• Nem Talált Eredményt

Underdamped harmonic oscillator

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Underdamped harmonic oscillator"

Copied!
47
0
0

Teljes szövegt

(1)

DE, StudentNumber: 91

Underdamped harmonic oscillator

Let

a= 0.4, b= 1.04, t0= 0, t1= 6, (1)

ic0 = 2, ic1=−1, (2)

y00(t) +ay0(t) +by(t) =f(t). (3)

The first order form of (3) is d dt

y v

=A y

v

+B(f(t)) =

0 1

−b −a y v

+

0 1

(f(t)), (4)

wherey0=v. The initial condition (2) is

~ y(0) =

y(0) v(0)

= ic0

ic1

. (5)

Mathematica. {a,b,t0,t1,ic0,ic1}={?,?, ?,?, ?,?}

de={y’’[t]+a y’[t]+b y[t]==f[t]}

ic={y[t0]==ic0,y’[t0]==ic1}

A={{0,1},{-b,-a}}

Octave. clear all;

pkg load symbolic;

global a=? b=? A=[0,1;-b, -a];

t0=?; t1=?; ic0=?; ic1=?;

syms y(t);

de=diff(y,t,2)+a*diff(y,t)+b*y(t);

function ydot = velocity (yvec,t) global a b A;

ydot=A*yvec;

endfunction N=100;

1, A

Exercise. Let f(t) = 0, (2) be true. How much isy(t1) ?

Mathematica. desol=NDSolve[Join[de/.{f[t]->0},ic],y,{t,t0,t1}]

ans=(y[t1]/.desol)[[1]]

ans=Replace[y[t1],desol][[1]]

Octave. ts = linspace (t0, t1, N);

ys = lsode ("velocity", [ic0; ic1], ts);

disp ("The value of y(t1) is:"), disp (ys(N,1)) Answers. A: 0.628891

Correct answer. A

(2)

2, Aa

Exercise. Letf(t) = 0, (2) be true. LetUt1,t0(~z) =~y(t1), where~y(t) is the solution of (4) with the initial condition

~

y(t0) =~z. How much is the first component of

Ut1,t0( ic0

ic1

).

Mathematica. desol=NDSolve[Join[de/.{f[t]->0},ic],y,{t,t0,t1}]

ans=(y[t1]/.desol)[[1]]

ans=Replace[y[t1],desol][[1]]

Octave. ts = linspace (t0, t1, N);

ys = lsode ("velocity", [ic0; ic1], ts);

disp ("The value of (yvec(t1))(1) is:"), disp (ys(N,1)) Answers. A: 0.628891

Correct answer. A 3, Ab

Exercise. Letf(t) = 0, (2) be true. LetUt1,t0(~z) =~y(t1), where~y(t) is the solution of (4) with the initial condition

~

y(t0) =~z. Compute Ut1,t0(~z), if~z=n1(0.2,0)T +n2(0,0.2)T, n1,2∈ {0,1,2,3,4,5}. Plot these points!

Mathematica. m=N[MatrixExp[t1*A]]

Graphics[Join[{PointSize[Large],Point[{0,0}]},{PointSize[Medium]}, Table[Point[{x,y}],{x,0,1,0.2},{y,0,1,0.2}]//Flatten,{Red},

Table[Point[m.{x,y}],{x,0,1,0.2},{y,0,1,0.2}]//Flatten]]

Octave. figure

np=6; dx=1/(np-1); black=zeros(2,np^2); red=zeros(2,np^2);

u=expm(t1*A);

for iy=1:np for jx=1:np

black(:,1+(iy-1)*np+(jx-1))=[(jx-1)*dx;(iy-1)*dx];

red(:,1+(iy-1)*np+(jx-1))=u*[(jx-1)*dx;(iy-1)*dx];

endfor endfor;

hold on;

scatter(red(1,:),red(2,:),"r");

scatter(black(1,:),black(2,:),"b");

hold off;

title("[y(t0),y’(t0)] -> [y(t1),y’(t1)]")

(3)

Answers.

Correct answer. A 4, Ac

Exercise. f(t) = 0, (2) is true. Solve the following algebro-differential equation!

y0=v, v0 =−spring−f riction, spring=by, f riction=av.

How much isspring(t1) ?

Mathematica. ade={y’[t]==v[t],v’[t]==-friction[t]-spring[t], friction[t]==a v[t],spring[t]==b y[t],y[0]==ic0,v[0]==ic1};

adesol=NDSolve[ade,{y,v,spring,friction},{t,t0,t1}];

(spring[t1]/.adesol)[[1]]

Octave. x0=[ ic0; ic1; b*ic0; a*ic1 ];

xdot0=[ ic1; -b*ic0-a*ic1; b*ic0; a*ic1 ];

function res = resudials (x,xdot,t) global a b;

y=x(1); v=x(2); s=x(3); f=x(4);

ydot=xdot(1); vdot=xdot(2); sdot=xdot(3); fdot=xdot(4);

res(1)=ydot-v;

res(2)=vdot+s+f;

res(3)=s-b*y;

res(4)=f-a*v;

endfunction N=100;

ts = linspace(t0,t1,N);

[x, xdot] = daspk("resudials", x0, xdot0, ts);

disp ("The value of spring(t1) is:"); disp (x(N,3));

(4)

Answers. A: 0.654046 Correct answer. A 5, B

Exercise. f(t) = 0. The general solution of (3) is

y(t) =C1eλ1t+C2eλ2t, =(λ1)>0.

How much is=(C1), if (2) is satisfied?

Mathematica. de2=Join[de/.{f[t]->0},ic]

sol2=DSolve[de2,y,t]

expSol=TrigToExp[sol2[[1,1,2,2]]]

Octave. rewrite( dsolve(de==0,y(t0)==ic0,diff(y,t)(t0)==ic1), ’exp’) Answers. A: 0.3

Correct answer. A 6, Ba

Exercise. f(t) = 0. The general solution of (4) is

~

y(t) =C1eλ1t~v1+C2eλ2t~v2, =(λ1)>0, ~v1 = (1, s21)T, ~v2 = (1, s22)T How much is=(C1), if (10) is satisfied?

Mathematica. esys=Eigensystem[A]//N evals=esys[[1]]

evects=esys[[2]]

If[Im[evals[[1]]]>0,v1=evects[[1]];v2=evects[[2]], v1=evects[[2]];v2=evects[[1]]]

icond={ic0,ic1}

vn1=v1/v1[[1]]

vn2=v2/v2[[1]]

csol=Solve[Table[(C1 vn1+C2 vn2)[[i]]==icond[[i]],{i,2}],{C1,C2}]

Im[C1/.csol]

Octave. [evects, evals] = eig (A);

vn1=[1;evects(2,1)/evects(1,1)];

vn2=[1;evects(2,2)/evects(1,2)];

S=[vn1 vn2];

inv(S)*[2;-1];

(inv(S)*[2;-1])(1);

disp ("Im(C1) is:");

disp( imag((inv(S)*[2;-1])(1) ));

Answers. A: 0.3 Correct answer. A 7, C

Exercise. f(t) = 0. The general solution of (3) is

y(t) =eαt(C1cosωt+C2sinωt).

