• Nem Talált Eredményt

Supplementary Materials: Ultrasound-Assisted Hydrazine Reduction Method for the Preparation of Nickel Nanoparticles, Physicochemical Characterization and Catalytic Application in Suzuki- Miyaura Cross-Coupling Reaction

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Supplementary Materials: Ultrasound-Assisted Hydrazine Reduction Method for the Preparation of Nickel Nanoparticles, Physicochemical Characterization and Catalytic Application in Suzuki- Miyaura Cross-Coupling Reaction"

Copied!
8
0
0

Teljes szövegt

(1)

Supplementary Materials: Ultrasound-Assisted

Hydrazine Reduction Method for the Preparation of Nickel Nanoparticles, Physicochemical

Characterization and Catalytic Application in Suzuki- Miyaura Cross-Coupling Reaction

Adél Anna Ádám 1,2, Márton Szabados 1,2, Gábor Varga 1,2, Ádám Papp 2, Katalin Musza 1,2, Zoltán Kónya 3,4, Ákos Kukovecz 3, Pál Sipos 2,5 and István Pálinkó 1,2,*

1 Department of Organic Chemistry, University of Szeged, Dóm tér 8, Szeged, H-6720 Hungary, lee- daa@hotmail.com (A.A.A.); szabados12m@gmail.com (M.S.); gaborvarga1988@gmail.com (G.V.);

musza.katalin@chem.u-szeged.hu (K.M.).

2 Material and Solution Structure Research Group, and Interdisciplinary Excellence Centre, Institute of Chemistry, University of Szeged, Aradi Vértanúk tere 1, Szeged, H-6720 Hungary, papy97@gmail.com (A.P.);

sipos@chem.u-szeged.hu (P.S.).

3 Department of Applied and Environmental Chemistry, University of Szeged, Rerrich B. tér 1, Szeged, H-6720 Hungary, konya@chem.u-szeged.hu (Z.K.); kakos@chem.u-szeged.hu (A.K.).

4 MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, Rerrich B tér 1, Szeged, H-6720 Hungary

5 Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, Szeged, H-6720 Hungary

* Correspondence: palinko@chem.u-szeged.hu

10 20 30 40 50 60 70 80

metallic nickel 8 nm

8 nm

7 nm

7 nm 100%

80%

60%

40%

220 

 200

 111

Intensity (a.u.)

2

20%

7 nm

Figure S1. XRD patterns of the nickel nanoparticles prepared under ultrasound treatment with various ultrasound emission periodicities (duration of treatment: 4 h, temperature of treatment: 25 °C).

(2)

10 20 30 40 50 60 70 80

mechanical stirring 30 W

8 nm 14 nm

metallic nickel

10 nm 9 nm 8 nm

12 nm

220 

 200

 111

Intensity (a.u.)

120 W 90 W 60 W

non-strirred

Figure S2. XRD patterns of the nickel nanoparticles prepared with mechanical stirring, without stirring or under ultrasonic treatment at various output power values (duration of treatment: 4 h, temperature of treatment: 25 °C).

10 20 30 40 50 60 70 80

metallic nickel

 nickel(II) hydroxide







Intensity (a.u.)

2

a b c d

d: 5°C, non-stirred, 4 h c: 5°C, 30 W  100%, 8 h b: 5°C, 30 W 100%, 6 h a: 5°C, 30 W 100%, 4 h





Figure S3. XRD patterns of the solid materials formed on ultrasound treatment (30 W − 100%) at 5 °C with 4 h, 6 h or 8 h treatments or without stirring at 5 °C after 4 h.

10 20 30 40 50 60 70 80

 nickel(II) hydroxide

nickel-hydrazine-iodide complex mechanical stirring

nickel hydroxide mechanical stirring nickel hydroxide ultrasound treatment

nickel-hydrazine-iodide complex ultrasound treatment

Intensity (a.u.)

