• Nem Talált Eredményt

JJ II

N/A
N/A
Protected

Academic year: 2022

Ossza meg "JJ II"

Copied!
42
0
0

Teljes szövegt

(1)

volume 3, issue 1, article 12, 2002.

Received 22 June, 2001;

accepted 25 October, 2001.

Communicated by:Th. M. Rassias

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

ON WEIGHTED OSTROWSKI TYPE INEQUALITIES FOR OPERATORS AND VECTOR-VALUED FUNCTIONS

1N.S. BARNETT, 2C. BUSE,1P. CERONE AND1S.S. DRAGOMIR

1School of Communications and Informatics Victoria University of Technology

PO Box 14428 Melbourne City MC 8001 Victoria, Australia EMail:neil@matilda.vu.edu.au URL:http://sci.vu.edu.au/staff/neilb.html

2Department of Mathematics West University of Timi¸soara Bd. V. Pârvan 4

1900 Timi¸soara, România.

EMail:buse@hilbert.math.uvt.ro

URL:http://rgmia.vu.edu.au/BuseCVhtml/

EMail:pc@matilda.vu.edu.au URL:http://rgmia.vu.edu.au/cerone EMail:sever@matilda.vu.edu.au

URL:http://rgmia.vu.edu.au/SSDragomirWeb.html

c

2000School of Communications and Informatics,Victoria University of Technology ISSN (electronic): 1443-5756

050-01

(2)

On Weighted Ostrowski Type Inequalities for Operators and

Vector-Valued Functions

N.S. Barnett,C. Bu¸se,P. Cerone andS.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of42

J. Ineq. Pure and Appl. Math. 3(1) Art. 12, 2002

http://jipam.vu.edu.au

Abstract

Some weighted Ostrowski type integral inequalities for operators and vector- valued functions in Banach spaces are given. Applications for linear operators in Banach spaces and differential equations are also provided.

2000 Mathematics Subject Classification:Primary 26D15; Secondary 46B99 Key words: Ostrowski’s Inequality, Vector-Valued Functions, Bochner Integral.

Contents

1 Introduction. . . 3

2 Weighted Inequalities. . . 5

3 Inequalities for Linear Operators. . . 14

4 Quadrature Formulae . . . 18

5 Application for Differential Equations in Banach Spaces. . . . 29

6 Some Numerical Examples . . . 34 References

(3)

On Weighted Ostrowski Type Inequalities for Operators and

Vector-Valued Functions

N.S. Barnett,C. Bu¸se,P. Cerone andS.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of42

J. Ineq. Pure and Appl. Math. 3(1) Art. 12, 2002

http://jipam.vu.edu.au

1. Introduction

In [12], Peˇcari´c and Savi´c obtained the following Ostrowski type inequality for weighted integrals (see also [7, Theorem 3]):

Theorem 1.1. Let w : [a, b] → [0,∞)be a weight function on[a, b].Suppose thatf : [a, b]→Rsatisfies

(1.1) |f(t)−f(s)| ≤N|t−s|α, for allt, s∈[a, b],

whereN >0and0< α≤1are some constants. Then for anyx∈[a, b]

(1.2)

f(x)− Rb

a w(t)f(t)dt Rb

aw(t)dt

≤N · Rb

a |t−x|αw(t)dt Rb

a w(t)dt . Further, if for some constantscandλ

0< c≤w(t)≤λc, for all t∈[a, b], then for anyx∈[a, b], we have

(1.3)

f(x)− Rb

a w(t)f(t)dt Rb

a w(t)dt

≤N · λL(x)J(x) L(x)−J(x) +λJ(x), where

L(x) :=

1

2(b−a) +

x−a+b 2

α

and

J(x) := (x−a)1+α+ (b−x)1+α (1 +α) (b−a) .

(4)

On Weighted Ostrowski Type Inequalities for Operators and

Vector-Valued Functions

N.S. Barnett,C. Bu¸se,P. Cerone andS.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of42

J. Ineq. Pure and Appl. Math. 3(1) Art. 12, 2002

http://jipam.vu.edu.au

The inequality (1.2) was rediscovered in [4] where further applications for different weights and in Numerical Analysis were given.

For other results in connection to weighted Ostrowski inequalities, see [3], [8] and [10].

In the present paper we extend the weighted Ostrowski’s inequality for vector- valued functions and Bochner integrals and apply the obtained results to oper- atorial inequalities and linear differential equations in Banach spaces. Some numerical experiments are also conducted.

(5)

On Weighted Ostrowski Type Inequalities for Operators and

Vector-Valued Functions

N.S. Barnett,C. Bu¸se,P. Cerone andS.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of42

J. Ineq. Pure and Appl. Math. 3(1) Art. 12, 2002

http://jipam.vu.edu.au

2. Weighted Inequalities

Let X be a Banach space and −∞ < a < b < ∞. We denote by L(X) the Banach algebra of all bounded linear operators acting onX.The norms of vectors or operators acting onXwill be denoted byk·k.

