard-Jones fluid at high temperature are calculated using a new perturbation method applied for a hard sphere reference system. The results are compared to those obtained from the Andersen-Weeks-Chandler theory and to the Monte Carlo results.

АННОТАЦИЯ

Термодинамические свойства и парные корреляционные функции для системы частиц, отталкивающихся по закону 1/гп , и для жидкости Ленард-Джонса были вычислены с помощью нового метода возмущения для системы референции твердых сфер. Результаты были сравнены с соответствующими величинами теории Андерсен- -Викс-Чендлера и с Монте-Карло "машинными" экспериментами.

KIVONAT

Az l/г11 taszitó potenciállal kölcsönható rendszerek és a magas hőmérsék­

letű Lennard-Jones folyadék termodinamikai tulajdonságait és radiális elosz­

lásfüggvényét számítottuk ki egy uj perturbációs módszer segítségével, ke­

mény-gömb referencia rendszert használva. Az eredményeket összevetettük az Andersen-Weeks-Chandler módszerrel számoltakkal és Monte Carlo számitógépes kísérletek eredményeivel.

(5)

In the first p a r t of this work.'*' (hereafter r e f e r r e d to as p a p e r I) a p e r t u r b a t i o n a l m ethod w a s d e v e l o p e d for the d e s c r i p t i o n of the t h e r m o d y n a m i c and s t r u c t u r a l p r o p e r t i e s of real fluids in t e r m s of a reference system, the p r o p e r t i e s

»

of w h i c h are a s s u m e d to be known. In t h i s paper we a p p l y thi s m e t h o d for a h a r d sphere reference system, for w h i c h c o n v e n i e n t a n a l y t i c f o r m u l a e are a v a i l a b l e bot h for the equa t i o n of state2 and the pair c o r r e l a t i o n function 3 4' .

D u r i n g the last y e ars the r e l a t i o n s h i p b e t w e e n the p r o ­ p e r t i e s of this i d e a l i z e d model s y s t e m and those of real fluids wit h smoothly v a r y i n g repulsive forces has been d i s c u s s e d in several papers. Rowlinson~* c o n s i d e r e d fluids w i t h an i n v e r s e nth p ower p o t e n t i a l and e x p a n d e d the t h e r m o d y n a m i c p r o p e r t i e s in p o w e r s of 1/n. B a r k e r and H e n d e r s o n ^ g e n e r a l i z e d the R o w - linson m e t h o d by a p p l y i n g it to a w i d e c l a s s of r e p u l s i v e

potentials. One of the m o s t s u c c e s s f u l m e t h o d w a s p r o p o s e d by Andersen, W e e k s and C h a n d l e r / A W C / ^ . In this m e t h o d a s e r i e s e x p a n s i o n is o b t a i n e d for the free e n e r g y in powers of a

"softness p a r a m e t e r " íj by w r i t i n g d o w n its functional T a y l o r e x p a n s i o n in p o w e r s of the B o l t z m a n n f a c t o r differ e n c e s . T h e hard sphere d i a m e t e r is chosen in s u c h a w a y w h i c h c a u s e s the first order t e r m of the free e n e r g y to vanish, at the s a m e time r e d u c i n g the m a g n i t u d e of the h i g h e r o r d e r terms as well.

However, if the i n t e r a c t i o n p o t e n t i a l is not steep e n o u g h , the a c c u r a c y of t h e s e m e t h o d s is not s a t i s f a c t o r y in m a n y c a s e s , e s p e c i a l l y for the radial d i s t r i b u t i o n f u n c t i o n of the system.

(6)

The i n a c c u r a c y of the t r e a t m e n t of s o f t e n i n g the core r e f l e c t s in t h e r e s u l t s of the p e r t u r b a t i o n c a l c u l a t i o n s for r e a l i s t i c p o t e n t i a l s , w h e n an a t t r a c t i v e tail is a d d e d to a s m o o t h l y v a r y i n g short range r e p u l s i v e potential. A l t h o u g h the d i f f e r e n t t h e o r e t i c a l m e t h o d s for t r e a t i n g s l o w l y varying a t t r a c t i v e p e r t u r b a t i o n s can be t e s t e d by r u l i n g o u t this

Q

i n a c c u r a c y , t h e a c c u r a t e t r e a t m e n t of soft cores h a s still r e m a i n e d an u n s o l v e d p r o b l e m in t h e t h e o r y of c l a s s i c a l fluids.

In this p a p e r we c a c u l a t e the t h e r m o d y n a m i c p r o p e r t i e s and radial d i s t r i b u t i o n f u n c t i o n s for systems w i t h i nverse n t h p o wer p o t e n t i a l s (n= 6, 9, 12) and for a L e n n a r d - J o n e s

fluid at h i g h t e m p e r a t u r e u s i n g the m e t h o d d e v e l o p e d in I.

