• Nem Talált Eredményt

and Rh with nanoparticles Au modified Photo-induced the reactions CO -methane in system on titanatenanotubes Applied Catalysis B: Environmental

N/A
N/A
Protected

Academic year: 2022

Ossza meg "and Rh with nanoparticles Au modified Photo-induced the reactions CO -methane in system on titanatenanotubes Applied Catalysis B: Environmental"

Copied!
12
0
0

Teljes szövegt

(1)

Contents lists available atScienceDirect

Applied Catalysis B: Environmental

j o u r n a l h o m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / a p c a t b

Photo-induced reactions in the CO 2 -methane system on titanate nanotubes modified with Au and Rh nanoparticles

Balázs László

a

, Kornélia Baán

a

, Erika Varga

a

, Albert Oszkó

a

, András Erd ˝ohelyi

a

, Zoltán Kónya

b,c,∗

, János Kiss

a,c,∗

aDepartmentofPhysicalChemistryandMaterialsScience,UniversityofSzeged,Aradivértanúktere1.,SzegedH-6720,Hungary

bDepartmentofAppliedandEnvironmentalChemistry,UniversityofSzeged,RerrichBélatér1.,SzegedH-6720,Hungary

cMTA-SZTEReactionKineticsandSurfaceChemistryResearchGroup,RerrichBélatér1.,SzegedH-6720,Hungary

a r t i c l e i n f o

Articlehistory:

Received25March2016

Receivedinrevisedform20June2016 Accepted23June2016

Availableonline24June2016

Keywords:

Carbondioxidephotocatalysis Methanephotocatalysis Titanatenanotubes Rhodiumnanoparticles Goldnanoclusters

a b s t r a c t

Thephotocatalytictransformationofthemethane-carbondioxidesystemwasinvestigatedbyin-situ methodsinthepresentstudy.Titanatenanotube(TNT)supportedgoldandrhodiumcatalystswereused inthecatalytictests.Ourmaingoalwastheanalysisoftheroleofthecatalystsinthedifferentpartsofthe reactionmechanism.ThecatalystswerecharacterizedbyX-rayphotoelectronspectroscopy(XPS),high resolutiontransmissionelectronmicroscopy(HRTEM)anddiffusereflectanceUV–visspectroscopy(DR- UV–vis).Photocatalytictestswereperformedinacontinuousflowquartzreactorequippedwithmass spectrometerdetectorandmercury-arcUVsource.Diffusereflectanceinfraredspectroscopy(DRIFTS) wasusedtoanalyzethesurfaceofthecatalystduringphotoreaction.Post-catalytictestswerealsocarried outonthecatalystsincludingXPS,temperatureprogrammedreduction(TPR)andRamanspectroscopy methodsinordertofollowthechangesofthematerials.Titanatenanotubecanstabilizeeventhesmallest, molecular-likeAuclusterswhichshowedthehighestactivityinthereactions.Approximately3%methane conversionwasreachedinthebestcaseswhilethecarbondioxideconversionwasnottraceable.Itwas revealedthatwaterhasaveryimportantroleintheoxidationreaction.Themaindiscoveredreaction routesaremethanedehydrogenationandoxidation,themethylcouplingandtheformingofstructured carbondepositsonthecatalystsurface.ThesourceofthesurplusCOcanbemostlythereductionof carbondioxide.DuringthereductionprocessphotoelectronsandhydrogenionsbringsabouttheCO2

reductionviaCO2•−radicalanion.

©2016ElsevierB.V.Allrightsreserved.

1. Introduction

Inthepastyearsgreateffortsweremadeinthedryreforming ofmethanewithcarbondioxidetosyngas.Greenhousegases,pri- marilycarbondioxideandmethane,emittedbyhumanactivities contributetotheglobalwarming[1].Fromenvironmentalpoint ofview,themainadvantageofthisprocessistheutilizationand conversionofthetwomostdangerousgreenhousegases,CH4and CO2,intomorevaluablecompounds[2–9].BothCO2andCH4are stablemolecules,whicharenoteasytotransformintootherchem- icalsundermildreactionconditions.Theuseofphototechnology wouldbreakthethermodynamicbarrierofendothermicreactions buttheassistanceofsomeheatcanbestillnecessarytoworkout

Correspondingauthorsat:MTA-SZTEReactionKineticsandSurfaceChemistry ResearchGroup,RerrichBélatér1.,SzegedH-6720,Hungary.

E-mailaddress:jkiss@chem.u-szeged.hu(J.Kiss).

thephotoreductionofCO2[10].Generally,themainproductsofthe CO2+CH4reactionareCOandH2[10]buttheformationofacetone wasalsoreported[11].Recently,modifiedTiO2 nanocomposites wereusedinphotocatalyticCO2reductionbyCH4[12–14].