A functionf : [a, b] → X is called measurable if there exists a sequence of simple functions fn : [a, b] → X which converges punctually almost every- where on [a, b] atf. We recall also that a measurable functionf : [a, b] → X is Bochner integrable if and only if its norm function (i.e. the function t 7→

kf(t)k: [a, b]→R+) is Lebesgue integrable on[a, b].

The following theorem holds.

Theorem 2.1. Assume that B : [a, b] → L(X)is Hölder continuous on[a, b], i.e.,

(2.1) kB(t)−B(s)k ≤H|t−s|α for all t, s ∈[a, b], whereH >0andα ∈(0,1].

Iff : [a, b]→Xis Bochner integrable on[a, b], then we have the inequality:

(2.2)

B(t) Z b

a

f(s)ds− Z b

a

B(s)f(s)ds

≤H Z b

a

|t−s|αkf(s)kds

≤H×













(b−t)α+1+(t−a)α+1

α+1 k|f|k[a,b],∞ if f ∈L([a, b] ;X) ; h(b−t)qα+1+(t−a)qα+1

qα+1

i1q

k|f|k[a,b],p if p >1, 1p +1q = 1 and f ∈Lp([a, b] ;X) ; 1

2(b−a) +

t− a+b2

α

k|f|k[a,b],1

(6)

On Weighted Ostrowski Type Inequalities for Operators and

Vector-Valued Functions

N.S. Barnett,C. Bu¸se,P. Cerone andS.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of42

J. Ineq. Pure and Appl. Math. 3(1) Art. 12, 2002

http://jipam.vu.edu.au

for anyt ∈[a, b], where

|kfk|[a,b],∞ :=ess sup

t∈[a,b]

kf(t)k and

|kfk|[a,b],p:=

Z b a

kf(t)kpdt

1 p

, p≥1.

Proof. Firstly, we prove that theX−valued functions7→B(s)f(s)is Bochner integrable on [a, b]. Indeed, let (fn)be a sequence ofX−valued, simple func- tions which converge almost everywhere on [a, b]at the function f. The maps s 7→ B(s)fn(s)are measurable (because they are continuous with the excep- tion of a finite number of pointssin[a, b]). Then

kB(s)fn(s)−B(s)f(s)k ≤ kB(s)k kfn(s)−f(s)k →0 a.e. on [a, b]

whenn → ∞so that the functions 7→B(s)f(s) : [a, b]→ X is measurable.

Now, using the estimate

kB(s)f(s)k ≤ sup

ξ∈[a,b]

kB(ξ)k · kf(s)k, for alls∈[a, b],

it is easy to see that the functions 7→B(s)f(s)is Bochner integrable on[a, b].

We have successively

B(t) Z b

a

f(s)ds− Z b

a

B(s)f(s)ds

=

Z b a

(B(t)−B(s))f(s)ds

≤ Z b

a

k(B(t)−B(s))f(s)kds

(7)

On Weighted Ostrowski Type Inequalities for Operators and

Vector-Valued Functions

N.S. Barnett,C. Bu¸se,P. Cerone andS.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of42

J. Ineq. Pure and Appl. Math. 3(1) Art. 12, 2002

http://jipam.vu.edu.au

≤ Z b

a

k(B(t)−B(s))k kf(s)kds≤H Z b

a

|t−s|αkf(s)kds=:M(t) for anyt∈[a, b], proving the first inequality in (2.2).

Now, observe that

M(t) ≤ Hk|f|k[a,b],∞

Z b a

|t−s|αds

= Hk|f|k[a,b],∞· (b−t)α+1+ (t−a)α+1 α+ 1

and the first part of the second inequality is proved.

Using Hölder’s integral inequality, we may state that M(t) ≤ H

Z b a

|t−s|ds

1q Z b a

kf(s)kpds 1p

= H

"

(b−t)qα+1+ (t−a)qα+1 qα+ 1

#1q

k|f|k[a,b],p, proving the second part of the second inequality.

Finally, we observe that M(t) ≤ H sup

s∈[a,b]

|t−s|α Z b

a

kf(s)kds

= Hmax{(b−t)α,(t−a)α} k|f|k[a,b],1

= H

1

2(b−a) +

t− a+b 2

α

k|f|k[a,b],1

(8)

On Weighted Ostrowski Type Inequalities for Operators and

Vector-Valued Functions

N.S. Barnett,C. Bu¸se,P. Cerone andS.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of42

J. Ineq. Pure and Appl. Math. 3(1) Art. 12, 2002

http://jipam.vu.edu.au

and the theorem is proved.

The following corollary holds.

