• Nem Talált Eredményt

Supporting Information

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Supporting Information"

Copied!
36
0
0

Teljes szövegt

(1)

Supporting Information

A mineralogically-inspired silver–bismuth hybrid material: Structure, stability and application for catalytic benzyl alcohol dehydrogenations under continuous flow conditions

Rebeka Mészáros,a Sándor B. Ötvös,*bc Gábor Varga,de Éva Böszörményi,de Marianna Kocsis,de Krisztina Karádi,e Zoltán Kónya,fg, Ákos Kukovecz,f István Pálinkó*de and Ferenc Fülöp*ab

aInstitute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, Szeged, H-6720 Hungary.

bMTA-SZTE Stereochemistry Research Group, Hungarian Academy of Sciences, Eötvös u. 6, Szeged, H-6720 Hungary.

cInstitute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, Graz, A-8010 Austria.

dDepartment of Organic Chemistry, University of Szeged, Dóm tér 8, Szeged, H-6720 Hungary.

eMaterial and Solution Structure Research Group and Interdisciplinary Excellence Centre, Institute of Chemistry, University of Szeged, Aradi Vértanúk tere 1, Szeged, H-6720 Hungary.

fDepartment of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged, H-6720 Hungary

gMTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, Rerrich Béla tér 1, Szeged, H-6720 Hungary

Corresponding authors: S.B. Ötvös, I. Pálinkó and F. Fülöp

e-mail address: sandor.oetvoes@uni-graz.at (S.B. Ötvös), palinko@chem.u-szeged.hu (I. Pálinkó), fulop@pharm.u-szeged.hu (F. Fülöp)

(2)

S2

Table of Contents

1. Additional figures and tables ...S3 2. Analytical data of the reaction products ...S13 3. Collection of NMR spectra ...S16 4. References ...S36

(3)

S3 Additional figures and tables

5 10 15 20 25 30 35 40

A B C E D

Intensity (a.u.)

2/

200C 150C 100C 50C 25C A F

[002] [101] [004]

[105]

[110]

[006] [107]

Fig. S1. XRD patterns of AgBi-HM samples: as-prepared (A), treated with acetone at various temperatures (B-F).

5 10 15 20 25 30 35 40

200 C 150 C 110 C 50 C 25 C A

Intensity (a.u.)

2

F E

D C

B

A

Fig. S2. XRD patterns of AgBi-HM samples: as-prepared (A), treated with DMA at various temperatures (B-F).

(4)

S4

5 10 15 20 25 30 35 40

0 1 2 3 4 5 6

Intensity (a.u.)

2

200 C 150 C 100 C 50 C 25 C A

F

E

D C

B

A

Fig. S3. XRD patterns of AgBi-HM samples: as-prepared (A), treated with toluene at various temperatures (B-F).

5 10 15 20 25 30 35 40

Intensity (a.u.)

2

200C 150C 100C 50C 25C A F

E

D C

B

A

Fig. S4. XRD patterns of AgBi-HM samples: as-prepared (A), treated with THF at various temperatures (B-E).

(5)

S5

5 10 15 20 25 30 35 40

Intensity (a.u.)

2

200C 150C 100C 50C 25C A

F

E

D C

B

A

Fig. S5. XRD patterns of AgBi-HM samples: as-prepared (A), treated with DMSO at various temperatures (B-F).

5 10 15 20 25 30 35 40

200C 150C 100C 50C 25C A

Intensity (a.u.)

2

F

E

D C

B

A

Fig. S6. XRD patterns of AgBi-HM samples: as-prepared (A), treated with CHCl3 at various temperatures (B-F).

(6)

S6

5 10 15 20 25 30 35 40

Intensity (a.u.)

2

200 C 150 C 100 C 50 C 25 C A F

E

D C

B

A

Fig. S7. XRD patterns of AgBi-HM samples: as-prepared (A), treated with iPrOH at various temperatures (B-F).

5 10 15 20 25 30 35 40

Intensity (a.u.)