T h i s m e t h o d e n a b l e s us to take i n t o a ccount an i m p o r t a n t part of the h i g h e r o r d e r t e r m s of the u s u a l g - d e p e n d e n t form of the t h e r m o d y n a m i c q u a n t i t i e s u s i n g onl y the r a d i a l d i s t r i b u t i o n f u n c t i o n of the har d s p h e r e r e f e r e n c e s y s t e m (those p a r t s that c a n be e x p r e s s e d in t e r m s of the d e r i v a t i v e s of t h i s function w i t h r e s p e c t to the d e n s i t y ) . T h i s w i l l be d e m o n s t r a t e d on the

s y s t e m w i t h an i nverse t w e l f t h p o w e r potential. We d i s c u s s the p r o b l e m s r e l a t e d to the o p t i m a l c h o i c e of the har d sphere

r e f e r e n c e s y s t e m and the c o n d i t i o n g = § 0 p r o p o s e d in I is c o m p a r e d to t h a t g i v e n b y A n d e r s e n et al^. The t h e r m o d y n a m i c c o n s i s t e n c y w i l l also b e i n v e s t i g a t e d : the e q u a t i o n of state is c a l c u l a t e d b o t h from the v i r i a l e q u a t i o n and from the d e r i v a ­ ti v e of the f r e e e n e r g y w i t h r e s p e c t to the density. The results are c o m p a r e d t o those o b t a i n e d f r o m the AWC method. In the last

(7)

pa r t o f the p a per the c a l c u l a t e d r a d i a l d i s t r i b u t i o n f u n c t i o n for the s y s t e m w i t h inv e r s e tw e l f t h p o w e r p o t e n t i a l is c o m p a r e d to the M o n t e C a r l o r e s u l t s and to that o b t a i n e d fro m the A W C theory.

D e s c r i p t i o n of the m e t h o d for a hard sphere r e f e r e n c e s y s t e m

In thi s s ection we r e f o r m u l a t e the m e t h o d d e s c r i b e d in p a p e r I for a har d sphere r e f e r e n c e system, a s s u m i n g that we k n o w o n l y the ha r d sphere p a i r c o r r e l a t i o n function. In this case t h e b a s i c e q u a t i o n s o f the m e t h o d ( e q u a t i o n s (lla-b) in p a p e r I) w i l l have the fo r m

(la)

and

(lb)

where, t o simp l i f y the f o r m ulas, we i n t r o d u c e d the q u a n t i t y

'ft* 3

"ß" S ^ ins t e a d of t h e d e n s i t y ( O ’ s t a n d s for the c h a r a c t e r i s t i c length o f the p o t e n t i a l U ( ^ ) ) a n d the p a c k i n g

i3

f r a c t i o n n£0s . U g o a for the har d sphere r e f e r e n c e s y s t e m (d is the ha r d sphere d i a m e t e r ) .

In these e q u a t i o n s t h e prime d e n o t e s a d e r i v a t i v e w i t h

j|£

r e s p e c t to and d = ol (б" . The i n t e g r a l

J

)

is d e f i n e d as

(8)

oo

1(^ 0 , с 1%Л2.«£,> x ) [ e ( d x ) - e c t x ) ] x zőlj< (2)

О

H e r e в о ( * ) у £ ( ^ в < * ) stands' for the har d sphere r a d i a l d i s t r i b u t i o n f u n c t i o n (which c o i n c i d e s w i t h for nr > d ),

в ( ^ ) and 6 0 ( ^ ) are the B o l t z m a n n f a c t o r s for the

s y s t e m u n d e r c o n s i d e r a t i o n and for the r e f e r e n c e system, r e s p e c ­ tively. T h e e x c e s s c h e m i c a l p o t e n t i a l of the s y s t e m can be

o b t a i n e d f r o m the e q u a t i o n (19) of p a per Is

) л f3jLCел

<Лг11' 7

(3)

T h e e x c e s s free e n e r g y p e r p a r t i c l e n o w f r o m the t h e r m o d y n a m i c r e l a t i o n

n . £ Д е х can be d e t e r m i n e d

у

a(^,ol ) я |3/^ex - 1

° +

4

(4)

T h e c a l c u l a t i o n can be c a r r i e d o u t in t w o steps. First, one has to d e t e r m i n e the p a c k i n g f r a c t i o n о o f the har d sphere s y s t e m for a g i v e n v a l u e of *1 from the e q u a t i o n (lb). A f t e r t h i s c a l c u l a t i o n the c o r r e s p o n d i n g t h e r m o d y n a m i c q u a n t i t i e s can be o b t a i n e d fr o m the e q u a t i o n s (la), (3) o r (4) u s i n g this v a l u e for . W e can, h o w e v e r , p r o c e e d in an o t h e r way, starting f r o m the u s u a l d e n s i t y - d e p e n d e n t form for t h e t h e r m o d y n a m i c q u a n t i t i e s ; e x p r e s s i o n s of this k i n d for the e x c e s s chemical p o t e n t i a l and e x c e s s free e n e r g y can be o b t a i n e d from the

(9)

e q u a t i o n s (20) and (21) in p a p e r I, r e s p e c t i v e l y (first o r der in 5 ):

^ I

p / ^ k í ^ - ^ (5a)

a (*7

o(.*;

a 0 C 'f ) - I ( ^ » ol )

