• Nem Talált Eredményt

CENTRAL RESEARCH INSTITUTE FOR PHYSICSBUDAPEST

N/A
N/A
Protected

Academic year: 2022

Ossza meg "CENTRAL RESEARCH INSTITUTE FOR PHYSICSBUDAPEST"

Copied!
20
0
0

Teljes szövegt

(1)

F , I G L Ó I D . V . KAPOR M. S K R I N J A R J . SÓLYOM

S ERIES EXPANSION STUDY OF

F IRST- AND S E C O N D - O R D E R PHASE T R A N S I T I O N S IN A M O D E L WITH flULTISPIN COUPLING

cH ungarian ‘Academ y o f ‘Sciences

CENTRAL RESEARCH

INSTITUTE FOR PHYSICS

BUDAPEST

(2)
(3)

KFKI-198 5-52

SERIES EXPANSION STUDY OF

FIRST- AND SECOND-ORDER PHASE TRANSITIONS IN A MODEL WITH MULTISPIN COUPLING

F. IGLÖI*, D.V. KAPOR**, M. SKRINJAR** and J. S6LYOM*&

*Central Research Institute for Physics H-1525 Budapest 114, P.O.B.49, Hungary

* *

Department of Physics, University of Novi Sad, Novi Sad, Yugoslavia

i n s t i t u t e for Theoretical Physics, University of Lausanne, Lausanne, Switzerland

HU ISSN 0368 5330

(4)

The type of phase transition in a chain of Ising spins with multispin interaction is studied in a transverse field, using strong- and weak-coupling expansions. The transition is shown to be of first order if more than three spins are coupled. The critical exponents for the three-spin coupling model are estimated.

АННОТАЦИЯ

Исследован род фазового перехода модели спиновой цепочки Иэинга с мно­

го-спиновыми связями в присутствии внешнего перпендикулярного магнитного по­

ля. Показано, что фазовый переход является переходом первого рода, если коли­

чество связанных спинов больше трех. Даются оценки критических экспонентов модели с трех-спиновыми связями.

KIVONAT

Többspin kölcsönhatásu Ising spin-lánc fázisátalakulásának tipusát merő­

leges mágneses tér jelenlétében erős- és gyengecsatolási sorfejtéssel tanul­

mányozzuk. Megmutatjuk, hogy az átalakulás elsőrendű, ha több, mint három spin között van csatolás. Becslést adunk a három-spin kölcsönhatásu modell kriti­

kus exponenseire.

(5)

1 . I N T R O D U C T I ON

W h i l e s e c ond-order p h ase t r a n s i t i o n s can be studied c o n v e n i ­ ently by using v a r i o u s formulations o f the r e n o r m a l i z a t i o n - g r o u p transformation, the situation is much less s a t i s f a c t o r y for

firs t - o r d e r phase transitions. A l t h o u g h the c o n c e p t of d i s c o n ­ tinuity fixed p o i n t (Nienhuis and N a u e n b e r g 1975) is useful in d e s c r i b i n g f i r st-order phase transitions, these latter are not always associated w i t h a d i s c o n t i n u i t y fixed point. Similarly, altho u g h detailed studies h a v e been p e r f o r m e d in fini t e - s i z e

scaling for systems with first-order p h a s e t r a nsitions (Imry 1980, Fisher and Berker 1982, B l öte and N i g h t i n g a l e 1982, Iglói and Sólyom 1983, Hamer 1983, C a r d y and N i g h t i n g a l e 1983, P r i v m a n and Fisher 1983, B i n d e r and L a n d a u 1984), in many p r a c t i c a l c a s e s it is not easy to d e c i d e from the data for finite systems, w h e t h e r the transition is of first or second order. This is e.g. the case for the m u l t i s p i n - c o u p l i n g m o d e l s t u d i e d in this paper.

The model w a s i n t roduced by T u r b a n (1982) a n d by P e n s o n et al. (1982). The H a m i l t o n i a n can be w r i t t e n in the form

H = ХЕско i

z

i+1 •■* az

i+m-1 (1.1)

w h e r e a* and a r e Pauli operators o n site i. T h e value of m det e r m i n e s the n u m b e r of n e i g h b o u r i n g spins th a t are coupled.