How much isC1, if (2) is satisfied?

(5)

Mathematica. de3=Join[de/.{f[t]->0},ic]

sol3=DSolve[de3,y,t]

(y[0]/.sol3)[[1]]

Octave. dsolve(de==0,y(t0)==ic0,diff(y,t)(t0)==ic1)

Answers. A: 2.

Correct answer. A 8, D

Exercise. f(t) = 0, (2), (3) true. Plot y(t) ! Mathematica. de4=Join[de/.{f[t]->0},ic]

sol4=NDSolve[de4,y,{t,t0,t1}]

Plot[Evaluate[y[t]/.sol4],{t,t0,t1}]

Octave. ts = linspace (t0, t1, N);

ys = lsode ("velocity", [ic0; ic1], ts);

figure

plot(ts,ys(:,1));

title ("y(t)");

Answers.

1 2 3 4 5 6

-1.0 -0.5 0.5 1.0 1.5 2.0

Correct answer. A 9, E

Exercise. f(t) = 0, (2), (3) is true. Plot y(t), y0(t)-t on a single figure!

Mathematica. de5=Join[de/.{f[t]->0},ic]

sol5=NDSolve[de5,y,{t,t0,t1}]

Plot[Evaluate[{y[t],y’[t]}/.sol5],{t,t0,t1}]

Octave. ts = linspace (t0, t1, N);

ys = lsode ("velocity", [ic0; ic1], ts);

figure

plot(ts,ys(:,1));

title ("y(t),y’(t)");

(6)

Answers.

1 2 3 4 5 6

-1 1 2

Correct answer. A 10, F

Exercise. f(t) = 0, (2), (3) are true. Plot the

γ : [t0, t1]→R2, γ(t) = (y(t), v(t))T parametric curve!

Mathematica. de6=Join[de/.{f[t]->0},ic]

sol6=NDSolve[de6,y,{t,t0,t1}]

ParametricPlot[Evaluate[{y[t],y’[t]}/.sol6],{t,t0,t1}]

Octave. ts = linspace (t0, t1, N);

ys = lsode ("velocity", [ic0; ic1], ts);

figure

plot(ys(:,1),ys(:,2));

title ("t->[y(t),y’(t)]");

(7)

Answers.

-1.0 -0.5 0.5 1.0 1.5 2.0

-1.5 -1.0 -0.5 0.5 1.0

Correct answer. A 11, G

Exercise. f(t) = 0, (2), (3) are true. Plot the

γ : [t0, t1]→R3, γ(t) = (t, y(t), v(t))T parametric curve!

Mathematica. de7=Join[de/.{f[t]->0},ic]

sol7=NDSolve[de7,y,{t,t0,t1}]

ParametricPlot3D[Evaluate[{t,y[t],y’[t]}/.sol7],{t,t0,t1}]

Octave. ts = linspace (t0, t1, N);

ys = lsode ("velocity", [ic0; ic1], ts);

figure

plot3(ts,ys(:,1),ys(:,2));

title ("t->[t,y(t),y’(t)]");

(8)

Answers.

0

2

4

6 -1

0 1

2 -1

0

Correct answer. A 12, H

Exercise. Plot the (y, v)T →A(y, v)T vector field!

Mathematica. VectorPlot[A.{y,v},{y,-.2,.2},{v,-1,1}, VectorPoints->15,VectorStyle->Arrowheads[0.02]]

Octave. [hor,vert]=meshgrid(linspace(-0.3,0.3,10),linspace(-1,1,10));

figure

quiver (hor, vert, A(1,1)*hor+A(1,2)*vert,A(2,1)*hor+A(2,2)*vert);

title ("[y;v] -> A[y;v]");

(9)

Answers. -1.0 -0.5 0.0 0.5 1.0

-1.0 -0.5 0.0 0.5 1.0

Correct answer. A 13, Ha

Exercise. f(t) = 0. Plot the (y, v)T →A(y, v)T vector field and a solution of (4)!

Mathematica. sol=NDSolve[Join[de/.{f[t]->0},ic],y,{t,t0,3*t1}]

cPlot=ParametricPlot[Evaluate[{y[t],y’[t]}/.sol],{t,t0,3*t1}]

vPlot=VectorPlot[A.{y,v},{y,-1,1},{v,-1,1}, VectorPoints->8,VectorStyle->Arrowheads[0.04]]

Show[vPlot,cPlot]

Octave. figure hold on;

[hor,vert]=meshgrid(linspace(-1,1,10),linspace(-1,1,10));

quiver (hor, vert, A(1,1)*hor+A(1,2)*vert,A(2,1)*hor+A(2,2)*vert);

plot(ys(:,1),ys(:,2));

title ("[y;v] -> A[y;v], t->[t,y(t),y’(t)]");

hold off;

(10)

Answers. -1.0 -0.5 0.0 0.5 1.0

-1.0 -0.5 0.0 0.5 1.0

Correct answer. A 14, I

Exercise. Compute U = exp(1.4A) ! How much isU11 ? Mathematica. ans9=MatrixExp[1.4 A]

ans9[[1,1]]

Octave. disp ("exp(1.4 * A) is:"), disp ( expm(1.4*A) ) Answers. A: 0.277416

Correct answer. A 15, J

Exercise. Compute U(t) = exp(tA)-t and plot its first column’s functions!

Mathematica. U=MatrixExp[t A]

Plot[{U[[1,1]],U[[2,1]]},{t,t0,t1}]

Octave. Uts=zeros(N,2,2);

for i=1:N

Uts(i,:,:)=expm(ts(i)*A);

endfor;

figure

plot(ts,Uts(:,1,1),ts,Uts(:,2,1)) title("first column of exp(tA)")

(11)

Answers.

1 2 3 4 5 6

-0.5 0.5 1.0

Correct answer. A 16, K

Exercise. f(t) = 0, (2) true, y(0) = 1, y0(0) = 0. Plot (y(t), y0(t))T ! Mathematica. de11=Join[de/.{f[t]->0},ic]

sol11=NDSolve[de11,y,{t,t0,t1}]

Plot[Evaluate[{y[t],y’[t]}/.sol11],{t,t0,t1}]

Octave. ys = lsode ("velocity", [1; 0], ts);

figure

plot(ts,ys);

title ("y(t),y’(t), y(0)=1,y’(0)=0");

Answers.

1 2 3 4 5 6

-0.5 0.5 1.0

Correct answer. A 17, L

Exercise. Compute U(t) = exp(tA)-t and plot its second column’s functions!

Mathematica. U=MatrixExp[t A]

Plot[{U[[1,2]],U[[2,2]]},{t,t0,t1}]

(12)

Octave. Uts=zeros(N,2,2);

for i=1:N

Uts(i,:,:)=expm(ts(i)*A);

endfor;

figure

plot(ts,Uts(:,1,2),ts,Uts(:,2,2)) title("second column of exp(tA)")

Answers.