(5b)

T o s i m p l i f y the formulae, he r e w e i n t r o d u c e d the n o t a t i o n

•if 3

я <y£oL . The two k i n d s of d e s c r i p t i o n , in gene r a l , are n o t e q u i v a l e n t wit h e a c h other: the r e s u l t s of a c a l c u l a t i o n b a s e d on the e q u a t i o n s (lb) and (3) or (4) d i f f e r f r o m those o b t a i n e d f r o m the e q u a t i o n s (5a-b) in the sum of an infinite subseries. T h e y are e q u i v a l e n t o n l y if the h a r d s p h e r e r e f e r e n c e s y s t e m is d e t e r m i n e d f r o m the c o n d i t i o n £ = S ° p r o p o s e d in p a p e r I, w h e n the sum of this s u b s e r i e s e q u a l s to zero. The e q u i v a l e n c y o f the two d e s c r i p t i o n s can be se e n by c o m p a r i n g the e q u a t i o n s (5a-b) to (3) and (4) and t a k i n g into ac c o u n t the c o n d i t i o n ~ S ° w h i c h n o w has the form

[•7 Г (ч ,с 1 * )]’= о (

6

)

Th i s e q u a t i o n s p e c ifies the r e f e r e n c e s y s t e m for a g i v e n value ^ t h r o u g h d e t e r m i n i n g the f u n c t i o n c L \ ) . T o i l l u s t r a t e the

d i f f e r e n c e b e t w e e n the t w o descriptions, we c o n s i d e r a system w i t h an i n v e r s e twelfth p o w e r p o t e n t i a l and c a l c u l a t e the e x c e s s

free e n e r g y a n d the e x c e s s c h e m i c a l p o t e n t i a l as a f u n c t i o n of

(10)

the har d sphere d i a m e t e r oL at d i f f e r e n t v a l u e s for oj u s i n g bot h k i n d s of d e s c r i p t i o n . A s it is w e l l known, the t h e r m o ­ d y n a m i c f u n c t i o n s of a s y s t e m wit h an inv e r s e p o w e r p o t e n t i a l of the fo r m

a ( r ) ~ £. ( — *]

n

(7) J/n

d e p e n d s o n l y on the q u a n t i t y *£ (£ P ) . In the p r e s e n t m e t h o d this s c a l i n g p r o p e r t y is p r e s e r v e d as w e can see from the d e f i n i ­ tion (2) for the func t i o n I, w h i c h d o e s not d e p e n d on p, £ , and

O' s e p a r a t e l y , but o n l y on a " t e m p e r a t u r e d e p e n d e n t

c h a r a c t e r i s t i c l e n g t h " Cf [£.{$) . R e p l a c i n g C7 by thi s n e w c h a r a c t e r i s t i c l e n g t h (i.e. t a k i n g s ^ £ p ^ and

ßl , r V „

Cl — ~ r v £ p Í ) , o u r f o r m u l a e b e c o m e a p p r o p r i a t e for t r e a t i n g systems w i t h a p o t e n t i a l o f the type (7).

To p e r f o r m t h i s c a l c u l a t i o n , one n e e d s the k n o w l e d g e o f the hard s p h e r e r a d i a l d i s t r i b u t i o n f u n c t i o n as a f u n c t i o n of the p a c k i n g f r a c t i o n and the d i s t ance, and the e q u a t i o n of state

o

for ha r d sphere fluids. F o r o u t s i d e the c o r e we us e d the a n a l y t i c e x p r e s s i o n s o b t a i n e d e m p i r i c a l l y by V e r l e t and Weis'*

b a s e d on the s o l u t i o n of the P e r c u s - Y e v i c k equation^, w h i l e in the r 4. d r e g i o n w e took the T h i e l e - W e r t h e i m c u b i c p o l i n o m i a l form in r/d, w i t h c o e f f i c i e n t s , w h i c h a s s u r e the c o n t i n u i t y of the p a i r d i s t r i b u t i o n f u n c t i o n and its first a n d s econd d e r i v a ­ tives at r=d^. V e r l e t and W e i s state t h a t the f u n c t i o n y ^ o b t a i n e d

in this w a y d i f f e r s from t h e i r M o nte C a r l o r e s u l t s by at m o s t 3 %. For the e q u a t i o n of s t a t e of har d sphere f luids we u s e d the

(11)

e x p r e s s i o n s u g g e s t e d by C a r n a h a m and S t a r l i n g , w h i c h s u m m a r i z e s the a v a i l a b l e m o l e c u l a r - d y n a m i c s and M o n t e C a r l o r e s u l t s w i t h i n the s t a t i s t i c a l a c c u r a c y of these c o m p u t e r c a l c u l a t i o n s . F o r the e x c e s s free e n e r g y and for the e x c e s s c h e m i c a l p o t e n t i a l this g i ves

2

o - o i ä )

Í 4 -

(8a)

8*j

H - n])3 (8b)