Corollary 2.2. Assume thatB : [a, b]→ L(X)is Lipschitzian with the constant L >0.Then we have the inequality

(2.3)

B(t) Z b

a

f(s)ds− Z b

a

B(s)f(s)ds

≤L Z b

a

|t−s| kf(s)kds

≤L×













 h1

4(b−a)2+ t− a+b2 2i

k|f|k[a,b],∞ if f ∈L([a, b] ;X) ; h(b−t)q+1+(t−a)q+1

q+1

i1q

k|f|k[a,b],p if p > 1, 1p + 1q = 1 and f ∈Lp([a, b] ;X) ; 1

2(b−a) +

t−a+b2

k|f|k[a,b],1 for anyt ∈[a, b].

Remark 2.1. If we chooset = a+b2 in (2.2) and (2.3), then we get the following midpoint inequalities:

(2.4)

B

a+b 2

Z b a

f(s)ds− Z b

a

B(s)f(s)ds

≤H Z b

a

s− a+b 2

α

kf(s)kds

(9)

On Weighted Ostrowski Type Inequalities for Operators and

Vector-Valued Functions

N.S. Barnett,C. Bu¸se,P. Cerone andS.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page9of42

J. Ineq. Pure and Appl. Math. 3(1) Art. 12, 2002

http://jipam.vu.edu.au

≤H×













1

2α(α+1)(b−a)α+1k|f|k[a,b],∞ if f ∈L([a, b] ;X) ;

1 2α(qα+1)1q

(b−a)α+1q k|f|k[a,b],p if p >1, 1p +1q = 1 and f ∈Lp([a, b] ;X) ;

1

2α (b−a)αk|f|k[a,b],1 and

B

a+b 2

Z b a

f(s)ds− Z b

a

B(s)f(s)ds (2.5)

≤L Z b

a

s− a+b 2

kf(s)kds

≤L×













1

4(b−a)2k|f|k[a,b],∞ if f ∈L([a, b] ;X) ;

1 2(q+1)

1

q (b−a)1+1q k|f|k[a,b],p if p > 1, 1p + 1q = 1 and f ∈Lp([a, b] ;X) ;

1

2(b−a)k|f|k[a,b],1 respectively.

Remark 2.2. Consider the functionΨα : [a, b]→R,Ψα(t) :=Rb

a|t−s|αkf(s)kds, α ∈(0,1). Iff is continuous on[a, b], thenΨαis differentiable and

α(t)

dt = d

dt Z t

a

(t−s)αkf(s)kds+ Z b

t

(s−t)αkf(s)kds

= α

Z t a

kf(s)k (t−s)1−αds−

Z b t

kf(s)k (s−t)1−αds

.

(10)

On Weighted Ostrowski Type Inequalities for Operators and

Vector-Valued Functions

N.S. Barnett,C. Bu¸se,P. Cerone andS.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page10of42

J. Ineq. Pure and Appl. Math. 3(1) Art. 12, 2002

http://jipam.vu.edu.au

Ift0 ∈(a, b)is such that Z t0

a

kf(s)k

(t0−s)1−αds = Z b

t0

kf(s)k (s−t0)1−αds

andΨ0(·)is negative on(a, t0)and positive on(t0, b),then the best inequality we can get in the first part of (2.2) is the following one

(2.6)

B(t0) Z b

a

f(s)ds− Z b

a

B(s)f(s)ds

≤H Z b

a

|t0−s|αkf(s)kds.

Ifα= 1, then, for

Ψ (t) :=

Z b a

|t−s| kf(s)kds, we have

dΨ (t)

dt =

Z t a

kf(s)kds− Z b

t

kf(s)kds, t∈(a, b), d2Ψ (t)

dt2 = 2kf(t)k ≥0, t∈(a, b), which shows thatΨis convex on(a, b).

Iftm ∈(a, b)is such that Z tm

a

kf(s)kds = Z b

tm

kf(s)kds,

(11)

On Weighted Ostrowski Type Inequalities for Operators and

Vector-Valued Functions

N.S. Barnett,C. Bu¸se,P. Cerone andS.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page11of42

J. Ineq. Pure and Appl. Math. 3(1) Art. 12, 2002

http://jipam.vu.edu.au

then the best inequality we can get from the first part of (2.3) is (2.7)

B(tm) Z b

a

f(s)ds− Z b

a

B(s)f(s)ds

≤L Z b

a

sgn(s−tm)skf(s)kds.

Indeed, as inf

t∈[a,b]

Z b a

|t−s| kf(s)kds

= Z b

a

|tm−s| kf(s)kds

= Z tm

a

(tm−s)kf(s)kds+ Z b

tm

(s−tm)kf(s)kds

=tm Z tm

a

kf(s)kds− Z b

tm

kf(s)kds

+ Z b

tm

skf(s)kds− Z tm

a

skf(s)kds

= Z b

tm

skf(s)kds− Z tm

a

skf(s)kds

= Z b

a

sgn(s−tm)skf(s)kds,

then the best inequality we can get from the first part of (2.3) is obtained for t =tm ∈(a, b).