At zero temp e r a t u r e the s y s t e m has a p h a s e t r a n s i t i o n as the

transverse field increases. Since it seems that there is a single phase transition in the system, the s e l f - d u a l i t y of the m o d e l predicts that it should be at (h/X)* = 1, indepen d e n t l y of the number of coupled spins m. For m=2 the model is the standard

Ising m o d e l in t r a n sverse field w hich has a s e c o n d - o r d e r p hase transition. For m -> °°, however, m e a n - f i e l d t h e o r y should be

(6)

e x act and the tra n s i t i o n turns out to be of f i r s t order. There are c o n t r o v e r s i a l p r e d i c t i o n s for the crit i c a l v a l u e of m, a b o v e w h i c h the t r a n s i t i o n s h o u l d be of f i rst order. M e a n - f i e l d the­

ory gives m c= 2 , however r e n o r m a l i z a t i o n - g r o u p c a l c u l a t i o n s

(Iglói et al. 1983) give a usual s e c o n d - o r d e r b e h a v i o u r for ш^З.

The analysis of finite-size scaling results lead Penson et al.

(1982) to c o n c l u d e that m c =4. From a c o n j e c t u r e d c r i t e r i o n for d i s t i n g u i s h i n g between con t i n u o u s and di s c o n t i n u o u s transitions

(Livi et a l . 1983), M a r i t a n et al. (1983) p r e d i c t e d that for m=4 the t r a n s i t i o n is a l r e a d y of f i r s t order. Since finite-size

s caling is not ver y s e n s i t i v e to d e c i d e when the c h a r a c t e r of the t r a n s i t i o n changes, o t h e r m e t h o d s should b e used.

In this p a p e r we use the s e r i e s - e x p a n s i o n m e t h o d to d e t e r ­ min e the c r i t i c a l value of m c - The p a p e r is o r g a n i z e d as follows.

The series o b t a i n e d for the g r o u n d - s t a t e e n e r g y in the w e a k - and s t r o n g - c o u p l i n g limits are p r e s e n t e d in Sec. 2. The s e r i e s are a n a l y s e d in Sec. 3, w h e r e we find th a t in fact m (_,=3, and for this case, w h ere the t r a n s i t i o n is still of second order, the critical e x p o n e n t s are also determined. The results are d i s c u s s e d in

S e c . 4 .

2. S E R I E S E X P A N S I O N

The w e a k - and s t r o n g - c o u p l i n g series e x p a n s i o n s for quantum spin systems, w h i c h are analo g o u s to the high- and l o w - t e m p e r a ­ ture e x p a n s i o n s in c l a s s i c a l s t a t i s t i c a l m e c h anics, and the a n aly­

sis of the s e ries by u s i n g d i f f e r e n t methods to d e t e r m i n e the critical b e h a viour, have b e e n p r o v e d t o 2*4be v e r y useful in the study of m a n y systems (Hamer et al. 1979, E l i t z u r et al. 1979, Hamer and K o g u t 1980, M a r l a n d 1981) . We will a p p l y this procedure to the m u l t i s p i n - c o u p l i n g model.

The H a m i l t o n i a n of eq. (1.1) c a n be split in two ways. If the m u l t i s p i n coupling X is stron g e r than the t r a n s v e r s e field h, this latter can be t r e a t e d in p e r t u r b a t i o n and an e x p a n s i o n

(7)

3

in powers of h/A can be generated. This s t r o n g - c o u p l i n g e x p a n s i o n for the g r o u n d state energy per site will have the form

§ = - AZan (|)n , for A > h . (2.1) n

On the o t h e r hand, if the m u l t i s p i n c o u p l i n g is w e a k e r than the tra n s v e r s e field, a we a k coup l i n g e x p a n s i o n in powers of А/h can be generated. Due to the self-d u a l i t y of the model, the series e x p a nsion c o e f f i c i e n t s will be the same in the two cases, i.e.

§ = - h E a n (£)n , for A < h , (2.2) n

and at A=h the two expressions match. This is valid e v e n if on l y a few finite - o r d e r terms are c a l c u l a t e d in the expansion.