1 2 3 4 5 6

-0.5 0.5 1.0

Correct answer. A 18, M

Exercise. f(t) = 0, (2) true, y(0) = 0, y0(0) = 1. Plot (y(t), y0(t))T ! Mathematica. de13=Join[de/.{f[t]->0},ic]

sol13=NDSolve[de11,y,{t,t0,t1}]

Plot[Evaluate[{y[t],y’[t]}/.sol13],{t,t0,t1}]

Octave. ys = lsode ("velocity", [0; 1], ts);

figure

plot(ts,ys);

title ("y(t),y’(t), y(0)=0,y’(0)=1");

Answers.

1 2 3 4 5 6

-0.5 0.5 1.0

Correct answer. A

(13)

Overdamped harmonic oscillator

Let

a= 0, b= 2, t0= 0, t1 = 2.5, (6)

ic0= 0.8, ic1 = 1.1, (7)

y00(t) +ay0(t) +by(t) =f(t). (8)

The first order form of (8) is d dt

y v

=A y

v

+B(f(t)) =

0 1

−b −a y v

+

0 1

(f(t)), (9)

wherey0=v. The initial condition (7) is

~ y(0) =

y(0) v(0)

= ic0

ic1

. (10)

Mathematica. {a,b,t0,t1,ic0,ic1}={?,?, ?,?, ?,?}

de={y’’[t]+a y’[t]+b y[t]==f[t]}

ic={y[t0]==ic0,y’[t0]==ic1}

A={{0,1},{-b,-a}}

Octave. clear all;

%graphics_toolkit ("gnuplot");

pkg load symbolic;

global a=? b=? A=[0,1;-b, -a];

t0=?; t1=?; ic0=?; ic1=-?;

syms y(t);

de=diff(y,t,2)+a*diff(y,t)+b*y(t);

function ydot = velocity (yvec,t) global a b A;

ydot=A*yvec;

endfunction N=100;

19, A

Exercise. Let f(t) = 0, (2) be true. How much isy(t1) ?

Mathematica. desol=NDSolve[Join[de/.{f[t]->0},ic],y,{t,t0,t1}]

ans=(y[t1]/.desol)[[1]]

ans=Replace[y[t1],desol][[1]]

Octave. ts = linspace (t0, t1, N);

ys = lsode ("velocity", [ic0; ic1], ts);

disp ("The value of y(t1) is:"), disp (ys(N,1)) Answers. A: 0.208827

Correct answer. A 20, Aa

Exercise. Letf(t) = 0, (2) be true. LetUt1,t0(~z) =~y(t1), where~y(t) is the solution of (4) with the initial condition

~

y(t0) =~z. How much is the first component of

Ut1,t0( ic0

ic1

).

(14)

Mathematica. desol=NDSolve[Join[de/.{f[t]->0},ic],y,{t,t0,t1}]

ans=(y[t1]/.desol)[[1]]

ans=Replace[y[t1],desol][[1]]

Octave. ts = linspace (t0, t1, N);

ys = lsode ("velocity", [ic0; ic1], ts);

disp ("The value of (yvec(t1))(1) is:"), disp (ys(N,1)) Answers. A: 0.208827

Correct answer. A 21, Ab

Exercise. Let f(t) = 0, (2) be true. Let Ut1/6,t0(~z) = ~y(t1/6), where ~y(t) is the solution of (4) with the initial condition~y(t0) =~z. ComputeUt1/6,t0(~z), if~z=n1(0.2,0)T+n2(0,0.2)T, n1,2∈ {0,1,2,3,4,5}. Plot these points!

Mathematica. m=N[MatrixExp[(t1/6)*A]]

Graphics[Join[{PointSize[Large],Point[{0,0}]},{PointSize[Medium]}, Table[Point[{x,y}],{x,0,1,0.2},{y,0,1,0.2}]//Flatten,{Red},

Table[Point[m.{x,y}],{x,0,1,0.2},{y,0,1,0.2}]//Flatten]]

Octave. figure

np=6; dx=1/(np-1); black=zeros(2,np^2); red=zeros(2,np^2);

u=expm((t1/6)*A);

for iy=1:np for jx=1:np

black(:,1+(iy-1)*np+(jx-1))=[(jx-1)*dx;(iy-1)*dx];

red(:,1+(iy-1)*np+(jx-1))=u*[(jx-1)*dx;(iy-1)*dx];

endfor endfor;

hold on;

scatter(red(1,:),red(2,:),"r");

scatter(black(1,:),black(2,:),"b");

hold off;

title("[y(t0),y’(t0)] -> [y(t1),y’(t1)]")

(15)

Answers.

Correct answer. A 22, Ac

Exercise. f(t) = 0, (2) is true. Solve the following algebro-differential equation!

y0=v, v0 =−spring−f riction, spring=by, f riction=av.

How much isspring(t1) ?

Mathematica. ade={y’[t]==v[t],v’[t]==-friction[t]-spring[t], friction[t]==a v[t],spring[t]==b y[t],y[0]==ic0,v[0]==ic1};

adesol=NDSolve[ade,{y,v,spring,friction},{t,t0,t1}];

(spring[t1]/.adesol)[[1]]

Octave. x0=[ ic0; ic1; b*ic0; a*ic1 ];

xdot0=[ ic1; -b*ic0-a*ic1; b*ic0; a*ic1 ];

function res = resudials (x,xdot,t) global a b;

y=x(1); v=x(2); s=x(3); f=x(4);

ydot=xdot(1); vdot=xdot(2); sdot=xdot(3); fdot=xdot(4);

res(1)=ydot-v;

res(2)=vdot+s+f;

(16)

res(3)=s-b*y;

res(4)=f-a*v;

endfunction N=100;

ts = linspace(t0,t1,N);

[x, xdot] = daspk("resudials", x0, xdot0, ts);

disp ("The value of spring(t1) is:"); disp (x(N,3));

Answers. A: 0.417655 Correct answer. A 23, B

Exercise. f(t) = 0. The general solution of (3) is

y(t) =C1eλ1t+C2eλ2t, λ1 > λ2. How much isC1, if (2) is satisfied?

Mathematica. de2=Join[de/.{f[t]->0},ic]

sol2=DSolve[de2,y,t]

sol2[[1,1,2,2]]

Octave. dsolve(de==0,y(t0)==ic0,diff(y,t)(t0)==ic1) Answers. A: 2.7

Correct answer. A 24, Ba

Exercise. f(t) = 0. The general solution of (4) is

~

y(t) =C1eλ1t~v1+C2eλ2t~v2, λ1> λ2, ~v1 = (1, s21)T, ~v2 = (1, s22)T How much is=(C1), if (10) is satisfied?

Mathematica. esys=Eigensystem[A]//N evals=esys[[1]]

evects=esys[[2]]

If[evals[[1]]>evals[[2]], v1=evects[[1]];v2=evects[[2]], v1=evects[[2]];v2=evects[[1]]]

icond={ic0,ic1}

vn1=v1/v1[[1]]

vn2=v2/v2[[1]]

csol=Solve[Table[(C1 vn1+C2 vn2)[[i]]==icond[[i]],{i,2}],{C1,C2}]

C1/.csol

Octave. [evects, evals] = eig (A);

vn1=[1;evects(2,1)/evects(1,1)];

vn2=[1;evects(2,2)/evects(1,2)];

S=[vn1 vn2];

inv(S)*[2;-1];

(inv(S)*[2;-1])(1);

disp ("Im(C1) is:");

disp( imag((inv(S)*[2;-1])(1) ));

Answers. A: 2.7 Correct answer. A

(17)

25, D

Exercise. f(t) = 0, (2), (3) true. Plot y(t) ! Mathematica. de4=Join[de/.{f[t]->0},ic]

sol4=NDSolve[de4,y,{t,t0,t1}]

Plot[Evaluate[y[t]/.sol4],{t,t0,t1}]

Octave. ts = linspace (t0, t1, N);

ys = lsode ("velocity", [ic0; ic1], ts);

figure

plot(ts,ys(:,1));

title ("y(t)");

Answers. 0.5 1.0 1.5 2.0 2.5

0.4 0.6 0.8 1.0

Correct answer. A 26, E

Exercise. f(t) = 0, (2), (3) is true. Plot y(t), y0(t)-t on a single figure!