(12)

On Weighted Ostrowski Type Inequalities for Operators and

Vector-Valued Functions

N.S. Barnett,C. Bu¸se,P. Cerone andS.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page12of42

J. Ineq. Pure and Appl. Math. 3(1) Art. 12, 2002

http://jipam.vu.edu.au

We recall that a functionF : [a, b]→ L(X)is said to be strongly continuous if for allx ∈ X,the mapss 7→ F (s)x : [a, b] → X are continuous on [a, b].

In this case the function s 7→ kB(s)k : [a, b] → R+is (Lebesgue) measurable and bounded ([6]). The linear operator L = Rb

a F(s)ds (defined by Lx :=

Rb

a F(s)xdsfor allx∈X) is bounded, because kLxk ≤

Z b a

kF (s)kds

· kxk for all x∈X.

In a similar manner to Theorem2.1, we may prove the following result as well.

Theorem 2.3. Assume thatf : [a, b]→Xis Hölder continuous, i.e., (2.8) kf(t)−f(s)k ≤K|t−s|β for all t, s∈[a, b], whereK >0andβ∈(0,1].

If B : [a, b] → L(X) is strongly continuous on [a, b], then we have the inequality:

(2.9)

Z b a

B(s)ds

f(t)− Z b

a

B(s)f(s)ds

≤K Z b

a

|t−s|βkB(s)kds

(13)

On Weighted Ostrowski Type Inequalities for Operators and

Vector-Valued Functions

N.S. Barnett,C. Bu¸se,P. Cerone andS.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page13of42

J. Ineq. Pure and Appl. Math. 3(1) Art. 12, 2002

http://jipam.vu.edu.au

≤K×













(b−t)β+1+(t−a)β+1

β+1 k|B|k[a,b],∞ if kB(·)k ∈L([a, b] ;R+) ; h(b−t)qβ+1+(t−a)qβ+1

qβ+1

i1q

k|B|k[a,b],p if p > 1, 1p + 1q = 1

and kB(·)k ∈Lp([a, b] ;R+) ; 1

2(b−a) +

t−a+b2

β

k|B|k[a,b],1 for anyt ∈[a, b].

The following corollary holds.

Corollary 2.4. Assume that f and B are as in Theorem 2.3. If, in addition, Rb

a B(s)dsis invertible inL(X),then we have the inequality:

(2.10)

f(t)− Z b

a

B(s)ds

−1Z b a

B(s)f(s)ds

≤K

Z b a

B(s)ds −1

Z b a

|t−s|βkB(s)kds

for anyt ∈[a, b].

Remark 2.3. It is obvious that the inequality (2.10) contains as a particular case what is the so called Ostrowski’s inequality for weighted integrals (see (1.2)).

(14)

On Weighted Ostrowski Type Inequalities for Operators and

Vector-Valued Functions

N.S. Barnett,C. Bu¸se,P. Cerone andS.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page14of42

J. Ineq. Pure and Appl. Math. 3(1) Art. 12, 2002

http://jipam.vu.edu.au

3. Inequalities for Linear Operators

Let0 ≤ a < b < ∞andA ∈ L(X). We recall that the operatorial norm ofA is given by

kAk= sup{kAxk:kxk ≤1}.

The resolvent set ofA(denoted byρ(A)) is the set of all complex scalarsλfor whichλI−Ais an invertible operator. HereI is the identity operator inL(X).

The complementary set of ρ(A) in the complex plane, denoted by σ(A), is the spectrum of A. It is known that σ(A) is a compact set in C. The series P

n≥0 (tA)n

n!

converges absolutely and locally uniformly for t ∈ R. If we denote byetA its sum, then

etA

≤e|t|kAk, t∈R.

Proposition 3.1. LetXbe a real or complex Banach space,A ∈ L(X)andβ be a non-null real number such that−β ∈ρ(A). Then for all0 ≤a < b <∞ and eachs∈[a, b], we have

(3.1)

eβb−eβa

β ·esA−(βI+A)−1

eb(βI+A)−ea(βI+A)

≤ kAkebkAk·

"

1

4(b−a)2+

s− a+b 2

2#

·max

eβb, eβa . Proof. We apply the second inequality from Corollary2.2in the following par- ticular case.

B(τ) :=eτ A, f(τ) = eβτx, τ ∈[a, b], x∈X.

(15)

On Weighted Ostrowski Type Inequalities for Operators and

Vector-Valued Functions

N.S. Barnett,C. Bu¸se,P. Cerone andS.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page15of42

J. Ineq. Pure and Appl. Math. 3(1) Art. 12, 2002

http://jipam.vu.edu.au

For allξ, η ∈[a, b]there exists anαbetweenξandηsuch that kB(ξ)−B(η)k =

X

n=1

n−ηn) n! An

=

(ξ−η)A

X

n=0

(αA)n n!