Amongvarious semiconductors,titaniumdioxide(TiO2)asa photocatalysthasbeenresearchedexcessivelydue toitsadvan- tagessuchasrelativecheapness,availabilityinexcess,chemically andbiologicallystablecharacterandpossessionofhigheroxida- tivepotentials. UV-irradiationis abletogenerate electronsand holesinTiO2,whicharegoodreductantsandpowerfuloxidants for redoxreactions[15–21].Duetoitsfavorable electronicand optoelectronicproperties,ithasbeenwidelyappliedtosolarcells andphoto-catalysts.However,improvedpropertiesarenecessary tomeet highdemandandcomplex requirements. Theprosper- ousdevelopmentoftitaniumdioxidenanomaterialshasthrived theinvestigationofaclassofTiO2-basednanostructures;layered titanatematerials[22–24].Layeredtitanatematerialshaveattrac-

http://dx.doi.org/10.1016/j.apcatb.2016.06.057 0926-3373/©2016ElsevierB.V.Allrightsreserved.

(2)

tivefeaturesoftheirown,includingextremelylargeion-exchange capacity,fastiondiffusionandintercalation.

OnthebasisofthepioneeringworkofKasugaetal.[25]research effortsontitanateswereatfirstconcentratedonthehydrothermal synthesisandstructure elucidationoftitanatenanotubes(TNT).

Titanatenanotubesareopen-endedhollowtubularobjectsmea- suring7–10nminouterdiameterand50–170nminlength.They featureacharacteristicspiralcrosssectioncomposedof4–6wall layers.Thetypicaldiameteroftheirinnerchannelis5nm[25–27].

TitanateshaveageneralformulaasHxNa2-xTi3O7·nH2Oandtheir sodiumcontentcanbeloweredbyacidtreatments.Currentlyour interestisinthesodium-freeH2Ti3O7·nH2OformofTNTs.Titanate nanostructuresareofgreatinterestforcatalyticapplications,since theirhighsurfaceareaandcationexchangecapacityprovidethe possibilityofachievingahighmetal(e.g.Co,Cu,Ni,AgandAu)dis- persion[28–32].Rhinsmallsizescanbealsostabilizedintitanate nanotubesand,similarlytoAu,initiatesthetransformationfrom tubestructuretoanatasephase[33,34].

Numerousthermal-andphoto-inducedcatalyticreactionswere discovered on titanate supported metal catalysts up to now [22–24].The location of metal ions onthe nanocrystal surface mayproveimportantinmediatingelectrontransferreactionsthat haverelevanceinphotocatalysisorpowerstorage.Gold-containing titanatenanotubeswerefoundtodisplayhigheractivitythanthe DegussaP-25catalystinthephoto-oxidationofacetaldehyde[35], inthephotocatalyticdegradationofformic acid[36].Moreover, titanate-relatednanofibersdecoratedeitherwithPtorPdnanopar- ticlesshowsignificantphotocatalytic behavioras demonstrated bythedecompositionoforganicdyesinwater,thedegradation of organic stains on the surface of flexible freestanding cellu- lose/catalystcompositefilmandthegenerationofhydrogenfrom ethanolusingbothsuspendedandimmobilizedcatalysts.Theper- formanceofthenanofiber-basedcatalystmaterialscompeteswith theirconventionalnanoparticle-basedcounterparts[37–39].

Inthepresentstudyweinvestigatethephotocatalyticconver- sionof CO2 andCH4 over Auand Rhdopedtitanatenanotubes.

Wepayattentiontothesurfacestructureandopticalproperties ofnanoparticlesonnanotubes.DuringUVirradiationtheproduct distributionisdeterminedbymassspectrometryandthesurface intermediatesformedinphoto-inducedreactionsaredetermined byDRIFTS. We trytofindcorrelationbetween thestructure of nanoparticlesandthephotocatalyticactivity.

2. Experimental

2.1. Synthesisofthecatalyst

Thetitanatenanotubesweresynthesizedbyanalkalihydrother- mal method described previously [24,34,39,40]. The specific surfaceareaoftitanatenanotubesisapproximately185m2g1.

ForthesynthesisofgoldnanoparticledecoratedH2Ti3O7nano- tubes1goftheas-preparednanotubeswassuspendedin100ml distilled water by applyingultrasound irradiation for 1h. Then 5.2ml ofHAuCl4 solutionwithanappropriate concentrationto provide∼1wt%goldloadingwasaddedtothewellhomogenized nanotubesuspension.After10minofstirring50mgofNaBH4(sep- aratelydissolvedin5mlofdistilledwater)wasaddedrapidlyto achieve theinstantaneousformation of gold nanoparticles.The suspensionwaskeptstirredfor further20minthenwasrinsed withdistilledwaterthoroughly.Theas-purifiedsamplewasdried overnightin a temperatureprogrammedelectricovenat350K.

Usingthislow-temperatureAuloadingmethod,weescapedthe undesiredphasetransformationofnanotubestoanataseinitiated bygoldatelevatedtemperature(450–473K)[31].

Rh/TNT nanocomposite was produced by impregnating the titanatenanotubeswithRhCl3·3H2Osolutiontoyield1wt%metal content[32,33].Theimpregnatedpowderwasdriedinairat383K for3h.InordertogetmetallicRhthecatalystpassedoverfurther treatment(pre-treatment)justbeforethephotocatalyticmeasure- ments.Thepre-treatment consistedof 4sections: Annealingin oxygenflowfor1hat473K,flushingtheoxygenwithargonatthe sametemperature,reductioninhydrogenflowfor1hat523Kand finallyflushingthehydrogenwithargonfor1hat523K.