Mathematica. de5=Join[de/.{f[t]->0},ic]

sol5=NDSolve[de5,y,{t,t0,t1}]

Plot[Evaluate[{y[t],y’[t]}/.sol5],{t,t0,t1}]

Octave. ts = linspace (t0, t1, N);

ys = lsode ("velocity", [ic0; ic1], ts);

figure

plot(ts,ys(:,1));

title ("y(t),y’(t)");

(18)

Answers.

0.5 1.0 1.5 2.0 2.5

-0.5 0.5 1.0

Correct answer. A 27, F

Exercise. f(t) = 0, (2), (3) are true. Plot the

γ : [t0, t1]→R2, γ(t) = (y(t), v(t))T parametric curve!

Mathematica. de6=Join[de/.{f[t]->0},ic]

sol6=NDSolve[de6,y,{t,t0,t1}]

ParametricPlot[Evaluate[{y[t],y’[t]}/.sol6],{t,t0,t1}]

Octave. ts = linspace (t0, t1, N);

ys = lsode ("velocity", [ic0; ic1], ts);

figure

plot(ys(:,1),ys(:,2));

title ("t->[y(t),y’(t)]");

(19)

Answers.

0.4 0.6 0.8 1.0

-0.4 -0.2 0.2

Correct answer. A 28, G

Exercise. f(t) = 0, (2), (3) are true. Plot the

γ : [t0, t1]→R3, γ(t) = (t, y(t), v(t))T parametric curve!

Mathematica. de7=Join[de/.{f[t]->0},ic]

sol7=NDSolve[de7,y,{t,t0,t1}]

ParametricPlot3D[Evaluate[{t,y[t],y’[t]}/.sol7],{t,t0,t1}]

Octave. ts = linspace (t0, t1, N);

ys = lsode ("velocity", [ic0; ic1], ts);

figure

plot3(ts,ys(:,1),ys(:,2));

title ("t->[t,y(t),y’(t)]");

(20)

Answers.

0

1

2

0.2 0.4

0.6 0.8

-0.4 -0.2

0.0 0.2

Correct answer. A 29, H

Exercise. Plot the (y, v)T →A(y, v)T vector field!

Mathematica. VectorPlot[A.{y,v},{y,-.2,.2},{v,-1,1}, VectorPoints->15,VectorStyle->Arrowheads[0.02]]

Octave. [hor,vert]=meshgrid(linspace(-0.3,0.3,10),linspace(-1,1,10));

figure

quiver (hor, vert, A(1,1)*hor+A(1,2)*vert,A(2,1)*hor+A(2,2)*vert);

title ("[y;v] -> A[y;v]");

(21)

Answers. -1.0 -0.5 0.0 0.5 1.0

-1.0 -0.5 0.0 0.5 1.0

Correct answer. A 30, Ha

Exercise. f(t) = 0. Plot the (y, v)T →A(y, v)T vector field and a solution of (4)!

Mathematica. sol=NDSolve[Join[de/.{f[t]->0},ic],y,{t,t0,3*t1}]

cPlot=ParametricPlot[Evaluate[{y[t],y’[t]}/.sol],{t,t0,3*t1}]

vPlot=VectorPlot[A.{y,v},{y,-1,1},{v,-1,1}, VectorPoints->8,VectorStyle->Arrowheads[0.04]]

Show[vPlot,cPlot]

Octave. figure hold on;

[hor,vert]=meshgrid(linspace(-1,1,10),linspace(-1,1,10));

quiver (hor, vert, A(1,1)*hor+A(1,2)*vert,A(2,1)*hor+A(2,2)*vert);

plot(ys(:,1),ys(:,2));

title ("[y;v] -> A[y;v], t->[t,y(t),y’(t)]");

hold off;

(22)

Answers. -1.0 -0.5 0.0 0.5 1.0

-1.0 -0.5 0.0 0.5 1.0

Correct answer. A 31, I

Exercise. Compute U = exp(1.4A) ! How much isU11 ? Mathematica. ans9=MatrixExp[1.4 A]

ans9[[1,1]]

Octave. disp ("exp(1.4 * A) is:"), disp ( expm(1.4*A) ) Answers. A: 0.432384

Correct answer. A 32, J

Exercise. Compute U(t) = exp(tA)-t and plot its first column’s functions!

Mathematica. U=MatrixExp[t A]

Plot[{U[[1,1]],U[[2,1]]},{t,t0,t1}]

Octave. Uts=zeros(N,2,2);

for i=1:N

Uts(i,:,:)=expm(ts(i)*A);

endfor;

figure

plot(ts,Uts(:,1,1),ts,Uts(:,2,1)) title("first column of exp(tA)")

(23)

Answers.

0.5 1.0 1.5 2.0 2.5

-0.5 0.5 1.0

Correct answer. A 33, K

Exercise. f(t) = 0, (2) true, y(0) = 1, y0(0) = 0. Plot (y(t), y0(t))T ! Mathematica. de11=Join[de/.{f[t]->0},ic]

sol11=NDSolve[de11,y,{t,t0,t1}]

Plot[Evaluate[{y[t],y’[t]}/.sol11],{t,t0,t1}]

Octave. ys = lsode ("velocity", [1; 0], ts);

figure

plot(ts,ys);

title ("y(t),y’(t), y(0)=1,y’(0)=0");

Answers.

0.5 1.0 1.5 2.0 2.5

-0.5 0.5 1.0

Correct answer. A 34, L

Exercise. Compute U(t) = exp(tA)-t and plot its second column’s functions!

Mathematica. U=MatrixExp[t A]

Plot[{U[[1,2]],U[[2,2]]},{t,t0,t1}]

(24)

Octave. Uts=zeros(N,2,2);

for i=1:N

Uts(i,:,:)=expm(ts(i)*A);

endfor;

figure

plot(ts,Uts(:,1,2),ts,Uts(:,2,2)) title("second column of exp(tA)")

Answers.

0.5 1.0 1.5 2.0 2.5

0.2 0.4 0.6 0.8 1.0

Correct answer. A 35, M

Exercise. f(t) = 0, (2) true, y(0) = 0, y0(0) = 1. Plot (y(t), y0(t))T ! Mathematica. de13=Join[de/.{f[t]->0},ic]

sol13=NDSolve[de11,y,{t,t0,t1}]

Plot[Evaluate[{y[t],y’[t]}/.sol13],{t,t0,t1}]

Octave. ys = lsode ("velocity", [0; 1], ts);

figure

plot(ts,ys);

title ("y(t),y’(t), y(0)=0,y’(0)=1");

Answers.