≤ kAk eαA

· |ξ−η|

≤ kAkebkAk· |ξ−η|.

The function τ 7→ eτ A is thus Lipschitzian on [a, b] with the constant L :=

kAkeb·kAk. On the other hand we have Z b

a

eτ A eβτx

dτ = Z b

a

eτ A eβτIx dτ

= Z b

a

eτ(A+βI)xdτ

= (A+βI)−1

eb(A+βI)−ea(A+βI) x, and

|kfk|[a,b],∞ = sup

τ∈[a,b]

eτ βx

= max

eβb, eβa · kxk.

Placing all the above results in the second inequality from (2.3) and taking the supremum for allx∈X,we will obtain the desired inequality (3.1).

(16)

On Weighted Ostrowski Type Inequalities for Operators and

Vector-Valued Functions

N.S. Barnett,C. Bu¸se,P. Cerone andS.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page16of42

J. Ineq. Pure and Appl. Math. 3(1) Art. 12, 2002

http://jipam.vu.edu.au

Remark 3.1. LetA ∈ L(X)such that0∈ρ(A). Taking the limit asβ → 0in (3.1), we get the inequality

(b−a)esA−A−1

ebA−eaA

≤ kAkebkAk·

"

1

4(b−a)2+

s− a+b 2

2# ,

wherea, bandsare as in Proposition3.1.

Proposition 3.2. LetA∈ L(X)be an invertible operator,t ≥0and0≤s ≤t.

Then the following inequality holds:

(3.2)

t2

2 sin (sA)−A−2[sin (tA)−tAcos (tA)]

≤ 2s3+ 2t3−3st2

6 kAk.

In particular, ifX =R,A= 1ands= 0it follows the scalar inequality

|sint−tcost| ≤ t3

3, for allt ≥0.

Proof. We apply the inequality from (2.3) in the following particular case:

B(τ) = sin (τ A) :=

X

n=0

(−1)n (τ A)2n+1

(2n+ 1)!, τ ≥0,

(17)

On Weighted Ostrowski Type Inequalities for Operators and

Vector-Valued Functions

N.S. Barnett,C. Bu¸se,P. Cerone andS.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page17of42

J. Ineq. Pure and Appl. Math. 3(1) Art. 12, 2002

http://jipam.vu.edu.au

and

(3.3) f(τ) =τ ·x, for fixedx∈X.

For eachξ, η ∈[0, t],we have kB(ξ)−B(η)k =

A

X

n=0

(−1)n(ξ−η)α2n (2n)! A2n

!

≤ kAk |ξ−η| · kcos (αA)k

≤ kAk |ξ−η|,

where α is a real number between ξ and η, i.e., the function τ 7−→ B(τ) : R+ → L(X)iskAk −Lipschitzian.

Moreover, it is easy to see that Z t

0

B(τ)f(τ)dτ =A−2[sin (tA)−tAcos (tA)]x and

(3.4)

Z t 0

|s−τ| |f(τ)|dτ = 2s3+ 2t3−3st2

6 kxk.

Applying the first inequality from (2.3) and taking the supremum for x ∈ X withkxk ≤1, we get (3.2).

(18)

On Weighted Ostrowski Type Inequalities for Operators and

Vector-Valued Functions

N.S. Barnett,C. Bu¸se,P. Cerone andS.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page18of42

J. Ineq. Pure and Appl. Math. 3(1) Art. 12, 2002

http://jipam.vu.edu.au

4. Quadrature Formulae

Consider the division of the interval[a, b]given by

(4.1) In :a =t0 < t1 <· · ·< tn−1 < tn=b and hi := ti+1 − ti, ν(h) := max

i=0,n−1

hi. For the intermediate points ξ :=

0, . . . , ξn−1)withξi ∈[ti, ti+1], i= 0, n−1, define the sum (4.2) Sn(1)(B, f;In, ξ) :=

n−1

X

i=0

B(ξi) Z ti+1

ti

f(s)ds.

Then we may state the following result in approximating the integral Z b

a

B(s)f(s)ds, based on Theorem2.1.

Theorem 4.1. Assume that B : [a, b] → L(X)is Hölder continuous on[a, b], i.e., it satisfies the condition (2.1) andf : [a, b]→ X is Bochner integrable on [a, b]. Then we have the representation

(4.3)

Z b a

B(s)f(s)ds=Sn(1)(B, f;In, ξ) +R(1)n (B, f;In, ξ),

whereSn(1)(B, f;In, ξ)is as given by (4.2) and the remainderRn(1)(B, f;In, ξ)

(19)

On Weighted Ostrowski Type Inequalities for Operators and

Vector-Valued Functions

N.S. Barnett,C. Bu¸se,P. Cerone andS.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page19of42

J. Ineq. Pure and Appl. Math. 3(1) Art. 12, 2002

http://jipam.vu.edu.au

satisfies the estimate R(1)n (B, f;In, ξ)