Au/TiO2wasproducedbyimpregnatingTiO2hombikatUV-100 (anatase phase) powderwith HAuCl4 solution.The preparation methodwasthesameasfortheRh/TNTcatalyst.Finally1wt%gold contentwasreached.Au/TNTandRh/TNTwith2.5%metalcontent werealsopreparedfortheUV–vismeasurementstoinvestigatethe concentrationdependenceofthebandgap.TheAu/TNTandRh/TNT notationsreferstothe1%metalcontentvariantshenceforward.

Itisimportanttoemphasize thatnocarboncontainingcom- poundwasusedatallduringthesynthesisofthecatalystsinorder toavoidanykindofincidentalcarboncontaminationinfiltratesinto thestructure.Thesekindsofcarboncontaminationscanresultsin surplusproductswhicharenotoriginatedfromthereactantshence resultsinmisleadingconversionsregardingtothecarbonbased reactants.

Thesurfaceareasofthecatalystsweremeasuredwitha‘BELCAT A’instrumentwithsinglepointBETmethod.Thesurfaceareasare 181,171,168and300m2/gforTNT,Rh/TNT,Au/TNTandAu/TiO2, respectively.

Thephotocatalyticactivityofboththecompositesandthepure supporthad beeninvestigatedunder exactlythesamereaction parameters.The pre-treatmentprocess wasuniformfor allcat- alystsinordertogetbettercomparability:Themethodusedat Rh/TNTwasappliedinallcases.

2.2. Materials

Thepurityofthegasesusedforpretreatmentandfortheprepa- ration of the reactant mixtures were 99.5%, 99.995%, 99.995%, 99.996%and 99.999%for O2,CH4, CO2,Ar and H2 respectively.

Inthecaseofargonfurtherpurificationwasappliedwithanin- lineadsorptiontrapcontainingsilicageland5Azeoliteinorderto removewaterandcarbon-dioxidecontamination.

2.3. Characterizationofthecatalysts

XPspectraweretakenwithaSPECSinstrumentequippedwith aPHOIBOS150MCD9hemisphericalanalyzer.Theanalyzerwas operatedintheFATmodewith20eVpassenergy.TheAlK␣radi- ation(h=1486.6eV)ofadualanodeX-raygunwasusedasan excitationsource.Thegunwasoperatedatthepowerof210W (14kV,15mA).Typicallyfive scanswere summedtogeta sin- glehigh-resolutionspectrum. TheTi2p3/2 maximum(458.9eV) wasusedasbindingenergyreference.Self-supportingpelletswere usedinXPSmeasurements.Forspectrumacquisitionandevalu- ationbothmanufacturer’s(SpecsLab2)andcommercial(CasaXPS, Origin)softwarepackageswereused.

The morphology of metal-modified titanate nanotubes was characterizedbyhighresolutiontransmissionelectronmicroscopy (FEITecnaiG220X-Twin;200kVoperationvoltage,×180000mag- nification,125pm/pixelresolution).X-raydiffractometry(Rigaku MiniFlexII;CuK␣)andelectrondiffractionwereusedtodetermine thecrystallinityandthestructure.Themetalparticlesizedistri- butionwasdeterminedbyimageanalysisoftheHRTEMpictures usingthe‘ImageJ’software.Atleastfiverepresentativeimagesof equalmagnification,takenatdifferentspotsoftheTEMgridwere firstsubjectedtorollingballbackgroundsubtractionandcontrast enhancement,andthenthediameterofthemetalnanoparticlesin

(3)

theimagewasmanuallymeasuredagainstthecalibratedTEMscale bar.Thediameterdistributionhistogramwasconstructedfrom200 individualnanoparticlediametermeasurements.

DiffusereflectanceUV–vis spectroscopywasusedtoinvesti- gatethebandgapenergyofthecatalysts.Spectrawerecollected withahome-madefiberopticsystemconsistingofaMicropack HPX-2000lightsourceandanOceanOpticsUSB2000detector.The detectorhas2048pixelresolutioninthe200–1100nmwavelength range.Thefinalspectrumwasobtainedbyaveraging40scans.The spectrawereconvertedfromAbsorbance fA(␭)typetoKubelka- Munk fKM(E)whereE=hinelectronvolts.Thenthespectrawere smoothedwiththeweightedmovingaveragemethod(51points, symmetric).Spectraldeconvolutionwasappliedinallcasesinorder togetclearpeakataround3.5eV.Simplexmethodwasusedtofit thespectrumwithgaussianfunctions.Themainrequirementfor thefittingwastogetatleast0.999forthevalueofR2whilekeepthe peaknumberaslowaspossible.Thebandgapwascalculatedfrom thegaussianpeakcenteredataround3.6eV.Thepeakwastrans- formedtoTauc-plotaccordingtothefollowingequation:Tauc-plot fT(E)=(fKM(E)*E)1/nwheren=2forsemiconductorswithallowed indirectbandgaplikeTiO2[41].Thenalinearfunctionwasfittedto theleftinflectionpointofthefT(E)curveanditsx-interceptyields theenergyoftheopticalbandgap(Eg).