The c a l c u l a t e d v a l u e s for the e x c e s s free e n e r g y and for the e x c e s s c h e m i c a l p o t e n t i a l of the s y s t e m w i t h i nverse t w e l f t h p o w e r p o t e n t i a l vs. ol ■ * are shown in Fig. la and b at t h ree d i f f e r e n t v a l u e s for *1 ( **[ = 0.3, 0.4, 0.5). The solid c u r v e s w e r e o b t a i n e d f r o m the e q u a t i o n s ( l a ) , ( l b ) , (4) or (3) by e l i m i n a t i n g w h i l e the r e s u l t s o b t a i n e d fro m the e q u a t i o n

(5b) o r (5a) for

CL

and Р Л е л r e s p e c t i v e l y , are i n d i c a t e d by d a s h e d lines. T h e M o n t e C a r l o results'*'0 are al s o shown in the figure b y d o t t e d lines for the c o r r e s p o n d i n g v a l u e s . T o i n t e r p r e t the r e s u l t s we cal l a t t e n t i o n to the fact that if we kne w a l l the h i g h e r o r d e r d i s t r i b u t i o n f u n c t i o n s of the h a r d sphere system, in p r i n c i p l e w e w o u l d o b t a i n a c c u r a t e r e s u l t s

s t a r t i n g from a n y v a lue of ol . Thu s the e x t e n s i o n of the r e g i o n in

ol

t w h e r e t h e s e two k i n d s of f i r s t o r d e r c a l c u l a t i o n gi v e r e a s o n a b l e r e s u l t s (the "flat" r e g i o n s of the c urves c l ose to the d o t t e d lines) , c h a r a c t e r i z e s , in some sense, the m a g n i t u d e

(12)

of the n e g l e c t e d h i g h e r o r d e r terms. T h e r e f o r e this f igure

c l e a r l y shows t h e a d v a n t a g e s of a d e s c r i p t i o n w h i c h s t a r t s from the e q u a t i o n s (lb) and (4) or (3). In the figure we a l s o indi- c a t e d the v a l u e s c(I* d e t e r m i n e d f r o m the e q u a t i o n (6) and t h ose o b t a i n e d f r o m the AWC c o n d i t i o n ( K ^ i d ) = 0) .

The two m e t h o d s r e s u l t in s i m i l a r v a l u e s for сл » and therefore, I*

for this system, t h e y are n e a r l y e q u i v a l e n t fr o m the p o i n t of v i e w of the t h e r m o d y n a m i c q u a n t i t i e s (but not fro m the p o i n t of v i e w of the p a i r d i s t r i b u t i o n f u n c tions, as we w i l l see later).

F u r t h e r m o r e , it is easy to sho w t h a t at the v a l u e of w h ere ф ~ n o t on l y the v a l u e s o f the free e n e r g i e s o b t a i n e d fro m the two k i n d s of d e s c r i p t i o n e q u a l to ea c h other, b u t the s l o p e s of the c u r v e s also c o i n c i d e at this p o i n t ^ :

(9)

On the o t h e r h a n d - since in z e r o t h o r d e r у г ( 1 ' £ ) = у » И 1 5 )

as w e can see f r o m the e q u a t i o n 23 o f p a p e r I - the v i r i a l p r e s s u r e , д J 4

Pv is r e l a t e d to the d e r i v a t i v e ( J ~ b y the e q u a t i o n

3(^ - иИ 1 г Ы ч 91

(10)

T h u s we can see t h a t p = p ^ w h e n ( A k e q u a l s to zero.

F r o m Fig. la w e c a n see that this c o n d i t i o n is a p p r o x i m a t e l y s a t i s f i e d for a l l the three v a l u e s of ^ at the p o i n t w h e r e

9 e ' w h i c h p r e d i c t s a g o o d z e r o t h o r d e r a p p r o x i m a t i o n for the r a d i a l d i s t r i b u t i o n f u n c t i o n b y u s i n g the ?-$*<> condition.

(13)

Results

A. E q u a t i o n of state

In o r d e r to test the p r e s e n t met h o d , in t h i s s ection we c a l c u l a t e the e q u a t i o n of s t ate for several s y s t e m s from the c o n d i t i o n 5^= ' anc^ c o m p a r e the m to those o b t a i n e d from the AWC m e t h o d and to the r e s u l t s of c o m p u t e r s i m u l a t i o n s . The v a l u e s

for the free e n e r g y and the p r e s s u r e for a s y s t e m w i t h inverse t w e l f t h p o w e r p o t e n t i a l are shown in T a b l e 1. A s w a s alr e a d y

i n d i c a t e d in Fig. 1, there are no r e a s o n a b l e d i f f e r e n c e s b e t w e e n the r e s u l t s o b t a i n e d from the c o n d i t i o n = g 0 (equation (6)) and t h o s e o b t a i n e d from the A W C c o n d i t i o n (1=0) w h e n the e q u a t i o n of s t ate is d e t e r m i n e d by n u m e r i c a l d i f f e r e n t i a t i o n of the free e n e r g y w i t h r e s p e c t to the dens i t y . The v i r i a l e q u a t i o n of state, however, is m o r e accurate in the case of the c o n d i t i o n r as we c a n e x p e c t on the b a s i s of the d i s c u s s i o n in c o n n e c t i o n w i t h Fig. 1. The v alues for t h e p r e s s u r e o b t a i n e d from the e q u a t i o n (la) u s i n g the c o n d i t i o n are in g o o d a g r e e m e n t wit h t h o s e o b t a i n e d by n u m e r i c a l d i f f e r e n t i a t i o n , d e m o n s t r a t i n g again h o w the t h e r m o d y n a m i c c o n s i s t e n c y is f u l f i l l e d in the p r e s e n t method.