≤H×























 1

α+ 1k|f|k[a,b],∞

n−1

P

i=0

(ti+1−ξi)α+1+ (ξi−ti)α+1 1

(qα+ 1)1q

k|f|k[a,b],p n−1

P

i=0

(ti+1−ξi)qα+1+ (ξi−ti)qα+1 1q

, p > 1, 1p +1q = 1

1

2ν(h) + max

i=0,n−1

ξi− ti+1+ti 2

α

k|f|k[a,b],1

≤H×















 1

α+ 1k|f|k[a,b],∞

n−1

P

i=0

hα+1i 1

(qα+ 1)1q

k|f|k[a,b],p n−1

P

i=0

hqα+1i 1q

, p >1, 1p +1q = 1 1

2ν(h) + max

i=0,n−1

ξi− ti+1+ti

2

α

k|f|k[a,b],1

≤H×













 1

α+ 1k|f|k[a,b],∞[ν(h)]α (b−a)1q

(qα+ 1)1q

k|f|k[a,b],p[ν(h)]α k|f|k[a,b],1[ν(h)]α.

(20)

On Weighted Ostrowski Type Inequalities for Operators and

Vector-Valued Functions

N.S. Barnett,C. Bu¸se,P. Cerone andS.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page20of42

J. Ineq. Pure and Appl. Math. 3(1) Art. 12, 2002

http://jipam.vu.edu.au

Proof. Applying Theorem4.1on[xi, xi+1] i= 0, n−1

,we may write that

Z ti+1

ti

B(s)f(s)ds−B(ξi) Z ti+1

ti

f(s)ds

≤H×















 h(t

i+1−ξi)α+1+(ξi−ti)α+1 α+1

ik|f|k[t

i,ti+1],∞

h(ti+1−ξi)qα+1+(ξi−ti)qα+1 qα+1

i1q

k|f|k[t

i,ti+1],p

1

2(ti+1−ti) +

ξiti+12+ti

α

k|f|k[t

i,ti+1],1. Summing overi from0to n−1and using the generalised triangle inequality we get

R(1)n (B, f;In, ξ)

n−1

X

i=0

Z ti+1

ti

B(s)f(s)ds−B(ξi) Z ti+1

ti

f(s)ds

≤H×

















1 α+1

n−1

P

i=0

(ti+1−ξi)α+1+ (ξi−ti)α+1 k|f|k[t

i,ti+1],∞

1 (qα+1)1q

n−1 P

i=0

(ti+1−ξi)qα+1+ (ξi−ti)qα+1 1q

k|f|k[t

i,ti+1],p n−1

P

i=0

1

2hi+

ξiti+12+ti

α

k|f|k[t

i,ti+1],1.

(21)

On Weighted Ostrowski Type Inequalities for Operators and

Vector-Valued Functions

N.S. Barnett,C. Bu¸se,P. Cerone andS.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page21of42

J. Ineq. Pure and Appl. Math. 3(1) Art. 12, 2002

http://jipam.vu.edu.au

Now, observe that

n−1

X

i=0

(ti+1−ξi)α+1+ (ξi−ti)α+1 k|f|k[t

i,ti+1],∞

≤ k|f|k[a,b],∞

n−1

X

i=0

(ti+1−ξi)α+1+ (ξi−ti)α+1

≤ k|f|k[a,b],∞

n−1

X

i=0

hα+1i

≤ k|f|k[a,b],∞(b−a) [ν(h)]α. Using the discrete Hölder inequality, we may write that

"n−1 X

i=0

(ti+1−ξi)qα+1+ (ξi−ti)qα+1

#1q

k|f|k[t

i,ti+1],p

"n−1 X

i=0

(ti+1−ξi)qα+1+ (ξi−ti)qα+11qq

#1q

×

"n−1 X

i=0

k|f|kp[t

i,ti+1],p

#1p

= (n−1

X

i=0

(ti+1−ξi)qα+1+ (ξi−ti)qα+1 )1q

Z b a

kf(t)kpds 1p

n−1

X

i=0

hqα+1i

!1q

k|f|kp[a,b],p

≤(b−a)1q k|f|k[a,b],p[ν(h)]α.

(22)

On Weighted Ostrowski Type Inequalities for Operators and

Vector-Valued Functions

N.S. Barnett,C. Bu¸se,P. Cerone andS.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page22of42

J. Ineq. Pure and Appl. Math. 3(1) Art. 12, 2002

http://jipam.vu.edu.au

Finally, we have

n−1

X

i=0

1 2hi+

ξi −ti+1+ti 2

α

k|f|k[t

i,ti+1],1

≤ 1

2 max

i=0,n−1

hi+ max

i=0,n−1

ξi− ti+1+ti 2

α

k|f|k[a,b],1

≤[ν(h)]αk|f|k[a,b],1 and the theorem is proved.

The following corollary holds.

