• Nem Talált Eredményt

Supplementary Material

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Supplementary Material"

Copied!
8
0
0

Teljes szövegt

(1)

Supplementary Material

Layered double alkoxides, a novel group of layered double hydroxides without water content

Gábor Vargaa,b, Márton Szabadosa,b, Ákos Kukoveczc, Zoltán Kónyac,d, Tamás Vargac, Pál Siposb,e, István Pálinkóa,b*

aDepartment of Organic Chemistry, University of Szeged, Dóm tér 8, Szeged, H-6720 Hungary.

bMaterials and Solution Structure Research Group and Interdisciplinary Excellence Centre, Institute of Chemistry, University of Szeged, Aradi Vértanúk tere 1, Szeged, H- 6720 Hungary.

cDepartment of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged, H-6720 Hungary.

dMTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, University of Szeged, Rerrich Béla tér 1, Szeged, H-6720 Hungary.

eDepartment of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, Szeged, H-6720 Hungary.

*The e-mail address of the corresponding author: palinko@chem.u-szeged.hu (István Pálinkó)

5 10 15 20 25 30 35 40

Intensity (cps)

2 (o) A

B

001 002

001

002

SFigure 1. XRD pattern of the water-free CaAl-LDH after solvolysis-co-precipitation of Ca(II) and Al(III) ethoxides using propanol for solvolysis (A) at 30°C and (B) at 60°C. XRD patterns were indexed on the basis of JCPDS#89-6723.

(2)

S2 SFigure 2. SEM image of water-free CaAl–LDH (CaAl–LDA) using propanol for solvolysis- co-precipitation at 60oC.

0 1 2 3 4 5

0 10000 20000

0 1 2

0 5000 10000 15000 20000 25000 30000

Intensity (cps)

Energy (keV)

Ca k

O k Al k Ca

Energy (keV) Al k O k Mg k

Na k

Intensity (cps)

A B

SFigure 3. EDX spectra of (A) CaAl-LDA and (B) MgAl-LDA.

(3)

S3 SFigure 4. Elemental maps for CaAl-LDA [(A) and (B)] and MgAl-LDA (C), (D) and (E).

STable 1. Layer thickness, d-spacings and cell parameters for LDAs, nitrate-containing LDHs and alkoxide intercalated LDH

Composite d-space (Å) thickness (Å) a parameter (Å) c parameter (Å)

MgAl-LDA 7.88 4.5 3.02 24.16

Mg2Al–NO3

-LDH 8.58 4.82 3.08 22.91

CaAl–LDA 7.49 — 5.92 15.01

Ca2Al–NO3-LDH 8.26 2.43 5.45 17.16

C2H5O–MgAl-LDH 8.181 4.82 3.071 23.981

Calculation: MgAl-LDH/LDA: a = 2d(110), c = (3d(003) +6d(006) +9d(009))/3; CaAl-LDH/LDA:

a = 2d(110), c = 2d(002)

(4)

S4

100 200 300 400 500 600 700 800

40 50 60 70 80 90 100

Temperature (°C)

Weight (%)

120

346

733

-2,0 -1,5 -1,0 -0,5 0,0

Deriv, Weight (%/°C)

(a)

100 200 300 400 500 600 700

65 70 75 80 85 90 95 100

Weight (%)

Temperature (°C) 106

242 415

600 (b)

-0,15 -0,10 -0,05 0,00 0,05 0,10

Deriv. Weight (%/o C)

SFigure 5. TG/DTG curves for the (a) MgAl-LDH sample prepared by solvolysis-precipitation from Mg(II)Al(III) ethoxide at 60°C and (b) MgAl–NO3–LDH.

(5)

S5

100 200 300 400 500 600 700 800

40 50 60 70 80 90 100

Temperature (°C)

Weight (%)

103

461 (a)

-2,0 -1,5 -1,0 -0,5 0,0

Deriv, Weight (%/°C)

200 400 600 800

60 80 100

-0,30 -0,25 -0,20 -0,15 -0,10 -0,05 0,00

Weight (%)

Temperature (oC) (b)

660 250

56

430

Deriv. Weight (%/o C)

SFigure 6. TG/DTG curves of (a) water-free CaAl–LDA and (b) CaAl–NO3–LDH.

(6)

S6

4000 3500 3000 1500 1000

Intensity (a.u.)