If the tr a n s i t i o n is of s e c o n d order, than the two e x p r e s s ­ ions give n o t only the same e n e r g y at A = h , but the left and r i g h t derivatives, c a l c u l a t e d from the two e x p ressions in their regions of validity, respectively, are als o identical at this point. O n l y the second d e r i v a t i v e s will differ. On the other hand, if the t r a n sition is of first order, the weak- and s t r o n g - c o u p l i n g e x ­ pansions gi v e d i f f e r e n t first d e r i v a t i v e s on the two sides of the tr a n s i t i o n point, indicating a finite latent heat.

If the expansion coeffi c i e n t s are cal c u l a t e d u p to a finite order, the two expansions always give d i f f e r r i n g left and right deri v a t i v e s at the transition point, a l t h o u g h after e x t r a p o l a t i n g to n+°° the d i f f e r e n c e m a y disappear, indicating a s e c o n d order phase transition. If, however, the t r a n s i t i o n is of first order, the dif f e r e n c e be t w e e n the two d e r i v a t i v e s should r e m a i n finite even when n-*-°°.

We h a v e p e r f ormed the w e a k - and s t r o n g - c o u p l i n g series e x ­ pansions for the ground-state e n e r g y of the model g i v e n in eq.

(1.1) up to 10th order for m=2,3 and 4, w h i l e for m = 5 , 6 and 7 up to 8th order. The s e r i e s - e x p a n s i o n coefficients are g i v e n in Table I.

(8)

3 . A N A L Y S I S O F T H E S E R I E S

As d i s c u s s e d in the p r e v i o u s section, finite-order p e r t u r b a ­ tion t h e o r y always gives a f i n i t e latent heat, a finite d i f f e r ­ ence b e t w e e n the d e r i v a t i v e s of the g r o u n d - s t a t e e n e r g y at A=h, w h e n cal c u l a t e d fr o m the w e a k - or s t r o n g - c o u p l i n g expansions.

This nth order l a t e n t heat L is d e f i n e d as n

,

ГэЕ®(Ь,Х)

E™(h,A)

L„ = » { - 5 Н - Ц - -ТЯГ- U j • ,3'1)

Here E S and Ew are the g r o u n d - s t a t e e n e r g i e s c a l culated in the

n n

strong- and w e a k - c o u p l i n g expansion, respectively, k eeping terms up to n t h order. T h e values o b t a i n e d u s i n g the results of the previous section are given in Table II.

In the e x t r a p o l a t i o n to n-*-«5 the e x a c t solution of the m = 2 case (Pfeuty 1970) can be use d as a guide. It is e a s i l y seen, that for the Ising case the e x p a n s i o n c o e f f i c i e n t s can be w r i t t e n in the form

a2n

n П ( i=l

2i-3 v

2i (3.2)

After summing up the series w i t h these c o e f f i c i e n t s one reco v e r s the e x act result of Pfeuty (1970). The latent heat in nth o r der can be a p p r o x i m a t e d by

Ln I(n+1/2) (3.3)

One can see that the latent h e a t goes to zero rou g h l y as 1/n.

This e x p r e s s i o n is the special case of the general scaling for m valid for s e c o n d - o r d e r t r a n s i t i o n s (Iglói 1985)

(3.4)

(9)

5

Here a is the s p e c i f i c - h e a t exponent. This k i n d of s c a l i n g b e ­ ha v i o u r has b e e n used by one of us to d e t e r m i n e the c r i t i c a l exponents of v a r i o u s physi c a l q u a n t i t i e s from series expansions.

According to e q s . (3.3) and (3.4), a p l o t of log L n versus log(n+l/2) s h o u l d give a straight line for s e c o n d - o r d e r p hase transitions, w i t h a slope - ( l -а). Thi s plot is shown in Fig. 1 for different v a l u e s of the number of cou p l e d spins. T h e points lie ve r y well on a straight line for m=2 and 3, while for m>4 there are c o n s i d e r a b l e deviations. T h e slope of the line for m=3 is a p p r o x i m a t e l y 1/2, therefore w e p l o t in Fig. 2 the v a l u e of

- 1/2

L n as a function of (n+1/2) ' . As is seen, the values are on a straight line not only for m = 3 , b u t for l arger m v alues as well.