2.4. In-situphotocatalyticmeasurements

The photocatalyticreactions wereperformed in a flow-type quartz reactor which consisted of cylindrical quartz and glass tubes.Animmersion-typemercury-arc lampplaced inthecen- terofthereactorwasusedforirradiation.Aheatabsorbingwater layerwasintroducedbetweenthefirstandsecondquartztubes tocutofftheinfraredradiationandtocooldownthemetalparts and thesealsofthereactor.Thefine catalystpowder wassus- pendedindeionizedwaterthenthemixturehadbeendriedonto theinnersurfaceofthethird(glass)tubeinsuchawaytocover approximately 430cm2 area. Typically 0.5g catalyst was used.

Thevolumeofthereactorwas476cm3.Thereactantgaseswith controlledflow rates had beenintroduced betweenthesecond and third tubes. In this arrangement the catalyst surface faced towardsthelight sourcecancontactwiththegasesduringthe irradiation.Argonwasusedascarriergas.Theoverallflowrate was30cm3/mininallcases.Thereactantmixtureswereprepared pendingflowbymassflowcontrollers:methanewith0.9cm3/min flowratewasintroducedinto29.1cm3/minargonstreamtoget methane-argonmixture.0.9cm3/min methaneand 0.9cm3/min carbondioxidewereintroducedinto28.2cm3/minargonstream togetCH4 CO2 ArmixturewithCH4:CO2=1:1molarratio.Inthe caseofblankexperiments29.1cm3/min argonbubbledthrough waterat25C toget0.9cm3/minpluswatervapor.Considering theoverall flowrateandthevolumeofthereactortheaverage retentiontimeofthegasmixturesisgenerally16min.Thetem- peraturecontrolofthecatalystwhichisnecessaryforthecorrect pre-treatmentisachievedwithanouterheaterbuiltfromaglass tube,someheaterwireandafeedbackthermocouple.Fig.1shows theschematicdrawingofthereactorandthesamplingsystem.

TheUVsourcewasan‘undopedTQ-718’highpressuremercury- arclamp(UV-ConsultingPeschl)operatedat500Wcontrolledby a‘P-EVG-10’ powersupply. Theirradiancereferstothecatalyst supportingsurfaceandwasmeasuredbya‘GentecUP19K-50L-H5- D0’powerdetectorwithaspectralrangeof0.19–20␮m.Asoda limeglasscutofffilterwasappliedtosplitthemeasurementrange.

Themeasuredirradianceswere0.143(±16%)and0.199(±6.5%) W/cm2inthe190–350and350–2000nmrange.Photonfluxwas calculatedforeachbandgapvalueinmolh−1cm−2.Thefirststepof thecalculationwasthenormalizationoftheemissionspectrumof thelampusingthemeasuredirradiancevalueofthe190–350nm

Fig.1. Theschematicofthephotoreactorwithsamplingpoints.

region.Afternormalizationthespectrumwasintegratedfromthe bandgapvalue(Eg)to6.2eV(200nm)togetthephotonflux.The photonfluxwastransformedfrommolh1cm2 tomolh1g1 usingthecatalystquantityandthesizeofthecoveredareawhich isslightlydifferentineachexperiment.Theoverallphotonconver- sionefficiency(␩)wascalculatedbythedivisionoftheformation rateofthemainproductwiththerespectivephotonflux.

Theproductsformedduringthephotocatalyticreactionswere analyzedwitha‘HidenHPR-70’gasanalysissystem.Itisequipped withanautomaticallycontrolled8-waybatchinletsamplingsub- system and a ‘HAL3F-RC’ quadrupole mass spectrometer with standard electron ionizersource.Separation technique wasnot usedinordertoachievehighsensitivitywiththemassspectrom- eter.Theinstrument’sdetectionlimitis500ppbtohydrogenand 100ppbtomethane.Samplesweretakenfromthegasflowinturns priorandafterthephotoreactorduringthereaction.The‘Multi- pleIonDetection’(MID)modewasappliedwiththefollowingm/z valuesselected:2,15,16,18,26,27,28,29,30,31,43,44,45.Thedif- ferenceofthem/zsignalsoriginatesfromthetwosamplingpoints wasusedhenceforwardinthecalculationsinordertominimize thenoiselevel.Thefragmentationpatternsandtheconcentrations werepreviouslycalibratedtotheexpectedproducts.Asmallvac- uumchamberequippedwithacapacitivegaugeandaleakvalve wasusedtopreparethedesiredconcentrationofagasneedtobe calibrated.Finalpressurewassettoatmosphericwithargon.Sam- plesweretakenfromthisstaticvolumebyathirdbatchinletport attachedtothechamber.Calibrationwasmadeatthemagnitude oftheexpectedconcentrationsforH2,CH4,N2,O2,CO,CO2,C2H6 andmethanolseparately.One-pointcalibrationwasapplied.