2

200C 150C 100C 50C 25C A

F

E

D C

B

A

Fig. S8. XRD patterns of AgBi-HM samples: as-prepared (A), treated with CH2Cl2 at various temperatures (B-F).

(7)

S7

5 10 15 20 25 30 35 40

Intensity (a.u.)

2

200C 150C 100C 50C 25C A

F

E

D C

B

A

Fig. S9. XRD patterns of AgBi-HM samples: as-prepared (A), treated with MeOH at various temperatures (B-F).

5 10 15 20 25 30 35 40

Intensity (a.u.)

2

200C 150C 100C 50C 25C A

F

E

D C

B

A

Fig. S10. XRD patterns of AgBi-HM samples: as-prepared (A), treated with NMP at various temperatures (B-F).

(8)

S8

5 10 15 20 25 30 35 40

Intensity (a.u)

2

200 C 150 C 100 C 50 C 25 C A F

E

D C

B

A

Fig. S11. XRD patterns of AgBi-HM samples: as-prepared (A), treated with diethyl ether at various temperatures (B-F).

5 10 15 20 25 30 35 40

Intensity (a.u.)

2

200C 150C 100C 50C 25C A

F

E

D C

B

A

Fig. S12. XRD patterns of AgBi-HM samples: as-prepared (A), treated with EtOH at various temperatures (B-F).

(9)

S9

5 10 15 20 25 30 35 40

Intensity (a.u.)

2

200 C 150 C 100 C 50 C 25 C A

D E F

C

B

A

Fig. S13. XRD patterns of AgBi-HM samples: as-prepared (A), treated with H2O at various temperatures (B-F).

5 10 15 20 25 30 35 40

Intensity (a.u.)

2

200C 150C 100C 50C 25C A

E F

D C

B

A

Fig. S14. XRD patterns of AgBi-HM samples: as-prepared (A), treated with MeCN at various temperatures (B-F).

(10)

S10

5 10 15 20 25 30 35 40

Intensity (a.u.)

2

200C 150C 100C 50C 25C A

F

E

D C

B

A

Fig. S15. XRD patterns of AgBi-HM samples: as-prepared (A), treated with n-hexane at various temperatures (B-F).

5 10 15 20 25 30 35 40

Intensity (a.u.)

2

200C 150C 100C 50C 25C A

F

E

D C

B

A

Fig. S16. XRD patterns of AgBi-HM samples: as-prepared, treated with DMF at various temperatures (B-F).

(11)

S11

5 10 15 20 25 30 35 40

Intensity (a.u.)

2

200C 150C 100C 50C 25C A

F

E

D C

B

A

Fig. S17. XRD patterns of AgBi-HM samples: as-prepared (A), treated with EtOAc at various temperatures (B-F).

4000 3500 3000 1500 1000

Intensity (a.u.)

Wavenumber (cm–1) 2811

2873 2936 2645

1380 846

1013950

A B C

Fig. S18. FT-IR spectra of AgBi-HM samples: as-prepared without solvent treatment (A), treated with iPrOH at 50°C (B) and MeOH at 200°C (C).

(12)

S12 Table S1. Investigating the effects of substrate concentration on dehydrogenation reaction of 4-methylbenzyl alcohol under continuous flow conditions.

Entry Concentration (M) Conversion (%)a Selectivity (%)a

1 0.075 92 100

2 0.1 94 52

3 0.15 89 45

a Determined by 1H NMR analysis of the crude product.

Scheme S1. Possible reaction mechanism of the dehydrogenation of the 4- methylbenzylalcohol. I. step: C–H bond activation by the silver ion and O–H bond activation by the oxide surface, II. step: C–H cleavage, III. step: O–H bond cleavage.