For m=3 the e x t r a p o l a t e d latent h e a t v a n i s h e s , thus the t r a n s i ­ tion is of s e c o n d order. The error in the e x t r a p o l a t i o n of the latent heat is smaller than 0.005. For m >4 , however, the latent heat differs s i g n i f i c a n t l y from zero. In these cases the t r a n s i ­ tion is of first order. The a c c u r a c y of the e x t r a p o l a t i o n is r ather good. This is due to the fact, that the ratio of the c o ­ efficients an (m)/an (m+1) varies o n l y slowly w i t h n, as can be read off from T a ble I. This q u a n t i t y is sma l l e r than o n e for m=2, but it is l arger than u n i t y for rn>3. This r a t i o is e x t r e m e l y stable for m=3. Suppo s i n g that this ratio is the same in higher orders of the e x p a n s i o n as weel, i.e. an (3)/ a n (4)s i .227 , in d e ­ p e n d e n t l y of n, w e esti m a t e the l a t e n t heat for the ca s e m=4 to be

a (4)

L(m=4) = ^lo (m~4) - L l Q (m=3) • &n— jy = 0.218 . (3.5) n

This value is in good agreement w i t h the e s t i m a t e from Fig. 2.

The latent he a t for larger values of m can be e x t r a p o l a t e d in the same way, however, the accu r a c y is s o m e w h a t smaller. The calculated l a t e n t heats are shown in Fig. 3, together w i t h the s e r i e s - e x p a n s i o n results. The l atent heat for large v a l u e s of m behaves as L = l - 3 /2m. At m=3 the l a t e n t heat b ecomes zero and remains i d e ntically zero for sm a l l e r values of m.

(10)

Next we e s t i m a t e the critical pr o p e r t i e s of the m o d e l for m=3. Since we h a v e c a l c u l a t e d the g r o u n d - s t a t e e nergy only, the s p ecific-heat e x p o n e n t a c a n be o b t a i n e d from the second d e r i v a ­ tive. The series is rather short, t h e r e f o r e d i f f e r e n t m e t h o d s have b e e n used to get a b e s t estimate. The r e s u l t of the ratio m e t h o d (Gaunt a n d Guttmann 1974) is a = 0 .53+0.03. By u s ing the scaling relat i o n (3.4) we o b t a i n a = 0 . 54+0.02. The best r e s u l t is achie v e d by P á d é analysis (Gaunt a n d Guttmann 1974) of the series. A c c o r d i n g to the P á d é a p p r o x i m a n t s (Table III) w e obtain a = 0 . 554+0.001. Thu s all these e s t i m a t e s are c o n s i s t e n t w i t h the pre d i c t i o n

a = 0.55 + 0.01 (3.6)

The critical e x p o n e n t of the c o r r e l a t i o n length can be c a l c u ­ lated from the h y p e r s c a l i n g rela t i o n dv=2-a, and we get v =

= 0.73+0.01. This value is somewhat smaller t h a n the r e s u l t o b ­ tained by Iglói et al. (1983) from the r e n o r m a l i z a t i o n - g r o u p calcu l a t i o n and is close to the v a l u e det e r m i n e d by P e n s o n et al. (1982) from f i n ite-size scaling.

k. D I S C U S S I O N

In the p r e s e n t paper the phase t r a nsition in a c h a i n of Ising spins c o u p l e d by a m u l t i s p i n i n t eraction and s u b m i t t e d to a t r a n sverse f i e l d has b e e n studied. T h e weak- and s t r o n g - c o u p ­ ling series e x p a n s i o n s for the g r o u n d - s t a t e e n e r g y have b e e n p e r f o r m e d up to 10th order in the p e rturbation. It has b e e n shown that in the cases w h e n more t h a n 3 neighb o u r i n g s p ins are coupled, the t r a n s i t i o n is of first order. This m e t h o d is thus mor e sensitive t h a n f i n ite-size s c a l i n g to d e t e r m i n e the order of transition. In this l a t t e r m e t h o d the m=4 c a s e still seemed to b e h a v e like h a v i n g s e c o n d - o r d e r p h a s e tr a n s i t i o n (Penson et al. 1982). As s h o w n by Iglói and S ó l y o m (1983) and H a m e r (1983) the finite l atent heat in a f i r s t - o r d e r t r a n sition can be de-

(11)

7

termined from finite-size sca l i n g calcul a t i o n s as well but the limits L->°°, w h e r e L is the length of the system, and A-»-A* cannot be interchanged.