2

 



 

Figure S4. XRD patterns of the nickel hydroxide and complex intermediates obtained under mechanical stirring or sonication (30 W − 100%) at 75 °C, after 4 h treatment.

(3)

100 200 300 400 500 60

65 70 75 80 85 90 95 100

6 5 4 3 2 1 0

Mass (%)

-Ni(OH)2

Endothermic Exothermic

Heatflow (V) DTG (mg/min)

Furnace temperature (°C)

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 90

260 85

260

200 400 600 800 1000

90 92 94 96 98 100 102 104

non-stirred

90 240

370

375

Endothermic Exothermic

Heatflow (V) DTG (mg/min)

Mass (%)

Furnace temperature (°C)

12 10 8 6 4 2

-0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08 0.10

200 400 600 800 1000

94 96 98 100 102 104 106 108 110 112 114

265

Heatflow (V) DTG (mg/min)

Mass (%)

Furnace temperature (°C) 375

370

100

Endothermic Exothermic

mechanical stirring

12 10 8 6 4 2

-0.05 0.00 0.05 0.10 0.15 0.20 0.25

200 400 600 800 1000

92 94 96 98 100 102 104 106

120 W 100% ultrasound treatment 60

Endothermic Exothermic

Furnace temperature (°C)

Heatflow (V) DTG (mg/min)

Mass (%)

370 380

55

255

9 8 7 6 5 4 3

-0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08 0.10

Figure S5. Thermogravimetric curves of the β-Ni(OH)2 and the NiNPs prepared without stirring, with mechanical stirring or under ultrasound treatment (120 W − 100%).

(4)

10 20 30 40 50 60 70 80

nickel(II) oxide

Intensity (a.u.)

2













100% 30 W ultrasonic mechanical stirring non-stirred

100%120 W ultrasonic 20%30 W ultrasonic

Figure S6. X-ray patterns of the thermogravimetric residues of the nanoparticles.

0.0 0.2 0.4 0.6 0.8 1.0

5 10 15 20 25 30 35 40 45

Quantity adsorbed gas (cm3/g STP)

Adsorption Desorption

non-stirred

Relative pressure (p/p0)

10 100 1000

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 0.0012 0.0014

dV(r) cm3 /Å/g

non-stirred

Pore radius (Å)

0.0 0.2 0.4 0.6 0.8 1.0

5 10 15 20 25 30 35

Quantity adsorbed gas (cm3/g STP)

Adsorption Desorption

mechanical stirring

Relative pressure (p/p0)

10 100 1000

0.0000 0.0005 0.0010 0.0015 0.0020

mechanical stirring

dV(r) cm3 /Å/g

Pore radius (Å)

(5)

0.0 0.2 0.4 0.6 0.8 1.0 10

20 30 40 50

30 W 20% ultrasound treatment

Adsorption Desorption

Quantity adsorbed gas (cm3/g STP)

Relative pressure (p/p0)

10 100 1000

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030

30 W 20% ultrasound treatment

dV(r) cm3 /Å/g

Pore radius (Å)

0.0 0.2 0.4 0.6 0.8 1.0

10 20 30 40 50 60

30 W 100% ultrasound treatment

Quantity adsorbed gas (cm3/g STP)

Relative pressure (p/p0)

Adsorption Desorption

10 100 1000

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 0.0012

30 W 100% ultrasound treatment

dV(r) cm3 /Å/g

Pore radius (Å)

0.0 0.2 0.4 0.6 0.8 1.0

5 10 15 20 25 30 35 40

120 W 100% ultrasound treatment

Adsorption Desorption

Quantity adsorbed gas (cm3 /g STP)

Relative pressure (p/p0)

10 100 1000

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 0.0012 0.0014

dV(r) cm3 /Å/g

120 W 100% ultrasound treatment

Pore radius (Å)

Figure S7. N2 adsorption-desorption (left) and the pore size distribution (right) curves of the selected nickel nanoparticles.