0.5 1.0 1.5 2.0 2.5

0.2 0.4 0.6 0.8 1.0

Correct answer. A

(25)

Critical damping of a harmonic oscillator

Let

a= 2.5, b= 1, t0= 2.5, t1 = 2.5, (11)

ic0= 0.8, ic1 = 1.1, (12)

y00(t) +ay0(t) +by(t) =f(t). (13)

The first order form of (13) is d dt

y v

=A y

v

+B(f(t)) =

0 1

−b −a y v

+

0 1

(f(t)), (14)

wherey0=v. The initial condition (12) is

~ y(0) =

y(0) v(0)

= ic0

ic1

. (15)

Mathematica. {a,b, t0,t1, ic0,ic1}={?,?, ?,?, ?,?}

de={y’’[t]+a y’[t]+b y[t]==f[t]}

ic={y[t0]==ic0,y’[t0]==ic1}

A={{0,1},{-b,-a}}

Octave. clear all;

%graphics_toolkit ("gnuplot");

pkg load symbolic;

global a=? b=? A=[0,1;-b, -a];

t0=?; t1=?; ic0=?; ic1=-?;

syms y(t);

de=diff(y,t,2)+a*diff(y,t)+b*y(t);

function ydot = velocity (yvec,t) global a b A;

ydot=A*yvec;

endfunction N=100;

36, A

Exercise. Let f(t) = 0, (2) be true. How much isy(t1) ?

Mathematica. desol=NDSolve[Join[de/.{f[t]->0},ic],y,{t,t0,t1}]

ans=(y[t1]/.desol)[[1]]

ans=Replace[y[t1],desol][[1]]

Octave. ts = linspace (t0, t1, N);

ys = lsode ("velocity", [ic0; ic1], ts);

disp ("The value of y(t1) is:"), disp (ys(N,1)) Answers. A: 0.455572

Correct answer. A 37, Aa

Exercise. Letf(t) = 0, (2) be true. LetUt1,t0(~z) =~y(t1), where~y(t) is the solution of (4) with the initial condition

~

y(t0) =~z. How much is the first component of

Ut1,t0( ic0

ic1

).

(26)

Mathematica. desol=NDSolve[Join[de/.{f[t]->0},ic],y,{t,t0,t1}]

ans=(y[t1]/.desol)[[1]]

ans=Replace[y[t1],desol][[1]]

Octave. ts = linspace (t0, t1, N);

ys = lsode ("velocity", [ic0; ic1], ts);

disp ("The value of (yvec(t1))(1) is:"), disp (ys(N,1)) Answers. A: 0.455572

Correct answer. A 38, Ab

Exercise. Let f(t) = 0, (2) be true. Let Ut1/6,t0(~z) = ~y(t1/6), where ~y(t) is the solution of (4) with the initial condition~y(t0) =~z. ComputeUt1/6,t0(~z), if~z=n1(0.2,0)T+n2(0,0.2)T, n1,2∈ {0,1,2,3,4,5}. Plot these points!

Mathematica. m=N[MatrixExp[(t1/6)*A]]

Graphics[Join[{PointSize[Large],Point[{0,0}]},{PointSize[Medium]}, Table[Point[{x,y}],{x,0,1,0.2},{y,0,1,0.2}]//Flatten,{Red},

Table[Point[m.{x,y}],{x,0,1,0.2},{y,0,1,0.2}]//Flatten]]

Octave. figure

np=6; dx=1/(np-1); black=zeros(2,np^2); red=zeros(2,np^2);

u=expm((t1/6)*A);

for iy=1:np for jx=1:np

black(:,1+(iy-1)*np+(jx-1))=[(jx-1)*dx;(iy-1)*dx];

red(:,1+(iy-1)*np+(jx-1))=u*[(jx-1)*dx;(iy-1)*dx];

endfor endfor;

hold on;

scatter(red(1,:),red(2,:),"r");

scatter(black(1,:),black(2,:),"b");

hold off;

title("[y(t1),y’(t1)] -> [y(t2),y’(t2)]")

(27)

Answers.

Correct answer. A 39, Ac

Exercise. f(t) = 0, (2) is true. Solve the following algebro-differential equation!

y0=v, v0 =−spring−f riction, spring=by, f riction=av.

How much isspring(t1) ?

Mathematica. ade={y’[t]==v[t],v’[t]==-friction[t]-spring[t], friction[t]==a v[t],spring[t]==b y[t],y[0]==ic0,v[0]==ic1};

adesol=NDSolve[ade,{y,v,spring,friction},{t,t0,t1}];

(spring[t1]/.adesol)[[1]]

Octave. x0=[ ic0; ic1; b*ic0; a*ic1 ];

xdot0=[ ic1; -b*ic0-a*ic1; b*ic0; a*ic1 ];

function res = resudials (x,xdot,t) global a b;

y=x(1); v=x(2); s=x(3); f=x(4);

ydot=xdot(1); vdot=xdot(2); sdot=xdot(3); fdot=xdot(4);

res(1)=ydot-v;

res(2)=vdot+s+f;

res(3)=s-b*y;

res(4)=f-a*v;

endfunction N=100;

(28)

ts = linspace(t0,t1,N);

[x, xdot] = daspk("resudials", x0, xdot0, ts);

disp ("The value of spring(t1) is:"); disp (x(N,3));

Answers. A: 0.455572 Correct answer. A 40, B

Exercise. f(t) = 0. The general solution of (3) is

y(t) =C1eλt+C2teλt. How much isC1, if (2) is satisfied?

Mathematica. lam=Sqrt[b];

ans2=ic1 - lam ic0;

Octave. ic1-sqrt(b)*ic0

Answers. A: 0.3 Correct answer. A 41, Ba

Exercise. f(t) = 0. The general solution of (4) is

~

y(t) =C1eλ1t~v1+C2eλ2t~v2, How much isC1(~v2)1, if (10) is satisfied?

Mathematica. jd=JordanDecomposition[A]

S=jd[[1]]

J=jd[[2]]

ans2a=Coefficient[

((S.MatrixExp[t J].Inverse[S]).

{{ic0},{ic1}})[[1]],t][[1]]/.t->0

(* OR (this might yield different result, due to the instability of the Jordan decomposition)*)

Coefficient[((MatrixExp[t A]).{{ic0},{ic1}})[[1]],t][[1]]/.t->0 (* OR *)

lam=Sqrt[b]

ans2=ic1-lam ic0

Octave. ic1-sqrt(b)*ic0

Answers. A: 0.3 Correct answer. A 42, D

Exercise. f(t) = 0, (2), (3) true. Plot y(t) ! Mathematica. de4=Join[de/.{f[t]->0},ic]

sol4=NDSolve[de4,y,{t,t0,t1}]

Plot[Evaluate[y[t]/.sol4],{t,t0,t1}]

(29)

Octave. ts = linspace (t0, t1, N);

ys = lsode ("velocity", [ic0; ic1], ts);

figure

plot(ts,ys(:,1));

title ("y(t)");

Answers. 0.5 1.0 1.5 2.0 2.5

0.5 0.6 0.7 0.8 0.9 1.0

Correct answer. A 43, E

Exercise. f(t) = 0, (2), (3) is true. Plot y(t), y0(t)-t on a single figure!