The analysis of the series all o w e d us to e s t i m a t e the c r i t i ­ cal exponents a and v for the case m=3. The values o b t a i n e d d i f ­ fer from the v a l u e s known for the 4-state Potts m o d e l indicating once more that these models do not b e l o n g to the same u n i v e r s a l ­ ity class (Iglói et al. 1983), a l t h o u g h in both cases a fourfold deg e n e r a c y is l i fted at the transition.

A C K N O W L E D G E M E N T S

The authors are indebted to Prof. R. Dekeyser (Leuven) for his hel p in the Pade analysis of the series. One of us (J.S.) is grateful to Prof. P. Erdős for his h o s p i t a l i t y at the U n i v e r s i t y of Lausanne and to the Swiss Nati o n a l S cience Fo u n d a t i o n for the financial support. The n u m e r i c a l calcul a t i o n s have bee n performed at the Central Research I n s t itute for Physics and at the U n i v e r ­ sity of L a u s e n n e . We ackn o w l e d g e the hel p of Dr. A. Simonits at the early stages of the n u m e r i c a l calculations.

R E F E R E N C E S

Binder K. and L a n d a u D.P.: 1984 P h y s . Rev. В _30 1477 Blöte H.W.J. and Nigh t i n g a l e M.P.: 1981 Physica 112A 405 Cardy J.L. and Night i n g a l e P.: 1983 Phys. Rev. В 2J7 4256

Elitzur S. , Pe a r s o n R. and Sh i g e m i t s u J. : Phys. Rev. D 19_ 3698 Fisher M.E. and Berker A.N. : 1982 Phys. Rev. В 26_ 2507

Gaunt D.S. and Guttmann A.J.: 1974, in Phase T r a n s i t i o n s and Critical Phenomena, ed. C. Domb and M.S. Green, Vol. 3.

(New York: Academic)

(12)

Hamer C.J.: 1983 J. Phys. A: Math. Gen. 1_£ 3085

Hamer C.J. and Kogut.J.B.: 1980 Phys. Rev. В 22^ 3378

Hamer C.J., Kogut J.B. and Susskind L . : 1979 Phys. Rev. D 19 3091

Iglói F . : (to be published)

Iglói F., Kapor D . V . , Skrinjar M. and S ó l y o m J . : 1983 J. Phys.

A: Math. Gen. lj> 4067 {

Iglói F. and S ólyom J.: 1983 J. Phys. C.: Solid State Phys.

16 2833

Imry Y. : 1980 Phys. Rév. В 2_1 2042

Livi R. , Mar i t a n A., Ruffo S. and S t e l l a A.L.: 1983 Phys. Rév.

Lett. 50 459

Ma r i t a n A., S tella A. and V a n d e r z a n d e C.: 1984 Phys. Rev. В .29 519

M a r l a n d L.G. : 1981 J. Phys. A.: Math. Gen. 14: 2047

Nienhuis В. and Nauen b e r g M. : 1975 Phys. Rev. Lett. 3_5 477

Penson K.A., Jul i i é n R. and Pfeuty P.: 1982 Phys. Rev. В _26 6334 Pfeuty P.: 1970 Ann. Phys., NY 51_ 79

Privman V. and F i sher M.E.: 1983 J. Stat. Phys. 33 385 T urban L. : 1982 J. Phys. C.: Solid State Phys. _15 L65

Í I 1

(13)

Table I

Series expansion coefficient a R (m ) for the model with m coupled spins in nth order of perturbation