O t h e r a p p l i c a t i o n s o f the m e t h o d are s h o w n in T a b l e 2 and in Fig. 2, w h e r e the e q u a t i o n of s t ate is g i v e n for the systems w i t h i n v e r s e n i n t h and s i x t h p o w e r p o t e n t i a l s , respectively. In Fig. 2, the r e s u l t s o b t a i n e d fro m the c o n d i t i o n g = ^>0 (solid line) are c o m p a r e d to t h o s e of the A W C m e t h o d (dashed l i n e ) .

r

(14)

T h e d o t t e d lines s h o w the v i r i a l e q u a t i o n s o f state and the full c i r c l e s i n d i c a t e the M o n t e C a r l o r e s u l t s 12. W e can c o n c l u d e

a g a i n t h a t at low d e n s i t i e s t h e r e are no e s s e n t i a l d i f f e r e n c e s b e t w e e n the r e s u l t s of the t w o method, b u t for larger d e n s i t i e s the c o n d i t i o n $ ~ r e p r o d u c e s m o r e a c c u r a t e l y the M o n t e C a r l o values. The a d v a n t a g e of the c o n d i t i o n g = g a is even m o r e e v i d e n t if one c o m p a r e s the v i r i a l p r e s s u r e p ^ to that o b t a i n e d b y n u m e r i c a l d i f f e r e n t i a t i o n ( p ) . B o t h the d a t a in T a b l e 2 and the c u r v e s p l o t t e d in Fig. 2 c l e a r l y sh o w t h a t p <v» p ^ for the c o n d i t i o n = g 0 , w h i l e u s i n g the AWC m e t h o d p ^ is e s s e n t i a l l y l a r g e r tha n p at large d e n s i t i e s .

F i n a l l y in Fig. 3 the c a l c u l a t e d e q u a t i o n of state for a

*

L e n n a r d - J o n e s fluid is p l o t t e d at hig h t e m p e r a t u r e (T =5), to- g e t h e r w i t h the M o n t e C a r l o r e s u l t s 13. The r e s u l t s show t h a t in this t e m p e r a t u r e r a nge the m e t h o d can be a p p l i e d d i r e c t l y for a L e n n a r d - J o n e s s y s t e m as w e l l , but at low t e m p e r a t u r e s it fails to w o r k for the r e a s o n s d i s c u s s e d in p a p e r I (at low t e m p e r a t u r e s our z e r o t h o r d e r p a i r d i s t r i b u t i o n f u n c t i o n r^zC'r ) is n o t a g o o d a p p r o x i m a t i o n a n y more, and one s h o u l d t r eat s e p a ­ r a t e l y the short r a nge r e p u l s i v e and long r a n g e a t t r a c t i v e parts of the p o t e n t i a l ) .

B. R a d i a l d i s t r i b u t i o n f u n c t i o n

T h e e q u a t i o n (23) in p a p e r I g i ves an e x p r e s s i o n (first o r d e r in í= ) for the r a d i a l d i s t r i b u t i o n function, a n d we s u g g e s t e d two d i f f e r e n t r e c i p e s for the c h o i c e of the r e f e r e n c e s y s t e m in the

(15)

z e r o t h and the first o r d e r calculation. In z e r o t h o r d e r (when bi/t' <r ) = У*- ' S ’ ) ) the r e f e r e n c e s y s t e m can be d e t e r ­ m i n e d from the c o n d i t i o n (equation (6)). The res u l t s o f s u c h a z eroth o r d e r c a l c u l a t i o n are s h own in the Fig. 4 and are c o m p a r e d to the re s u l t s of a M o n t e C a r l o c o m p u t e r c a l c u l a t i o n14

and to the p a i r d i s t r i b u t i o n function o b t a i n e d f r o m the A W C m e t h o d for the s y s t e m w i t h i n v e r s e t w e l f t h p o w e r p o t e n t i a l . In c o n t r a s t to the case of the t h e r m o d y n a m i c q u a n t i t i e s , in this case there is an e s s e n t i a l d i f f e r e n c e b e t w e e n the r e s u l t s o b t a i n e d from the A W C m e t h o d and from the c o n d i t i o n $ ~ • W h i l e the first p e a k o f the p a i r d i s t r i b u t i o n func t i o n is t o o large in the AWC m e t h o d , the c o n d i t i o n j? = j>0 a l m o s t e x a c t l y r e p r o d u c e s the r e s u l t s of the c o m p u t e r s i m u l a t i o n s in this r e g i o n (here we u s e d a m o d e r a t e l y large v a l u e of , i n d i c a t e d in the f i g u r e ) . In the r e g i o n of the first m i n i m u m , however, b o t h the A W C and the p r e s e n t m e t h o d give too s mall v a l u e s for the f u n c t i o n g 2 (r).