Thephotocatalyticmeasurementsequenceconsistedofthefol- lowingsteps:pretreatmentofthecatalyst[Section2.2.],a6–9h baselinesection,3-hirradiation,3-hdarksection,thenrepeating theirradiationanddarksectionstwotimes.Theinsertionofthe darksectionswasnecessarytofollowtheadsorption-desorption processofthereactantsandtoeasethequalitativeanalysisofthe products.Thecoolantwaterlayerwasunabletoeliminatetheheat effectofthelampcompletelyatroomtemperature.Thetempera- tureofthecatalystwasapproximately403Kduringtheirradiation.

To minimize the temperature fluctuationbetween the UV and darksessionsthecatalystwaskeptat403Kinthedarksections too.Threetypesofreactionsweretestedphotocatalitically:The methanetransformation,theCH4+CO2reactionandablankexper- imentwithonlywaterpresentonargon.Theblankexperimentwas necessarytoverifythattheproductsdonotoriginatesfromsur- facecontaminations.Averageandmaximalformationrates(¯rand r)werecalculatedfromthemeasuredconcentrationsandknown parametersin␮molh−1g−1unitsforthemainproductsandreac- tantsregardingto9hirradiation.Thesignoftheratesispositive fortheformingproductsandnegativeforthewaningreactants.

(4)

Infraredspectroscopymeasurementswerecarriedoutwithan

‘AgilentCary-670’FTIRspectrometerequippedwith‘HarrickPray- ingMantis’diffusereflectanceattachment.Thesampleholderhad twoBaF2windowsintheinfraredpathandaquartzwindowinthe UV-path.Afocusedmercuryshortarclamp(Osram,HBO100W/2) wasusedforUVirradiation.Thespectrometerwaspurgedwith drynitrogen.Typically16scanswererecordedataspectralresolu- tionof2cm−1.Thespectrumofthepretreatedcatalystwasusedas background.Thesameexperimentalconditionswereusedasinthe photocatalyticmeasurements.TheUVirradiationwasintermitted duringthespectrumrecording.Thereactantswereflushedoutfrom thediffusereflectancecellwithheliumafteronehourirradiation.

Spectrawerecollectedafter30minflushingtoo.

2.5. Analysisoftheusedcatalyst

Post-catalyticmeasurementswereperformedinordertoinves- tigatethechangesoccurredinthecatalystduringthereaction.The usedcatalystwasremovedfromthereactorthenitwasanalyzed withfourdifferentmethods:Thequantityofthesurfacecarbon wasdeterminedwithtemperatureprogrammedreduction(TPR).

Ramanspectroscopymeasurementswerecarriedoutinorderto investigatethestructureofsurfacedeposits.X-rayphotoelectron spectroscopy(XPS)wasusedtoinvestigatetheoxidationstateof rhodiumandcarbononthesurfaceoftheusedcatalyst.

TheTPRmeasurementswerecarriedoutinthefollowingman- ner:Theusedcatalystwasplacedintoa10centimeterlongquartz tubeand heated up fromroom temperatureto 1173Klinearly at15K/minratein40ml/minhydrogenflow.Theproductswere analyzed with an ‘Agilent 7890’ gas chromatograph equipped with‘HPCarbonplot’capillarycolumn.Thermalconductivityand methanizer-sensitizedflameionizationdetectorswereused.

TheRamanspectraofthesamplesweremeasuredat532nm laserexcitationwith5mWpowerusinga‘ThermoScientificDXR RamanMicroscope’. Typically10 scansweremadewith2cm−1 resolutionintherangeof100–1800cm−1.

3. ResultsandDiscussion

3.1. CharacterizationofAuandRhnanoparticlessupportedon titanatenanotubes

Protonatedtitanatenanotubesdecoratedwithgoldnanoparti- cleswerecharacterizedbyXPS.TheXP-spectrumtakeninthegold 4fbindingenergyrangeispresentedinFig.2.Thefigureaddition- allyshowsthespectrumofaclean goldfilm(thickness:50nm) preparedonaglassplateforcomparison.Symmetric4f5/2and4f7/2 emissionswereobservedat87.7and84.0eVinbothcaseswhich isgeneralformetallicgold.Furthermore,ahigherbindingenergy peakappearedonAu/TNTwithAu4f7/2at85.9eV.Itisimportantto mentionthatwhengoldwasdispersedonTiO2filmonlyone4f7/2 emissionappeared[42].

Twodifferentexplanationscanbeofferedfortheappearanceof thisunusuallyhighbindingenergygoldstateaswediscussedprevi- ously[25].Corelevelshiftsduetoparticlesizemustbeconsidered firstintheinterpretationofthespectraofnanoparticles[43–46].

ThesecondpossibleexplanationisthatAumayhaveundergonean ionexchangeprocess.ThisisnotpossibleonTiO2becauseofthe lackofcationscompensatingtheframeworkcharge,however,itis quitelikelytohappenontitanateswhicharewell-knownfortheir ion-exchangeability[47].

TEMimageonFig.3/Ademonstratesthetubularmorphologyof theas-synthesizedtitanatenanotubeswithadiameterof∼7nm andlengthupto80nm.Theacidicwashingprocessresultedina milddestructionoftheinnerandouterwallsofthenanotubes.The

Fig.2. XP-spectrafromthegold4fregiontakenontitanatenanotubes(A)andona cleanAufilmpreparedonaglassplate(B).

sizeofAunanoparticleswasbetween2.0and8.0nmontheH-form titanate nanotubes (Fig. 3/B). The Au particle sizes was deter- minedbyXRD,too.Theaveragesizewas5.3nmcalculatedfrom theScherrerequation.TheTEMimageofRhdecoratednanotubes and nanowiresshowthepresence ofhomogeneously dispersed nanoparticlesonthesurfaceoftitanatenanostructures(Fig.3/C).