O r d e r a n ( 2 ) a „ ( 3 ) a n ( 10 a n ( 5 ) a n < 6 ) a ( 7 )

n

2 1/1* 1 / 6 1 / 8 1 / 1 0 1 / 1 2 1/11*

0 . 0 0 1 5 6 2 5 0 0 O . O I 8 5 I 8 5 2 0 . 0 1 1 * 9 7 3 9 6 0 . 0 1 1 8 3 3 3 3 0 . 0 0 9 1 * 9 0 7 1 * О . О О 7 7 6 2 3 9 6 0 . 0 0 3 9 0 6 2 5 О. ОО 5 6 О7 О О 0 . 0 0 1 * 5 7 3 6 8 0 . 0 0 3 1 * 6 6 1 9 0 . 0 0 2 6 2 8 7 1 0 . 0 0 2 0 2 6 7 9 8 0 . 0 0 1 5 2 5 8 8 0 . 0 0 2 5 1 2 6 1 0 . 0 0 2 0 5 1 1 * 3 0 . 0 0 1 1 * 8 1 * 7 6 0 . 0 0 1 0 6 1 1 * 5 0 . 0 0 0 7 6 9 5 3 10 0 . 0 0 0 7 1 * 7 6 8 O . O O I 3 7 9 2 9 0 . 0 0 1 1 21+33

(14)

Table I I

The latent heat l_n (m) in nth order of perturbation theory calculated from eq. (3*1) for the model with m coupled spins

Order

} L (2)

n L (3)

n Ln (l*)

1 1

L„<5>

. . . . . . L

L (6)

n Ln (7>

2

L.U . ■ "IIT f

0.25 0.5 0.625 0.7 0.75 0.7857

1* 0.11*06 0.3701* O. 5 2 0 2 О. 6 1 7 2 0 . 6 8 3 6 0.7311*

6 0.0976 0.3087 0.1*699 0.5790 0.651*6 0 . 7 0 9 1

8 0.071*8 O.2 7IO 0.1*391 0.5568 0.6387 0.6975

10 0.0606 0.21*1*8 0.1*178

(15)

11

Table I I I

Pádé analysis of the series for the logarithmic derivative of the specific heat in the m=3 model

(16)

x

The nth order latent heat Ln versus n+1/2 on a log-log plot for different values of the number of

coupled spins

(17)

13

-1 /2 The nth order latent heat Ln versus (n+1/2) ' for

the models with m>3

Csj

CN I

Vf\

CO

GO Ö

(n + 1 /2 )

(18)

Fig. 3

The nth order latent heat and the extrapolated value for n->°° plotted for different m values

(19)

3

*

(20)

Kiadja a Központi Fizikai Kutató Intézet Felelős kiadó: Kroó Norbert

Szakmai lektor: Dr. Kollár János Nyelvi lektor: D r . Tüttő István Gépelte: Berron Péterné

Példányszám: 390 Törzsszám: 85-293 Készült a KFKI sokszorosító üzemében Felelős vezető: Töreki Béláné

Budapest, 1985. május hó

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

The second result follows from our approach too: it is shown that the identification of gravitation with a massless spin 2 gauge field requires the restriction

100 m magas kéménytől 800 m-re szélirányban, 1 m/s szél- sebesség mellett, D stabilitási kategória esetén a csóva gamma-sugárzása által okozott földfelszini

Kiadja a Központi Fizikai Kutató Intézet Felelős kiadó: Lőcs Gyula. Szakmai lektor: Pócs Lajos Nyelvi lektor: Harvey

Mivel a rendszerben a nyomáskülönbségek ekkor más csak néhány század MPa-t tesznek ki, ugyanebben az időpontban vált előjelet a gőzfejlesztők primer és

Both the Curie temperature and the mean magnetic moment of iron and holmium decrease with increasing holmium content.. The temperature dependence of magnetization

characterise different flow regimes. We propose to desc r i b e the propagating two-phase substance by the spatial correlation function of its density

In general we have only a single pair of the exciting and decay curve (or only one exciting curve for a number of different decay curves) therefore we are able to

We report on a new variational method for determining the ground state energy of antiferromagnetic Heisenberg spin chains with nearest neighbour interaction..