T h e s e r e s u l t s can be i m p r o v e d by t a k i n g into a c c o u n t the n e x t t e r m in the e x p a n s i o n of the pair d i s t r i b u t i o n function.

In t h i s case the r e f e r e n c e s y s t e m can be d e t e r m i n e d from the c o n s i s t e n c y c r i t e r i o n g i v e n by the e q u a t i o n (27) in p a p e r I, w h i c h n o w has the form (for a hard sphere r e f e r e n c e system)

(ID

To p e r f o r m the c a l c u l a t i o n , one s hould use some a p p r o x i m a t i o n for t h e three p a r t i c l e d i s t r i b u t i o n f u n c t i o n o f the ha r d sphere s ystem, w h i c h a p p e a r s in the f i rst o r d e r t e r m in the e q u a t i o n (23)

(16)

in p a p e r I. U s i n g the K i r k w o o d s u p e r p o s i t i o n a p p r o x i m a t i o n for this function, w e can o b t a i n an a p p r o x i m a t e e x p r e s s i o n for y 2 fro m the e q u a t i o n (23) o f p a p e r I:

w h e r e the i n t e g r a l J is d e f i n e d by

x + x

О ч

m a x (I x - x ' l , A

/

(13)

T h i s e x p r e s s i o n for J(x) was o b t a i n e d b y i n t r o d u c i n g a b i p o l a r c o o r d i n a t e system.

T h e r e s u l t of the f i r s t o r d e r c a l c u l a t i o n (solid line) is p l o t t e d in Fig. 5 for a s y s t e m w i t h in v e r s e t w e l f t h p o w e r p o t e n -

14 tial, t o g e t h e r w i t h the M o n t e C a r l o r e s u l t s (full circles)

T h e z e r o t h o r d e r curve (da s h e d line) is als o shown. One can see fr o m t h e figure that the r e s u l t of the first o r d e r c a l c u l a t i o n a g r e e s r e m a r k a b l y wel l w i t h the M o n t e C a r l o d a t a n o t on l y in the n e i g h b o u r h o o d o f the f i r s t peak, b u t the a g r e e m e n t is e s s e n t i a l l y

i m p r o v e d in t h e region o f the first m i n i m u m as w e l l c o m p a r e d to the z e r o t h o r d e r case.

(17)

C o n c l u s i o n

To s u m m a r i z e we c a n say that the a p p l i c a t i o n of the m e t h o d d e v e l o p e d in I for the systems w i t h in v e r s e p o w e r p o t e n t i a l u s i n g a hard sphere r e f e r e n c e system, v e r i f i e s our e x p e c t a t i o n s t h a t using this m e t h o d a m o r e a c c u r a t e and m o r e c o n s i s t e n t d e s ­ c r i p t i o n can be a c h i e v e d c o m p a r e d to the c a l c u l a t i o n s w h i c h start f r o m the usual d e n s i t y - d e p e n d e n t form for the t h e r m o d y n a m i c

q u a ntities. T h i s r e s u l t can be a s c r i b e d to the fact that the p r e s e n t m e t h o d m a k e s a m o r e c o m p l e t e use of the info r m a t i o n c o n t e n t of the r a d i a l d i s t r i b u t i o n function. The a d v a n t a g e of t h e m e t h o d can be seen c l e a r l y fr o m the r e m a r k a b l e a g r e e m e n t b e t w e e n the v a l u e s for the p r e s s u r e c a l c u l a t e d from the virial e q u a t i o n and t h o s e o b t a i n e d fr o m the d e r i v a t i v e of the free e n e r g y with r e s p e c t to the density, and f r o m the r e a s o n a b l e a g r e e m e n t b e t w e e n the c a l c u l a t e d r a d i a l d i s t r i b u t i o n functions a n d the Monte C a r l o results.

A c k n o w l e d g e m e n t

The a uthors are g r a t e f u l to Drs. P. F a z e k a s and A. SUto for v a l u a b l e d i scussions.

(18)

R e f e r e n c e s

1. See the p r e v i o u s p a p e r in this volume.

2. N.F. Carnahan, K.E. Starling, J. Chem. Phys. _51, 635 (1969) 3. L. Vériét, J.J. W e is, Phys. Rev. A 5, 939 (1972)

4. T h e e x act solu t i o n of the P e r c u s - Y e v i c k e q u a t i o n for the r a d i a l d i s t r i b u t i o n func t i o n of the h a r d s p h e r e s y s t e m was o b t a i n e d by F. Thiele, J. Chem. Phys. 3_9, 474 (1963) and M.S. W e r t h e i m , Phys. Rev. Lett. 10, 321 (1963). F o r this

f u n c t i o n a c o n v e n i e n t a n a l y t i c fo r m w a s g i v e n by W.R. Smith and D. Hen d e r s o n , Mol. Phys. 19^, 411 (1970), w h i l e the n u m e ­ r i c a l v a l u e s w e r e t a b u l a t e d b y G.J. T h r o o p and R.J. Bearman, J. Chem. Phys. 42_, 2408 (1965).