Corollary 4.2. If B is Lipschitzian with the constantL, then we have the rep- resentation (4.3) and the remainderRn(1)(B, f;In, ξ)satisfies the estimates:

(4.4)

R(1)n (B, f;In, ξ)

≤L×





















k|f|k[a,b],∞

1 4

n−1

P

i=0

h2i +

n−1

P

i=0

ξiti+12+ti2

1 (q+1)1q

k|f|k[a,b],p n−1

P

i=0

(ti+1−ξi)q+1+ (ξi−ti)q+1 1q

, p >1, 1p +1q = 1

1

2ν(h) + max

i=0,n−1

ξiti+12+ti

k|f|k[a,b],1

(23)

On Weighted Ostrowski Type Inequalities for Operators and

Vector-Valued Functions

N.S. Barnett,C. Bu¸se,P. Cerone andS.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page23of42

J. Ineq. Pure and Appl. Math. 3(1) Art. 12, 2002

http://jipam.vu.edu.au

≤L×

















1

2k|f|k[a,b],∞

n−1

P

i=0

h2i

1 (q+1)1q

k|f|k[a,b],p n−1

P

i=0

hq+1i 1q

1

2ν(h) + max

i=0,n−1

ξiti+12+ti

k|f|k[a,b],1

≤L×









1

2k|f|k[a,b],∞(b−a)ν(h)

(b−a)1q (q+1)

1

q k|f|k[a,b],pν(h) k|f|k[a,b],1ν(h).

The second possibility we have for approximating the integralRb

a B(s)f(s)ds is embodied in the following theorem based on Theorem2.3.

Theorem 4.3. Assume thatf : [a, b]→Xis Hölder continuous, i.e., the condi- tion (2.8) holds. IfB : [a, b] → L(X)is strongly continuous on[a, b], then we have the representation:

(4.5)

Z b a

B(s)f(s)ds=Sn(2)(B, f;In, ξ) +R(2)n (B, f;In, ξ), where

(4.6) Sn(2)(B, f;In, ξ) :=

n−1

X

i=0

Z ti+1

ti

B(s)ds

f(ξi)

(24)

On Weighted Ostrowski Type Inequalities for Operators and

Vector-Valued Functions

N.S. Barnett,C. Bu¸se,P. Cerone andS.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page24of42

J. Ineq. Pure and Appl. Math. 3(1) Art. 12, 2002

http://jipam.vu.edu.au

and the remainderR(2)n (B, f;In, ξ)satisfies the estimate:

(4.7)

R(2)n (B, f;In, ξ)

≤K ×

























1

β+1k|B|k[a,b],∞

n−1

P

i=0

h

(ti+1−ξi)β+1+ (ξi −ti)β+1i

1 (qβ+1)1q

k|B|k[a,b],p n−1

P

i=0

h

(ti+1−ξi)qβ+1+ (ξi−ti)qβ+1i1q , p > 1, 1p + 1q = 1

1

2ν(h) + max

i=0,n−1

ξiti+12+ti

β

k|B|k[a,b],1

≤K ×

















1

β+1k|B|k[a,b],∞

n−1

P

i=0

hβ+1i

1 (qβ+1)1q

k|B|k[a,b],p n−1

P

i=0

hqβ+1i 1q

, p >1, 1p + 1q = 1;

1

2ν(h) + max

i=0,n−1

ξiti+12+ti

β

k|B|k[a,b],1

≤K ×









1

β+1k|B|k[a,b],∞(b−a) [ν(h)]β

(b−a)1q (qβ+1)

1

q k|B|k[a,b],p[ν(h)]β, p > 1, 1p + 1q = 1 k|B|k[a,b],1[ν(h)]β .

(25)

On Weighted Ostrowski Type Inequalities for Operators and

Vector-Valued Functions

N.S. Barnett,C. Bu¸se,P. Cerone andS.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page25of42

J. Ineq. Pure and Appl. Math. 3(1) Art. 12, 2002

http://jipam.vu.edu.au

If we consider the quadrature (4.8) Mn(1)(B, f;In) :=

n−1

X

i=0

B

ti+ti+1 2

Z ti+1

ti

f(s)ds, then we have the representation

(4.9)

Z b a

B(s)f(s)ds=Mn(1)(B, f;In) +R(1)n (B, f;In), and the remainderR(1)n (B, f;In)satisfies the estimate:

R(1)n (B, f;In) (4.10)

≤H×





















1

2α(α+1)k|f|k[a,b],∞

n−1

P

i=0

hα+1i

1 2α(qα+1)1q

k|f|k[a,b],p n−1

P

i=0

hqα+1i 1q

, p >1, 1p + 1q = 1;

1

2α [ν(h)]αk|f|k[a,b],1

≤H×













1

2α(α+1)(b−a)k|f|k[a,b],∞[ν(h)]α

(b−a)1q 2α(qα+1)

1

q k|f|k[a,b],p[ν(h)]α, p >1, p1 +1q = 1;

1

2α k|f|k[a,b],1[ν(h)]α,

(26)

On Weighted Ostrowski Type Inequalities for Operators and

Vector-Valued Functions

N.S. Barnett,C. Bu¸se,P. Cerone andS.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page26of42

J. Ineq. Pure and Appl. Math. 3(1) Art. 12, 2002

http://jipam.vu.edu.au

provided thatBandf are as in Theorem4.1.