(6)

Figure S8. Energy dispersive X-ray analysis spectrum of NiNPs prepared at room temperature with ultrasound treatment of 30 W output power and 20% emission periodicity (signals of carbon, aluminum and phosphorous are from the adhesive tape/sample holder).

10 15 20 25

0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020 0.022 0.024

0 5 10 15 20 25

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0 5 10 15 20 25

0.02 0.04 0.06 TOF (h-1)

Reaction time (h)

DMF DMSO

TOF (h-1 )

Reaction time (h)

Toluene TOF (h-1)

Reaction time (h)

Figure S9. Evolution of the turn over frequency (TOF) values of the ultrasonically synthesised nanoparticles (30 W, continuous sonication) during the cross-coupling reaction in DMF, DMSO and toluene solvents.

(7)

10 20 30 40 50 60 70 80

Intensity (a.u.)

2(°)

in DMF in toluene in DMSO

 



 

 



NiO fcc Ni  hcp Ni

 

Figure S10. XRD patterns of the used nickel nanoparticle catalyst (30 W − 100%) after the first 24 h run in various media (fcc—face-centered, hcp—hexagonal close-packed).

10 20 30 40 50 60 70 80





* Unidentified • NiS  NiO  fcc Ni  hcp Ni 30 W100% DMSO

mechanical stirringDMSO

30 W100%toluene

mechanical stirringtoluene

Intensity (a.u.)

2

• •

• •

• •

 

  

Figure S11. XRD patterns of NiNPs prepared by 30 W − 100% ultrasound treatment and mechanical stirring after the repeated run in toluene and DMSO solvents (fcc—face-centered, hcp—hexagonal close-packed).

(8)

Figure S12. Energy dispersive X-ray analysis spectrum of NiNPs prepared with ultrasound treatment (30 W − 100%), after using it as catalyst in DMSO solvent (signals of carbon and oxygen originate from the adhesive tape/sample holder, the Ni:S molar ratio ~1:1).

Figure S13. Energy dispersive X-ray analysis spectrum of NiNPs synthesized with mechanical stirring, after using it as catalyst in DMSO solvent (signs of the carbon, aluminium and the oxygen could originate from the adhesive tape/sample holder, the Ni:S molar ratio ~1:1).

Ábra

Figure  S1.  XRD  patterns  of  the  nickel  nanoparticles  prepared  under  ultrasound  treatment  with  various  ultrasound  emission  periodicities  (duration  of  treatment:  4  h,  temperature  of  treatment: 25 °C).
Figure S3. XRD patterns of the solid materials formed on ultrasound treatment (30 W − 100%)  at 5 °C with 4 h, 6 h or 8 h treatments or without stirring at 5 °C after 4 h
Figure  S5.  Thermogravimetric  curves  of  the  β-Ni(OH) 2   and  the  NiNPs  prepared  without  stirring, with mechanical stirring or under ultrasound treatment (120 W − 100%)
Figure S6. X-ray patterns of the thermogravimetric residues of the nanoparticles.
+5

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

S172 A novel catalyst type containing noble metal nanoparticles supported on mesoporous carbon: synthesis, characterization and catalytic properties, E. 2,212

A portable, cost-effective ultrasound imaging device was designed and developed for skin examination, using a freehand scanning method with data-based scan re- construction.. The

It was also presented that use of a fixed calibration curve compared to an adaptive calibration curve – taken from the literature [27] – gave similar accuracies in scan conversion

Studies of the reliability of the Zebris ultrasound-based spine analysis method and of the repetition accuracy of measurements in case of children with correct posture and

For instance, ultrasound-assisted membrane filtration, whose application has recently begun in membrane separation processes for the reason that the application of ultrasound

2 3-D contour plot on biodiesel production using the ultrasound-assisted interesterification method with Box-Behnken design showing the effect of the interaction between (a)

A new method for determining of reaction mechanism and kinetics, catalyst pellet model and adsorption kinetics was developed on the basis of a computer analysis

Then, I will discuss how these approaches can be used in research with typically developing children and young people, as well as, with children with special needs.. The rapid