5. J.S. Rowlinson, Mol. Phys. 8, 107 (1964)

6. J.A. Barker, D. H e n d e r s o n , J. Chem. Phys. 4_7, 4714 (1967)

7. H.C. A n d e rsen, J.D. Weeks, D. C h a n dler, Phys. Rev. A 4, 1597 (1971) and

J.D. Weeks, D. C h a n dler, H.C. Andersen, J. Chem. Phys. 5 4 , 5237 (1971)

8. G. Stell, J.J. Weis, Phys. Rev. A 2_1, 645 (1980)

9. T h i s p r o c e d u r e is c l e a r l y arbitrary; we can expect, however, t h a t the w a y of e x t r a p o l a t i o n into the co r e has little e f fect

7 on the results, as it w a s p o i n t e d out by A n d e r s e n et al.

T h e r e a s o n for c h a n g i n g the o r i g i n a l p r o c e d u r e by V e r l e t and 3

W e i s was the fact that at large d e n s i t i e s it g i v e s large n e g a t i v e v a l u e s for i n side the co r e a l r e a d y at a d i s t a n c e as large as (0.8-0.9)d.

(19)

10. J.P. Hansen, Phys. Rev. A 2, 221 (1970)

11. In the c a l c u l a t i o n of this d e r i v a t i v e from the e q u a t i o n s (4) and (lb) we used the r e l a t i o n I =s О This

d"[o lg

rela t i o n c a n be v e r i f i e d e a s i l y s t a r t i n g from the e q u a t i o n s (4), (3) and (la) and u s ing the c o n d i t i o n (6). On the b a s i s of this r e s u l t w e can say that the r e f e r e n c e s y s t e m is d e t e r m i n e d f r o m the c o n d i t i o n that the free e n e r g y of the s y s t e m as a func t i o n of the d e n s i t y o f the r e f e r e n c e s y s t e m s hould have an extremum, w h i c h is e q u i v a l e n t w i t h the

c o n d i t i o n £ = g 0 .

12. W.G. Hoover, S.G. Gray, K.W. Johnson, J. Chem. Phys. 5 5 , 1128 (1971)

13. J.J. Nicolas, K.E. Gubbins, W.B. Stre e t t , D.J. Tildesley, Mol. Phys. 37_, 1429 (1979)

14. J.P. Hansen, J.J. Weis, Mol. Phys. 23, 853 (1972)

(20)

F igure C a p t i o n s F i g u r e 1.

T h e e x c e s s free e n e r g y (a) and the e x c e s s c h e m i c a l p oten-

•ft

tial (b) of the s y s t e m w i t h inv e r s e t w e l f t h p o w e r p o t e n t i a l vs . d at d i f f e r e n t v a l u e s for ^ • T h e solid c u r v e s w e r e o b t a i n e d from the e q u a t i o n s (lb), (la), (3) or (4) b y e l i m i n a t i n g o^0 , w h ile the r e s u l t s o b t a i n e d from the e q u a t i o n (5b) or (5a) for a. and

respectively, are i n d i c a t e d by d a s h e d lines. T h e Monte C a r l o r e s u l t s 10 are shown by d o t t e d lines. T h e a rrows s h o w the v a l u e s of d d e t e r m i n e d from the c o n d i t i o n g = J?0 ( e q u ation (6)) ( and o b t a i n e d from the AWC - c o n d i t i o n (+)•

F i g u r e 2.

The e q u a t i o n of state o f the s y s t e m w i t h i n v e r s e sixth p o w e r p o t ential. The d a s h e d c u r v e was o b t a i n e d fro m the AWC - - c o n d i t i o n b y n u m e r i c a l d i f f e r e n t i a t i o n of the free e n e r g y w i t h r e s p e c t to the density, w h i l e the d o t t e d c u rves s h o w the v i r i a l e q u a t i o n of state c o m i n g from b o t h the A W C - met h o d , and the c o n d i t i o n <j> = 5>0 . The p r e s s u r e o b t a i n e d from the c o n d i t i o n

£ =g0 b y n u m e r i c a l d i f f e r e n t i a t i o n is i n d i c a t e d b y s o lid line.

T h e M o n t e C a r l o r e s u l t s are d e n o t e d by full circles.

F i g u r e 3.

T h e e q u a t i o n of state for a L e n n a r d - J o n e s f l uid at high

•ft

t e m p e r a t u r e (T =5). The solid line shows the r e s u l t o b t a i n e d from the c o n d i t i o n g = / the MC - r e s u l t s 13 are i n d i cated b y b l a c k circles.

(21)

F igure 4.