Now, if we consider the quadrature (4.11) Mn(2)(B, f;In) :=

n−1

X

i=0

Z ti+1

ti

B(s)ds

f

ti+ti+1 2

, then we also have

(4.12)

Z b a

B(s)f(s)ds=Mn(2)(B, f;In) +R(2)n (B, f;In), and in this case the remainder satisfies the bound

(4.13)

R(2)n (B, f;In)

≤K×













1

2β(β+1)k|B|k[a,b],∞

n−1

P

i=0

hβ+1i

1 2β(qβ+1)1q

k|B|k[a,b],p n−1

P

i=0

hqβ+1i 1q

, p >1, 1p +1q = 1;

1

2β [ν(h)]βk|B|k[a,b],1

≤K×









1

2β(β+1)(b−a)k|B|k[a,b],∞[ν(h)]β

(b−a)1q 2β(qβ+1)

1

q k|B|k[a,b],p[ν(h)]β, p >1, 1p +1q = 1;

1

2β k|B|k[a,b],1[ν(h)]β,

(27)

On Weighted Ostrowski Type Inequalities for Operators and

Vector-Valued Functions

N.S. Barnett,C. Bu¸se,P. Cerone andS.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page27of42

J. Ineq. Pure and Appl. Math. 3(1) Art. 12, 2002

http://jipam.vu.edu.au

providedB andf satisfy the hypothesis of Theorem4.3.

Now, if we consider the equidistant partitioning of[a, b], En :ti :=a+

b−a n

·i, i= 0, n,

thenMn(1)(B, f;En)becomes (4.14) Mn(1)(B, f) :=

n−1

X

i=0

B

a+

i+ 1 2

· b−a n

Z a+b−an ·(i+1) a+b−an ·i

f(s)ds

and then (4.15)

Z b a

B(s)f(s)ds=Mn(1)(B, f) +R(1)n (B, f), where the remainder satisfies the bound

(4.16)

R(1)n (B, f)

≤H×









(b−a)α+1

2α(α+1)nα k|f|k[a,b],∞

(b−a)α+ 1q

2α(α+1)nα k|f|k[a,b],p, p > 1, 1p + 1q = 1;

(b−a)α

2αnα k|f|k[a,b],1. Also, we have

(4.17)

Z b a

B(s)f(s)ds=Mn(2)(B, f) +R(2)n (B, f),

(28)

On Weighted Ostrowski Type Inequalities for Operators and

Vector-Valued Functions

N.S. Barnett,C. Bu¸se,P. Cerone andS.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page28of42

J. Ineq. Pure and Appl. Math. 3(1) Art. 12, 2002

http://jipam.vu.edu.au

where

Mn(2)(B, f) :=

n−1

X

i=0

Z a+b−an ·(i+1) a+b−an ·i

B(s)ds

! f

a+

i+1

2

· b−a n

,

and the remainderR(2)n (B, f)satisfies the estimate

(4.18)

R(2)n (B, f)

≤K×













(b−a)β+1

2β(β+1)nβ kBk[a,b],∞

(b−a)β+ 1q

2β(β+1)nβ k|B|k[a,b],p, p > 1, 1p +1q = 1;

(b−a)β

2βnβ k|B|k[a,b],1.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Abstract: We prove Ostrowski inequalities (regular and weighted cases) on time scales and thus unify and extend corresponding continuous and discrete versions from the literature..

We prove Ostrowski inequalities (regular and weighted cases) on time scales and thus unify and extend corresponding continuous and discrete versions from the literature.. We also

In this note our aim is to present some Jordan-type inequalities for generalized Bessel functions in order to extend some recent results concerning generalized and sharp versions of

Key words: Ostrowski inequality, Integral inequalities, Absolutely continuous functions.. Abstract: On utilising an identity from [5], some weighted Ostrowski type inequalities

In the present paper we establish some integral inequalities analogous to the well- known Hadamard inequality for a class of generalized weighted quasi-arithmetic means in inte-

B.G. Pure and Appl. Motivated by the results in [10] and [3], in this paper we establish new Ostrowski type inequalities involving the product of two functions. The anal- ysis used

The main purpose of this paper is to use a Grüss type inequality for Riemann- Stieltjes integrals to obtain a sharp integral inequality of Ostrowski-Grüss type for functions whose

The main purpose of this paper is to use a Grüss type inequality for Riemann- Stieltjes integrals to obtain a sharp integral inequality of Ostrowski-Grüss type for functions whose