(13)

S13 Analytical data of the reaction products

Me

H O

4-methylbenzaldehyde

1H NMR (500 MHz, CDCl3): δ= 9.96 (s, 1H), 7.78-7.76 (d, J= 8.06 Hz, 2H), 7.34-7.32, J=

8.06 Hz, 2H), 2.44 (s, 3H) ppm; 13C NMR (125 MHz, CDCl3): 191.9, 145.5, 134.3, 129.8, 129.7, 21.8 ppm

MS (EI) m/z = 120, 119, 91, 65, 51

NMR data is in agreement with the published data.1

H

Me O

3-methylbenzaldehyde

1H NMR (500 MHz, CDCl3): δ= 9.99 (s, 1H), 7.69-7.67 (d, J= 8.98 Hz, 2H), 7.45-7.41 (m, 2H), 2.44 (s, 3H) ppm; 13C NMR (125 MHz, CDCl3): 192.5, 138.9, 136.6, 135.2, 129.9, 128.9, 127.2, 21.2 ppm

MS (EI) m/z = 120, 119, 91, 65, 63, 51

NMR data is in agreement with the published data.1

MeO

H O

4-methoxybenzaldehyde

1H NMR (500 MHz, CDCl3): δ= 9.87 (s, 1H), 7.83-7.81 (d, J= 8.60 Hz, 2H), 6.99-6.98 (d, J=

8.60 Hz, 2H), 3.87 (s, 3H) ppm; 13C NMR (125 MHz, CDCl3): 190.9, 164.6, 131.9, 130.1, 114.1, 55.4 ppm

MS (EI) m/z = 136, 135, 107, 92, 77, 63, 50

NMR data is in agreement with the published data.1

(14)

S14 H

OMe O

3-methoxybenzaldehyde

1H NMR (500 MHz, CDCl3): δ= 9.98 (s, 1H), 7.47-7.44 (m, 2H), 7.40-7.39 (m, 1H), 7.19- 7.17 (m, 1H), 3.87 (s, 3H) ppm; 13C NMR (125 MHz, CDCl3): 192.1, 160.2, 137.9, 130.1, 123.5, 121.5, 112.2, 55.5 ppm

MS (EI) m/z = 136, 135, 107, 92, 77, 65, 63

NMR data is in agreement with the published data.2

Br

H O

4-bromobenzaldehyde

1H NMR (500 MHz, CDCl3): δ= 9.90 (s, 1H), 7.69-7.66 (d, J= 8.52 Hz, 2H), 7.62-7.61 (d, J=

8.52 Hz, 2H) ppm; 13C NMR (125 MHz, CDCl3): 189.9, 134.2, 131.4, 130.6, 129.9 ppm MS (EI) m/z = 185, 154, 76, 75, 74, 51

NMR data is in agreement with the published data.1

H

Br O

3-bromobenzaldehyde

1H NMR (500 MHz, CDCl3): δ= 9.96 (s, 1H), 8.01-8.00 (m, 1H), 7.82-7.80 (d, J= 7.70 Hz, 1H), 7.77-7.75 (m, 1H), 7.44-7.41 (t, J=7.66, 1H) ppm; 13C NMR (125 MHz, CDCl3): 190.8, 138.2, 137.3, 132.4, 130.7, 128.4, 123.4 ppm

MS (EI) m/z = 185, 184, 182, 156, 154, 77, 75, 74, 51 NMR data is in agreement with the published data.2

H O

Br

2-bromobenzaldehyde

(15)

S15

1H NMR (500 MHz, CDCl3): δ= 10.36 (s, 1H), 7.92-7.89 (m, 1H), 7.65-7.63 (m, 1H), 7.46- 7.41 (m, 2H) ppm; 13C NMR (125 MHz, CDCl3): 191.7, 135.3, 133.9, 133.6, 129.9, 127.9, 127.1 ppm

MS (EI) m/z = 185, 184, 182, 156, 154, 77, 76, 51 NMR data is in agreement with the published data.2

O2N

H O

4-nitrobenzaldehyde

1H NMR (500 MHz, CDCl3): δ= 10.16 (s, 1H), 8.40-8.38 (d, J= 8.62, 2H), 8.08-8.06 (d, J=

8.62, 2H) ppm; 13C NMR (125 MHz, CDCl3): 190.3, 151.2, 140.1, 130.5, 124.3 ppm MS (EI) m/z = 151, 149, 120, 105, 93, 78, 77, 51