The pa i r d i s t r i b u t i o n f u n c t i o n of the s y s t e m w i t h inverse twe l f t h p o w e r p o t e n t i a l at *4 = 0.4215. The z e r o t h o r d e r result o b t a i n e d from the c o n d i t i o n S - J ? * (solid line) is c o m p a r e d to that c a l c u l a t e d from the A W C t h e o r y (dashed line) and to the MC res u l t s (black circles).

F i g u r e 5.

The pai r d i s t r i b u t i o n f u n c t i o n of the s y s t e m w i t h inverse t w e l f t h p o w e r p o t e n t i a l at = 0.3746. The full line shows the r e s u l t of a first o r d e r c a l c u l a t i o n , w h e r e the t h r e e p a r t i c l e d i s t r i b u t i o n f u n c t i o n is g i v e n b y the K i r k w o o d s u p e r p o s i t i o n a p p r o x imation. T h e res u l t s of the z e r o t h o r der c a l c u l a t i o n a n d the MC - r e s u l t s are i n d i c a t e d b y d a s h e d line a n d b l a c k circles, res p e c t i v e l y .

(22)
(23)
(24)

F i g . 2

(25)
(26)

1 1.5

Fig. 5

1-5 r/cr 2.

Fig. 4

(27)

T a b l e C a p t i o n s

T a b l e 1.

T h e t h e r m o d y n a m i c p r o p e r t i e s of a s y s t e m w i t h inverse t w e l f t h p o w e r pot e n t i a l . MC = r e s u l t s of M o n t e - C a r l o e x p e r i ­ m e n t s 1 0 ; A W C = p r e d i c t i o n of the A W C - theory, § =£o ~ r esults o b t a i n e d from the e q u a t i o n (6). T h e e q u a t i o n of s t ate is

o b t a i n e d b y n u m e r i c a l d i f f e r e n t i a t i o n of the free energy;

A W C (V) and (v) are the p r e d i c t i o n s of the A W C - t h e o r y and the c o n d i t i o n jg> - £ o , r e s p e c t i v e l y , b a s e d o n the v i r i a l theorem. The v alues for the p r e s s u r e o b t a i n e d from the e q u a t i o n (la) u s ing the c o n d i t i o n £ =§ o are a l s o shown ( § ~ £ o (la)).

T h e AWC v a l u e s shown in the t a b l e d i f f e r s l i g h t l y fr o m those of Ref. 7 as a c o n s e q u e n c e of the d i f f e r e n t e x t r a p o l a t i o n p r o c e d u r e for у2° (r) inside the core.

T a b l e 2.

The e q u a t i o n of s t ate of a s y s t e m w i t h i nverse n i n t h p ower potential. T h e n o t a t i o n s are the same as in T a b l e 1. T h e MC v alues w e r e t a ken fr o m Ref. 12.

(28)

*

6

MC A W C MC A W C A W C (v) О = ^ 0(1/а)

0 . 1 0. 40 0. 404 0.404 1.45 1 . 4 5 0 1.455 1.450 1.449 1.454

0.2 0.9 1 0. 907 0 .908 2.12 2.123 2.155 2.124 2.123 2.143

го•о

1.53 1.537 1 . 5 4 0 3.12 3.116 3.232 3.123 3.119 3.166

0.4 2.33 2.331 2.337 4.58 4.556 4.873 4.580 4.571 4.631

in•О

3.34 3.332 3.347 6.66 6.616 7.334 6.665 6.669 6.640

0.6 4.61 4.599 4.623 9.56

!

9.539 10.945 9.591 9.688 9.256

T a b l e 1

(29)

MC AWC A W C (V) r s o

0 . 1 1.5 0 1.50 1.51 1.50 1.51

0. 2 5 2 . 7 0 2.69 2.84 2.70 2.77

0.5 6 . 6 0 6.48 7.74 6.61 6.65

T a b l e 2

(30)
(31)
(32)

< Kiadja a Központi Fizikai Kutató Intézet

Felelős kiadó: Krén Emil Szakmai lektor: Bergou János Nyelvi lektor: Tíittő István

Példányszám: 500 Törzsszám: 80-738 Készült a KFKI sokszorosító üzemében Felelős vezető: Nagy Károly

Budapest, 1980. december hó

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

In his approach Witten [6 ] proposed a system of equations in eight dimensional space that on the physical subspace yields the wanted gauge solutions. Similarly to the

Example 1 In this example, we present preparation of RFOD from an ENDF/B data set, calculation of finite diluted group averaged cross-section, Greuling-Goertzel

BUDAPEST.. parameter&#34; f has been developed for determining the thermodynamic properties and the pair correlation function of a real fluid using the thermodynamic

The investigations in the polarizing microscope with crossed polarizer and analyser showed that there are asymmetrical stress fields with components parallel to the

HUNGARJAN ACADEMY OF SCIENCES CENTRAL RESEARCH INSTITUTE FOR

HUNGARIAN ACADEMY OF SCIENCES CENTRAL RESEARCH INSTITUTE FOR

HUNGARIAN ACADEMY OF SCIENCES CENTRAL RESEARCH INSTITUTE FOR

HUNGARIAN ACADEMY OF SCIENCES CENTRAL RESEARCH INSTITUTE FOR