TheparticlesizedistributionofRhonTNTwascalculatedfromTEM andresultedin2.8nmasthemostabundantparticlediameter.As smallas1nmsizedmetalparticlesweredetectedtoointhissam- ple.Particleswithdiametersbiggerthan5nmwerenotobserved.

UnfortunatelywecouldnotobservepeaksforRhcrystalsintheXRD spectraprobablyduetolowconcentrationofparticles.Wemayalso assumethatcertainpartofRhunderwentionexchangeprocess [34].InourpreviousstudiesweobservedthatAuandalsoRhcatal- ysesthetransformationoftubestructuretonanoanataseabove 473Kand573K,respectively[32,34].Inpresentcasesthetemper- atureofpreparationandthephotocatalytictestexperimentsare muchlower.

TheRh3d5/2peakat309.3eVat1%Rhcontentandat308.3eVat 2%metalcontentclearlysuggesttheexistenceofanoxidationstate ormorphologythatisdifferentfromthebulkbecausethebind- ingenergyoftheRh3d5/2electronsisabout307.1eVformetallic Rh.Thehigherbindingenergystatesmaycorrespondtoverysmall clustersstabilizedin thestructure ofnanowiresandnanotubes.

ThestabilizationofRhclustersinsmallsizeandtheinfluenceof Rhnanoparticlesonthetransformationoftitanatestructurescan beexplainedalsobytheelectronicinteractionbetweenRh and titanate,whichwasobservedin severalcasesbetweenreduced titaniaandmetals,includingRh[48–51].

3.2. OpticalpropertiesofAuandRhdopedtitanatenanotubes Fig.4shows theabsorptionspectraofsix differentsamples, includingAuandRhloadedtitanatenanotubes.

Thepuretitanatenanotubeshowedstrongabsorptionat3.53eV (351nmwavelength)intheseexperiments.Thecalculatedbandgap energyfromtheTaucplotis3.07eV.Thisvaluewas3.03eVfor pureanatase[Fig.4].ThereductionofAuCl4withNaBH4yields1 or2.5wt%Auonthesurface.Thebandgapof1wt%Au/TNTslightly decreased(3.03eV). Nofurthersignificantchangewasobserved at2.5wt%Aucontent.Thischangewaslessthanin thecase of titanatenanowiressupportedAuproducedinasimilarway[32].

ThespectrumoftheAu/TNTshowsa strongabsorptionbandat 2.31eV(534nm).Thisisthecharacteristicabsorptionofthesur- faceplasmonofgoldnanoparticles(d>3nm)andarisesasaresult

(5)

Fig.3.TEMimagesofprotonatedTNT(A),Au/TNTpreparedbyNaBH4reduction(B)andRh/TNT(C),andtheparticlesizedistributionofRhonTNTcalculatedfromTEM imageanalysis(D).

ofthecollectivemodesofoscillationofthefreeconductionband electronsinducedbyaninteractingelectromagneticfield[52–54].

Interestingly,thespectrumshowssomeunresolvedpeaksathigher energies.Afterdeconvolutionwecanidentifythreeabsorptionsat 2.68,2.93,and3.19eV.Weshouldemphasizeforthesakeofidenti- ficationthatsmallgoldnanoparticles(d<3nm)losetheirbulk-like electronicproperties;forexample,theynolongershowtheplas- monexcitationcharacteristicsofrelativelylargegoldnanocrystals [53,54].It hasbeendemonstratedbyXPSand HRTEMmeasure- mentsthatourtitanatenanotubesamplescontaingoldinsmall sizes(d<3nm),too[Figs.2and3].Recentlyamultiplemolecular- liketransitionofathiol-protectedAu25clusterwasobserved.At leastthreewell-definedbandsat1.8,2.75,and3.1eVweredetected byUV–visspectroscopy[53].VeryrecentlyasimilarAu25cluster wasidentifiedonCeO2 rodcatalyst.ItwasconsideredthatCeO2

rodshavealargeamountofdefectsites[55–57]andifloadingof Au25(SR)18nanoclustersisverylow,onecanreasonablyexpectthat therodsupportmaybehelpfultoanchorthegoldnanoclusters [58].Asitwaspointedoutinpreviousworks[22,25,27,32,34,40]

thetitanatenanotubesalsocontainahugeamountofdefectsand thesmallclustersandparticlesofgoldcangrowontheoutershell andintheinsideofthetubes.Furthermore,theclustercoalescence couldbepreventedbecausethedefectsintitanatenanotubeswere foundhelpfulforstrongbondingwithmetalnanoparticles[32].For comparisonwepreparedAunanoparticlesonanataseTiO2(Hom- bikatUV-100).Inthiscasetheintensityofplasmoniccharacterwas lessandthemolecular-likefeaturewashardlyseenafterdeconvo-

lutingtheUV–visspectrum[Fig.4].Theratioofthepeakareasof molecular-likebandsandtheplasmonicbandis0.28inthecaseof anatasesupportandis0.36fornanotubesupport.Fromthiscom- parisonwemayconcludethattitanatenanotubeshavetheability tostabilizethesmallparticleseveninclustersizeformation,similar toCeO2rodcatalyst.