Mathematica. de5=Join[de/.{f[t]->0},ic]

sol5=NDSolve[de5,y,{t,t0,t1}]

Plot[Evaluate[{y[t],y’[t]}/.sol5],{t,t0,t1}]

Octave. ts = linspace (t0, t1, N);

ys = lsode ("velocity", [ic0; ic1], ts);

figure

plot(ts,ys(:,1));

title ("y(t),y’(t)");

Answers.

0.5 1.0 1.5 2.0 2.5

0.5 1.0

Correct answer. A

(30)

44, F

Exercise. f(t) = 0, (2), (3) are true. Plot the

γ : [t0, t1]→R2, γ(t) = (y(t), v(t))T parametric curve!

Mathematica. de6=Join[de/.{f[t]->0},ic]

sol6=NDSolve[de6,y,{t,t0,t1}]

ParametricPlot[Evaluate[{y[t],y’[t]}/.sol6],{t,t0,t1}]

Octave. ts = linspace (t0, t1, N);

ys = lsode ("velocity", [ic0; ic1], ts);

figure

plot(ys(:,1),ys(:,2));

title ("t->[y(t),y’(t)]");

Answers.

0.6 0.7 0.8 0.9 1.0 0.5

1.0

Correct answer. A 45, G

Exercise. f(t) = 0, (2), (3) are true. Plot the

γ : [t0, t1]→R3, γ(t) = (t, y(t), v(t))T parametric curve!

(31)

Mathematica. de7=Join[de/.{f[t]->0},ic]

sol7=NDSolve[de7,y,{t,t0,t1}]

ParametricPlot3D[Evaluate[{t,y[t],y’[t]}/.sol7],{t,t0,t1}]

Octave. ts = linspace (t0, t1, N);

ys = lsode ("velocity", [ic0; ic1], ts);

figure

plot3(ts,ys(:,1),ys(:,2));

title ("t->[t,y(t),y’(t)]");

Answers.

0

1

2

0.6 0.8

1.0 0.0

0.5 1.0

Correct answer. A 46, H

Exercise. Plot the (y, v)T →A(y, v)T vector field!

Mathematica. VectorPlot[A.{y,v},{y,-.2,.2},{v,-1,1}, VectorPoints->15,VectorStyle->Arrowheads[0.02]]

Octave. [hor,vert]=meshgrid(linspace(-0.3,0.3,10),linspace(-1,1,10));

figure

quiver (hor, vert, A(1,1)*hor+A(1,2)*vert,A(2,1)*hor+A(2,2)*vert);

title ("[y;v] -> A[y;v]");

(32)

Answers. -1.0 -0.5 0.0 0.5 1.0

-1.0 -0.5 0.0 0.5 1.0

Correct answer. A 47, Ha

Exercise. f(t) = 0. Plot the (y, v)T →A(y, v)T vector field and a solution of (4)!

Mathematica. sol=NDSolve[Join[de/.{f[t]->0},ic],y,{t,t0,3*t1}]

cPlot=ParametricPlot[Evaluate[{y[t],y’[t]}/.sol],{t,t0,3*t1}]

vPlot=VectorPlot[A.{y,v},{y,-1,1},{v,-1,1}, VectorPoints->8,VectorStyle->Arrowheads[0.04]]

Show[vPlot,cPlot]

Octave. figure hold on;

[hor,vert]=meshgrid(linspace(-1,1,10),linspace(-1,1,10));

quiver (hor, vert, A(1,1)*hor+A(1,2)*vert,A(2,1)*hor+A(2,2)*vert);

plot(ys(:,1),ys(:,2));

title ("[y;v] -> A[y;v], t->[t,y(t),y’(t)]");

hold off;

(33)

Answers. -1.0 -0.5 0.0 0.5 1.0

-1.0 -0.5 0.0 0.5 1.0

Correct answer. A 48, I

Exercise. Compute U = exp(1.4A) ! How much isU11 ? Mathematica. ans9=MatrixExp[1.4 A]

ans9[[1,1]]

Octave. disp ("exp(1.4 * A) is:"), disp ( expm(1.4*A) ) Answers. A: 0.591833

Correct answer. A 49, J

Exercise. Compute U(t) = exp(tA)-t and plot its first column’s functions!

Mathematica. U=MatrixExp[t A]

Plot[{U[[1,1]],U[[2,1]]},{t,t0,t1}]

Octave. Uts=zeros(N,2,2);

for i=1:N

Uts(i,:,:)=expm(ts(i)*A);

endfor;

figure

plot(ts,Uts(:,1,1),ts,Uts(:,2,1)) title("first column of exp(tA)")

(34)

Answers.

0.5 1.0 1.5 2.0 2.5

-0.4 -0.2 0.2 0.4 0.6 0.8 1.0

Correct answer. A 50, K

Exercise. f(t) = 0, (2) true, y(0) = 1, y0(0) = 0. Plot (y(t), y0(t))T ! Mathematica. de11=Join[de/.{f[t]->0},ic]

sol11=NDSolve[de11,y,{t,t0,t1}]

Plot[Evaluate[{y[t],y’[t]}/.sol11],{t,t0,t1}]

Octave. ys = lsode ("velocity", [1; 0], ts);

figure

plot(ts,ys);

title ("y(t),y’(t), y(0)=1,y’(0)=0");

Answers.

0.5 1.0 1.5 2.0 2.5

-0.4 -0.2 0.2 0.4 0.6 0.8 1.0

Correct answer. A 51, L

Exercise. Compute U(t) = exp(tA)-t and plot its second column’s functions!

Mathematica. U=MatrixExp[t A]

Plot[{U[[1,2]],U[[2,2]]},{t,t0,t1}]

(35)

Octave. Uts=zeros(N,2,2);

for i=1:N

Uts(i,:,:)=expm(ts(i)*A);

endfor;

figure

plot(ts,Uts(:,1,2),ts,Uts(:,2,2)) title("second column of exp(tA)")

Answers.

0.5 1.0 1.5 2.0 2.5

0.2 0.4 0.6 0.8 1.0

Correct answer. A 52, M

Exercise. f(t) = 0, (2) true, y(0) = 0, y0(0) = 1. Plot (y(t), y0(t))T ! Mathematica. de13=Join[de/.{f[t]->0},ic]

sol13=NDSolve[de11,y,{t,t0,t1}]

Plot[Evaluate[{y[t],y’[t]}/.sol13],{t,t0,t1}]

Octave. ys = lsode ("velocity", [0; 1], ts);

figure

plot(ts,ys);

title ("y(t),y’(t), y(0)=0,y’(0)=1");

Answers.