Wavenumber (cm–1) 2941

2873 2800

1461 1393 1085

1165

A B

1409 1345

782 3661

3411

SFigure 7. IR spectra of (A) CaAl–NO3–LDH and (B) water-free CaAl–LDH (CaAl–LDA).

4000 3500 3000 1500 1000

Absorbance (a.u.)

Wavenumber (cm-1) 1405

1068 1590

1468

873

830 615 1361

2834 2750 3592

SFigure 8. IR spectra of MgAl–LDA (prepared by solvolysis-co-precipitation of Mg(II) and Al(III)ethoxides at 60°C) after 9-month-long storage in air.

(7)

S7 Optimisation procedure of the catalytic test reaction

0,0 0,1 0,2 0,3 0,4 0,5

0 20 40 60 80 100

Yield (%)

Catalyst loading (g)

MgAl–LDA CaAl–LDA MgAl–LDH

SFigure 9. Effect of the catalyst loading for the Knoevenagel condensation between benzaldehyde (10.0 mmol) and malononitrile (15.0 mmol); under reflux (~75°C), t = 180 min, v(EtOH) = 3.0 cm3.

STable 2. Effect of the solvent for the Knoevenagel condensation between benzaldehyde (10.0 mmol) and malononitrile (15.0 mmol); T = 125°C/reflux, t = 180 min, v(solvent) = 3.0 cm3, mcat = 0.2 g.

Solvent Yield (%)a Yield (%)b

chloroform 1 10

acetonitrile – –

ethanol 100 100

solvent-free 100 100

a: yield for water-free CaAl–LDH (CaAl–LDA), b: yield for water-free MgAl–LDH (MgAl–

LDA).

(8)

S8

MgAl–LDA CaAl–LDA

0 20 40 60 80 100

Yield (%)

25 °C 35 °C 50 °C 75 °C 100 °C 125 °C

SFigure 10. Effect of the reaction temperature for the Knoevenagel condensation between benzaldehyde (10.0 mmol) and malononitrile (15.0 mmol); t = 180 min, solvent-free, mcat= 0.2 g.

CHO +

CN

CN NC CN

OH

NC CN base

-H2O

SScheme 1 The reaction sequence between benzaldehyde and malononitrile.

References

[1] Siri-nguan N, Ngamcharussrivichai C. Alkoxide-intercalated Mg–Al layered double hydroxides as selective catalysts for the synthesis of monoglycerides. Reac Kinet Mech Cat.

2016:119:273–289.

[2] Kang H, Kima HJ, Yang JH, Kim TH, Choi G, Paek SM, Choi AJ, Choy JH, Oh JM.

Intracrystalline structure and release pattern of ferulic acid intercalated into layered double hydroxide through various synthesis routes. Appl Calay Sci. 2015:112–113:32–39.

[3] Sacerdoti M, Passaglia E, Hydrocalumite from Latium, Italy: its crystal structure and relationship with related synthetic phases. in Neues Jahrbuch für Mineralogie, Monatshefte 1988:462−475.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

d Material and Solution Structure Research Group, Institute of Chemistry, University of Szeged, Aradi Vértanúk tere 1, H-6720 Szeged, Hungary.. e MTA-SZTE Reaction Kinetics

Institute of Archaeological Sciences, ELTE–Eötvös Loránd University MTA – ELTE Research Group for Interdisciplinary Archaeology H-1088 Budapest, Múzeum krt.

• Project title: “Broadening the knowledge base and supporting the long term professional sustainability of the Research University Centre of Excellence at the University of Szeged

Project title: “Broadening the knowledge base and supporting the long term professional sustainability of the Research University Centre of Excellence at the University of Szeged

Project title: “Broadening the knowledge base and supporting the long term professional sustainability of the Research University Centre of Excellence at the University of Szeged

Project title: “Broadening the knowledge base and supporting the long term professional sustainability of the Research University Centre of Excellence at the University of Szeged

b Department of Physical Chemistry and Material Science, University of Szeged, 1 Rerrich Béla tér, H–6720 Szeged, Hungary.. c Department of Chemistry, Babes-Bolyai University,

Department of Geometry, Bolyai Institute, University of Szeged, Aradi v´ ertan´ uk tere 1, 6720 Szeged, Hungary, and Department of Mathematics and Statistics, Uni- versity of