NMR data is in agreement with the published data.1

tBu

H O

4-tert-butylbenzaldehyde

1H NMR (500 MHz, CDCl3): δ= 9.88 (s, 1H), 7.72-7.71 (d, J= 8.42 Hz, 2H), 7.46-7.44 (d, J=

8.42 Hz, 2H), 1.26 (s, 9H) ppm; 13C NMR (125 MHz, CDCl3): 192.1, 158.4, 134.1, 129.6, 125.9, 35.3, 30.8 ppm

MS (EI) m/z = 162, 147, 119, 115, 103, 91, 77, 65, 51 NMR data is in agreement with the published data.1

O2N

Me

H O

3-methyl-4-nitrobenzaldehyde

1H NMR (500 MHz, CDCl3): δ= 10.08 (s, 1H), 8.05-8.04 (d, J= 8.15 Hz, 1 H), 7.86-7.84 (m, 2H), 2.66 (s, 3H) ppm; 13C NMR (125 MHz, CDCl3): 190.5, 138.5, 134.3, 133.8, 127.8, 125.3, 20.1 ppm

MS (EI) m/z = 165, 148, 120, 92, 91, 89, 77, 65, 63 NMR data is in agreement with the published data.3

(16)

S16 Collection of NMR spectra

Me

H O

(17)

S17 Me

H O

(18)

S18 H

Me O

(19)

S19 H

Me O

(20)

S20 MeO

H O

(21)

S21 MeO

H O

(22)

S22 H

OMe O

(23)

S23 H

OMe O

(24)

S24 Br

H O

(25)

S25 Br

H O

(26)

S26 H

Br O

(27)

S27 H

Br O

(28)

S28 H

O

Br

(29)

S29 H

O

Br

(30)

S30 O2N

H O

(31)

S31 O2N

H O

(32)

S32 tBu

H O

(33)

S33 tBu

H O

(34)

S34 O2N

Me

H O

(35)

S35 O2N

Me

H O

(36)

S36 References

[1] D. Wang, P. Wang, S. Wang, Y.-H. Chen, H. Zhang, A. Lei, Nat. Commun., 2019, 10, 2796

[2]P. Thiruvengetam, R. D. Chakravarthy, D. K. Chand, J. Catal., 2019, 376, 123-133.

[3] S. K. Chittimalla, T.-C. Chang, T.-C. Liu, H.-P. Hsieh, C.-C. Liao, Tetrahedron, 2008, 64, 2586-2595.

Ábra

Fig. S1. XRD patterns of AgBi-HM samples: as-prepared (A), treated with acetone at various  temperatures (B-F)
Fig. S3. XRD patterns of AgBi-HM samples: as-prepared (A), treated with toluene at various  temperatures (B-F)
Fig. S5. XRD patterns of AgBi-HM samples: as-prepared (A), treated with DMSO at various  temperatures (B-F)
Fig. S7. XRD patterns of AgBi-HM samples: as-prepared (A), treated with  iPrOH at various  temperatures (B-F)
+6

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

f Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 17. Szeged, Hungary

b Materials and Solution Structure Research Group and Interdisciplinary Excellence Centre, Institute of Chemistry, University of Szeged, Aradi Vértanúk tere 1, Szeged, H-

d Material and Solution Structure Research Group, Institute of Chemistry, University of Szeged, Aradi Vértanúk tere 1, H-6720 Szeged, Hungary.. e MTA-SZTE Reaction Kinetics

• Project title: “Broadening the knowledge base and supporting the long term professional sustainability of the Research University Centre of Excellence at the University of Szeged

Project title: “Broadening the knowledge base and supporting the long term professional sustainability of the Research University Centre of Excellence at the University of Szeged

Project title: “Broadening the knowledge base and supporting the long term professional sustainability of the Research University Centre of Excellence at the University of Szeged

Project title: “Broadening the knowledge base and supporting the long term professional sustainability of the Research University Centre of Excellence at the University of Szeged

University of Szeged (Hungary), Department of Economic and Social University of Szeged (Hungary), Department of Economic and Social University of Szeged (Hungary), Department