0.5 1.0 1.5 2.0 2.5

0.2 0.4 0.6 0.8 1.0

Correct answer. A

(36)

Distributions (δ, δ

0

)

LetχA(t) = 1, ift∈A, otherwise χA(t) is zero.

n= 1, a= 5, φ(t) =eat, αn(t) =nχ[−1/(2n),1/(2n)](t), βn(t) = 1

√2πσn

e−t2/(2σn2), σn= 1/(4n),

˜

αn(t) =n2[−1/n,0](t)−χ[0,1/n](t)), β˜n(t) =βn0(t), hf, φi=

Z

−∞

f(t)φ(t)dt

Mathematica. alpha[n_,t_]:=n HeavisideTheta[t+1/(2n)]HeavisideTheta[-t+1/(2n)]

alphat[n_,t_]:=n^2(-HeavisideTheta[-t+1/n]HeavisideTheta[t]+

HeavisideTheta[t+1/n]HeavisideTheta[-t]) sigma[n_]:=1/(4n)

beta[n_,t_]:=1/(sigma[n]Sqrt[2Pi])Exp[-0.5(t/sigma[n])^2]

betat[n_,t_]:=D[beta[n,s],s]/.s->t Octave.

53, A

Exercise. Plot αn(t) and βn(t) !

Mathematica. Plot[{alpha[n,t],beta[n,t]},{t,-1,1},PlotRange->All]

Octave.

Answers. -1.0 -0.5 0.5 1.0

2 4 6 8

Correct answer. A 54, Aa

Exercise. Plot βk(t), k=n−1, n, n+ 4 !

Mathematica. Plot[{beta[n-1,t],beta[n,t],beta[n+4,t]},{t,-1,1},PlotRange->All]

Octave.

(37)

Answers. -0.3 -0.2 -0.1 0.1 0.2 0.3

2 4 6 8 10 12 14

Correct answer. A 55, B

Exercise. Plot αen(t) and βen(t)!

Mathematica. Plot[{alphat[n,t],betat[n,t]},{t,-1,1},PlotRange->All]

Octave.

Answers.

-1.0 -0.5 0.5 1.0

-100 -50 50 100

Correct answer. A 56, C

Exercise. Compute φ(0)− hα, φi ?

Mathematica. Exp[a*0]-NIntegrate[Exp[a t]n,{t,-1/(2 n),1/(2n)}]

Octave.

Answers. A: -0.0016675 Correct answer. A

(38)

57, D

Exercise. Compute (−φ0(0))− hα,φie ?

Mathematica. -(a) -(-NIntegrate[Exp[a t]n^2,{t,0,1/n}]

+NIntegrate[Exp[a t]n^2,{t,-1/ n,0}])

Octave.

Answers. A: 0.00333778 Correct answer. A 58, E

Exercise. Compute φ(0)− hβ, φi !

Mathematica. 1-NIntegrate[Exp[a t]beta[n,t],{t,-10,10}]

Octave.

Answers. A: -0.00125078 Correct answer. A 59, F

Exercise. Compute (−φ(0))− hβ, φie !

Mathematica. -a-NIntegrate[Exp[a t]betat[n,t],{t,-10,10}]

Octave.

Answers. A: 0.00125078 Correct answer. A 60, G

Exercise. Let

n= 2i, i= 0, . . . ,4, errn=|φ(0)− hαn, φi|.

Plot the points [ln(n),ln(errn)] and find the best fitting line by linear regression (i.e. by the method of least squares)!

Mathematica. err=Table[{N[Log[2^i]],

Log[Abs[1-NIntegrate[Exp[a t]2^i,{t,-1/(2 2^i),1/(2 2^i)}]]]},{i,0,4}]

model=LinearModelFit[err,t,t]

Show[ListPlot[err], Plot[model["BestFit"], {t, 0, 10}]]

Octave.

(39)

Answers.

0.5 1.0 1.5 2.0 2.5

-8 -6 -4 -2

Correct answer. A 61, H

Exercise. Let

n= 2i, i= 0, . . . ,4, errn=|φ(0)− hαn, φi|.

Take the points [ln(n),ln(errn)] and find the best fitting line by linear regression (i.e. by the method of least squares)! What is the slope of that line?

Mathematica. err=Table[{N[Log[2^i]],

Log[Abs[1-NIntegrate[Exp[a t]2^i,{t,-1/(2*2^i),1/(2*2^i)}]]]},{i,0,4}]

model=LinearModelFit[err,t,t]

Show[ListPlot[err], Plot[model["BestFit"], {t, 0, 10}]]

Octave.

Answers. A: -2.00401 Correct answer. A 62, Hb

Exercise. Let

n= 2i, i= 0, . . . ,4, errn=|φ(0)− hγn, φi|, where

γn(t) =χ[0,1/n](t)

Take the points [ln(n),ln(errn)] and find the best fitting line by linear regression (i.e. by the method of least squares)! What is the slope of that line?

Mathematica. err=Table[{N[Log[2^i]],

Log[Abs[1-NIntegrate[Exp[a t]2^i,{t,0,1/( 2^i)}]]]},{i,0,4}]

model=LinearModelFit[err,t,t]

Show[ListPlot[err], Plot[model["BestFit"], {t, 0, 10}]]

Octave.

Answers. A: -1.11748 Correct answer. A

(40)

63, I

Exercise. Let

n= 2i, i= 0, . . . ,4, rrn=|(−φ0(0))− hαen, φi|.

Plot the points [ln(n),ln(errn)] and find the best fitting line by linear regression (i.e. by the method of least squares)!

Mathematica.

Octave.

Answers.

0.5 1.0 1.5 2.0 2.5

-8 -6 -4 -2

Correct answer. A 64, J

Exercise. Let

n= 2i, i= 2, . . . ,13, errn=|φ(0)− hαn, φi|.

Take the points [ln(n),ln(errn)] and find the best fitting line by linear regression (i.e. by the method of least squares)! What is the slope of that line?

Mathematica. err=Table[{N[Log[2^i]],Log[Abs[

-a-(-NIntegrate[Exp[a t](2^i)^2,{t,0,1/2^i}]

+NIntegrate[Exp[a t](2^i)^2,{t,-1/ 2^i,0}])]]},{i,0,4}]

model=LinearModelFit[err,t,t]

ans=Coefficient[model["BestFit"],t]

Octave.

Answers. A: -2.01072 Correct answer. A 65, K

Exercise. y0(t) =δ(t), y(−1) = 0, y0n(t) =αn(t), yn(−1) = 0.Plot y, yn-t!

Mathematica. ysol=DSolve[{y[-1]==0,y’[t]==DiracDelta[t]},y,t]

yf=ysol[[1,1,2,2]]

ynsol=DSolve[{y[-1]==0,y’[t]==alpha[n,t]},y,t]

ynf=ysol[[1,1,2,2]]

Plot[{yf,ynf},{t,-0.5,0.5}]

(41)

Octave.

Answers. -0.4 -0.2 0.2 0.4

0.2 0.4 0.6 0.8 1.0

Correct answer. A 66, L

Exercise. y0(t) =δ(t), y(−1) = 0, y0n(t) =βn(t), yn(−1) = 0.Plot y, yn-t!

Mathematica. ysol=DSolve[{y[-1]==0,y’[t]==DiracDelta[t]},y,t]

yf=ysol[[1,1,2,2]]

ynsol=DSolve[{y[-1]==0,y’[t]==beta[n,t]},y,t]

ynf=ysol[[1,1,2,2]]

Plot[{yf,ynf},{t,-0.5,0.5}]

Octave.