After impregnating the titanate nanotubes with rhodium- chloridesolutiontwonewveryweakbandsappearedat2.52and 3.07eV(492and404nm,respectively).TheRh(III)salthasaneffect ofslightlydecreasingthebandgappossiblyduetotheinfiltration ofrhodiumionsintothetitanatestructure.Thebandgapisslightly decreasedinthecaseof1%Rh/TNTto3.04eVcomparedtopure nanotube(3.07eV)butdoesnotchangedat2.5%rhodiumcontent (notshown).Astrongabsorptioninthevisibleregionemergeddue toreduction[Fig.4].Onthereducedsamplesthebandgapdoes notdecreasedatall(3.08eVfor1%Rhand3.16eVof2.5%Rh).The deconvolutionhasbiggeruncertaintyinthiscasecomparedtothe clean,protonatedtitanatenanotubesandtheRh(III)saltcontaining materialsduetothehighoverlapping,hencethebandgapenergy hasbiggererror,too.Thenewbroadbandhasamaximumat3.06eV (405nm)[Fig.4].

Of thenoble metals(Pt, Pd, Ru and Rh),a theoretical study foundthatonlyRhhasastrongUVplasmonicresponse[59],itwas supportedexperimentally,too[60].Consideringonlytherepresen- tativenanoparticlesizeandshapemodelwithrandomorientations, thetheoreticallypredictedpeakforthedipolarmodeinthetripod planenear3.3eV(375nm)isingoodagreementwiththeexper-

(6)

Fig.4.TheDR-UV–visspectrawiththecalculatedbandgapenergiesofsixdifferentsamples.Theoriginalspectraareshownbythethick,greycurves.Bandgapenergieswere calculatedfromfittedgaussfunctionswithTauc’smethodinallcases.

imentaldataobtainedonsiliconsubstrate[61].Weassumethat thelocalsurfaceplasmonresonance(LSPR)stronglydependson thenatureofsubstrateandtheresonantenergyincreasinglyred- shiftedwithincreasingsize.Theobservedbroadbandcenteredat 3.06eVcontainstheplasmoniccharacterofRhontitanatenano- tubes.

3.3. Photocatalytictests

Photocatalyticmeasurementsrevealedthatmethaneisactive towardsphoto-oxidationinallcasesevenifnootherreactantsare presentinthefeedmixture.Table1showstheaverageandmaximal formationratesoftheidentifiedproductsandthemethaneconver- sionvalues.Bothtitanatesupportedcatalystsexhibitedoneorder ofmagnitudehigheractivityinmethaneconversionthanpristine nanotubes.TheAu/TiO2showedsmalleractivityinmethanetrans- formationthanthenanotubesupportedvariant.

Generallythemethanetransformstohydrogen,ethane,andoxi- dizestocarbon dioxide,carbon monoxideandmethanol. Fig.5 showstheconversionofmethaneandtheformationofproducts asafunctionofirradiationtime.

Ascanbeseenthemolarfractionoftheproductsareincreasing whilethequantityofmethanedecreasesduringtheUV-activesec- tions.Decreasinginthemolarfractionswithtimecanbeobserved inthecaseofRh/TNT.ThisdropisrestrictedtotheUVactiveperi- odsandistheconsequenceofactivityloss.InthecaseofAu/TNTno activitylosswasobservedintheexperiment.Wecanstatethatthe supportedmetalcatalystsareextremelyactiveinhydrogengener- ation.Thecontributionofethanetothehydrogenratesissmallin thesecasessoourmainprocessshouldbesomekindofmethane decompositionwherethecarbonhighlyoxidizesoritremainson thesurface.Itisimportanttoemphasizethattheformationofwater wasnotdetected,ormoreprecisely,therateofwaterformationwas

Fig.5.Conversionofmethaneandformationofproductsasafunctionofirradiation timeonRh/TNTandAu/TNTcatalystsinthemethanetransformationreaction.

underthedetectionlimit.Thecarbonbalance(C)wascalculated fromtheaverageformationratesbyEq.(1).

C=

−rCH4−2rC2H6−rCO2−rCO−rCH3OH

∗9h (1)

CispositiveandlargeinthecasesofTNTsupportedmetals whichmeansthatsomecarbonismissingfromtheproductstream.