Answers. -0.4 -0.2 0.2 0.4

0.2 0.4 0.6 0.8 1.0

Correct answer. A 67, M

Exercise. y00(t) =δ(t), y(−1) = 0, y0(−1) = 0, y00n(t) =αn(t), yn(−1) = 0, y0(−1) = 0.Plot y, yn-t!

Mathematica. ysol=DSolve[{y[-1]==0,y’[-1]==0,y’’[t]==DiracDelta[t]},y,t]

yf=ysol[[1,1,2,2]]

(42)

ynsol=DSolve[{y[-1]==0,y’[-1]==0,y’’[t]==alpha[n,t]},y,t]

ynf=ysol[[1,1,2,2]]

Plot[{yf,ynf},{t,-0.5,0.5}]

Octave.

Answers. -0.2 -0.1 0.1 0.2

0.05 0.10 0.15 0.20

Correct answer. A 68, N

Exercise. y00(t) =δ(t), y(−1) = 0, y0(−1) = 0, y00n(t) =βn(t), yn(−1) = 0, y0(−1) = 0.Plot y, yn-t!

Mathematica. ysol=DSolve[{y[-1]==0,y’[-1]==0,y’’[t]==DiracDelta[t]},y,t]

yf=ysol[[1,1,2,2]]

ynsol=DSolve[{y[-1]==0,y’[-1]==0,y’’[t]==beta[n,t]},y,t]

ynf=ysol[[1,1,2,2]]

Plot[{yf,ynf},{t,-0.5,0.5}]

Octave.

Answers. -0.2 -0.1 0.1 0.2

0.05 0.10 0.15 0.20

Correct answer. A

(43)

69, O

Exercise. y00(t) =δ0(t), y(−1) = 0, y0(−1) = 0, y00n(t) =βen(t), yn(−1) = 0, y0(−1) = 0.Plot y, yn-t!

Mathematica. ysol=DSolve[{y[-1]==0,y’[-1]==0,y’’[t]==DiracDelta[t]},y,t]

yf=ysol[[1,1,2,2]]

ynsol=DSolve[{y[-1]==0,y’[-1]==0,y’’[t]==beta[n,t]},y,t]

ynf=ysol[[1,1,2,2]]

Plot[{yf,ynf},{t,-0.5,0.5}]

Octave.

Answers. -0.2 -0.1 0.1 0.2

0.2 0.4 0.6 0.8 1.0

Correct answer. A 70, P

Exercise. y00(t) = 0.4δ(t) + 1.6δ0(t), y(−1) = 0, y0(−1) = 0, yn00(t) = 0.4β(t) + 1.6βen(t), yn(−1) = 0, y0(−1) = 0.

Ploty, yn-t!

Mathematica. ysol=DSolve[{y[-1]==0,y’[-1]==0,

y’’[t]==0.4DiracDelta[t]+1.6D[DiracDelta[t],t]},y,t]

yf=ysol[[1,1,2,2]]

ynsol=DSolve[{y[-1]==0,y’[-1]==0,

y’’[t]==0.4beta[n,t]+1.6betat[n,t]},y,t]

ynf=ysol[[1,1,2,2]]

Plot[{yf,ynf},{t,-0.5,0.5}]

Octave.

(44)

Answers. -0.3 -0.2 -0.1 0.1 0.2 0.3

0.5 1.0 1.5

Correct answer. A 71, Q

Exercise. y00(t) = −3y(t)−y0(t) +δ(t), y(−1) = 0, y0(−1) = 0, yn00(t) = −3yn(t)−yn0(t) +βn(t), yn(−1) = 0, y0n(−1) = 0.Plot y, yn-t!

Mathematica. ysol=DSolve[{y[-1]==0,y’[-1]==0,

y’’[t]==0.4DiracDelta[t]+1.6D[DiracDelta[t],t]},y,t]

yf=ysol[[1,1,2,2]]

ynsol=DSolve[{y[-1]==0,y’[-1]==0,

y’’[t]==0.4beta[n,t]+1.6betat[n,t]},y,t]

ynf=ysol[[1,1,2,2]]

Plot[{yf,ynf},{t,-0.15,0.15}]

Octave.

Answers. -0.15 -0.10 -0.05 0.05 0.10 0.15

0.02 0.04 0.06 0.08 0.10 0.12 0.14

Correct answer. A 72, R

Exercise. y0(t) =−3y(t) +δ(t), y(−1) = 0, yn0(t) =−3yn(t) +βn(t), yn(−1) = 0.Plot y, yn-t!

(45)

Mathematica. ysol=DSolve[{y[-1]==0, y’’[t]==DiracDelta[t]},y,t]

yf=ysol[[1,1,2,2]]

ynsol=DSolve[{y[-1]==0,y’[-1]==0,

y’’[t]==0.4beta[n,t]+1.6betat[n,t]},y,t]

ynf=ysol[[1,1,2,2]]

Plot[{yf,ynf},{t,-0.15,0.15}]

Octave.

Answers. -0.2 -0.1 0.1 0.2

0.2 0.4 0.6 0.8 1.0

Correct answer. A 73, S

Exercise. y0(t) =−3y(t) +δ(t), y(−1) = 0, yn0(t) =−3yn(t) +βn(t), yn(−1) = 0.Plot y, yn-t!

Mathematica. ysol=DSolve[{y[-1]==0, y’’[t]==DiracDelta[t]},y,t]

yf=ysol[[1,1,2,2]]

ynsol=DSolve[{y[-1]==0,y’[-1]==0,

y’’[t]==0.4beta[n,t]+1.6betat[n,t]},y,t]

ynf=ysol[[1,1,2,2]]

Plot[{yf,ynf},{t,-0.15,0.15}]

Octave.

(46)

Answers. -0.2 -0.1 0.1 0.2

0.2 0.4 0.6 0.8 1.0

Correct answer. A

(47)

StudentNumber: 91

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A A A A A A A A A A A A A A A A A A A A

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

A A A A A A A A A A A A A A A A A A A A

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

A A A A A A A A A A A A A A A A A A A A

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

A A A A A A A A A A A A A

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

The combination of these methods leads to a sparse LS–SVM solution, which means that a smaller network – based on a subset of the training samples – is accomplished with the speed

3 The Q-slope method for rock slope engineering The purpose of Q-slope is to allow engineering geologists and geotechnical engineers to assess the stability of excavated rock slopes

Starting with a brief summary of support vector classification method, the step by step implementation of the classification algorithm in Mathematica is presented and explained..

After a warm welcome the president of the IVSA in Istanbul showed me around the campus, I tried some Turkish tea and met some other students who were also members of their

(If the two furnaces were in contact the conduction of heat might be enough to decompose the sample before desired.) The stopcock on the generator is closed* and the combustion

(Since the alkali enters from the bottom, it merely forces the acid layer upward and there is not as much danger of mixing as there is with the Pregl type of apparatus.) The

' Research was supported by the Hungarian National Foundation (Grant No. 1641) for Scientific Research and the National Scienfitic and... In the folio wings we prove some

In addition to the eigenvector method, optimization based methods, such as the logarithmic least squares method and the weighted least squares method, were also