Itsreasoncanbeanundetectedproductorsomekindofsurface deposit.Itisimportanttonotethatthenanosizedgoldcatalyst (Au/TNT)hashigheractivityinethanegenerationbecausetherates areincreasedbyoneorderofmagnitudecomparedtotheothercat- alysts.Theintroductionofcarbondioxideintothereactantstream didnot resultsignificanteffects ontherates.Theconversionof

(7)

Table1

Averageandmaximalformationratesoftheidentifiedproductsandthecalculatedmethaneconversionsinthedifferentexperimentsetups.Thecarbondeficitandtheoverall photoconversionefficiency(␩)regardingtohydrogenformationarealsoshown.

reactants catalyst rateofformation(␮molh−1g−1) KCH4(%) carbondeficit(␮molg−1) H2

CH4 C2H6 H2 CO2 CO CH3OH

CH4 TNT −8.75 1.17 1.40,3.44 3.04a 0.23b 0.0837a 0.23 28b 1.4×10−6

Rh/TNT −49.6 1.95 115,235 11.2a 5.44a 0.138a 1.41 260b 1.2×10−4

Au/TNT −70.2 12.0 116,127 18.1a 11.3a 1.01a 1.64 140c 9.7×10−5

Au/TiO2 b.d.l. 1.50 48.0,57.3 9.28a 1.70a 0.108a b.d.l. b.d.l. 6.4×10−5

CH4+CO2 TNT −6.05 0.721 0.746a,1.61 b.d.l. 0.427a b.d.l. 0.16 37.6a 8.2×10−7

Rh/TNT −68.0 1.72 107,246 53.6 11.4a 0.142a 2.03 b.d.l. 1.2×10−4

Au/TNT −70.5 11.4 104,117 b.d.l. 11.9a 0.954a 1.66 310a 8.8×10−5

Au/TiO2 −21.8 1.86 50.7,63.2 b.d.l. 5.76a 0.144a 0.73 110b 6.2×10−5

H2O Rh/TNT b.d.l. b.d.l. b.d.l. 0.34a b.d.l. b.d.l.

Italicnumbersmeansthemaximalformationrates.

b.d.l.:belowdetectionlimit.

aEstimateddeviationis>10%but≤25%.

bEstimateddeviationis>25%but≤50%.

c Estimateddeviationisbiggerthan50%.

CO2wasunderourdetectionlimitexceptonecasewhereCO2was formeddespiteitshighbasicconcentration.Wecoulddeducethat CO2isratherformsthandiminishesinthesecases.

Inthephoto-inducedCH4decompositionprocessCO2andCO (alsoC)appearedasproductssothereshouldbeanoxygensource inthesystem.Inthecaseoftitanatenanotubeswaterisaplausi- blereactionpartnerwhichservestheoxygenreactingwithmethyl radical.Itwasalreadyestablishedthattitanatenanotubescontain alargeamountofH2O[28,34,62].Wehaveidentifiedadsorbedand latticewaterinourXPS,DRIFTSandDTG-MSexperiments.TheOH andH2Ostretchingvibrationsbetween3000and3750cm−1could bedetectedupto673Kontitanatenanotubes.TheOHandH2O deformationsignalat1618–1648cm1waspresentupto600–700 K.Interestingly,averyweekasymmetricinfraredsignalattributed toH2Oaround3730cm−1 wasdetectedevenat773Konnano- tubes.An“OH”likephotoemissionemergedat532.6–532.8eVin theO1sXPspectrum.Thispeakdisappearedat573Konnanowires whileonnanotubesthisemissiondiminishedonlyabove673K.In agreementwiththeIRandDTG-MSresultsthepeakcorresponding towaterdecreasedsharplybetween293and573K.Ourhypoth- esisthatwater actsasanoxygensourceformethaneoxidation gainedstrengthwhenweintroducedwaterinsteadofcarbondiox- ideintothereactantstream:Notonlythemethaneconsumption butalsotheformationratesofH2,CO2andCOandthequantityof themissingcarbonwereincreased.

Oneblankexperimentwasconductedinordertomakesurethat theproductsarenotoriginatesfromsurfacecontaminations.When onlywaterispresentonargon,nomethane,ethaneorhydrogen formationwereobserved.OnlytracesamountofCO2wasevolved.

Thismeansthattheproductsdetectedontheotherexperiments originatesfromthereactants.

3.4. In-situinfraredspectroscopymeasurements

Fig. 6 shows the infrared spectra registered after one hour irradiationinthemethaneconversionandCH4+CO2reactionsper- formedoverTNTandRh/TNTcatalysts.Peaksevolvedpartlydue totheadsorptionofreactantsorproductsandpartlyduetothe irradiationofthesample.Theadsorptionofwaterasreactantor contaminationresultsintheappearanceofapeakat1638cm−1 andabroadbandbetween2700and3700cm1.Thecarbondiox- ideadsorptionresultedin strongpeaksat1558and 1375cm1 whichcanbeattributedtobidentatecarbonateswhichbindtothe surfaceoftitanatenanotubes[63,64].Thecarbonatepeakshave higher intensitywhen CO2 is present in thefeed.The remain- ingsmall peaks arethe resultsof UVirradiation. Thebands at

2968and2885cm−1areattributedtothesymmetricandasym- metricstretchingvibrationsofmethylgroupsonRhsurface[65].

ThemethylgroupmaybondtothetitanateviaanO-bondform- ingmethoxybutthes(C O)vibrationmodewhichshouldappear ataround 1050cm1 onmetal-oxides [64] wasnotdetectedin ourcase. The deformationmodeof methylvibration ataround 1350cm−1 ispossiblyhiddenbyoverlapping signalsinourcase [65].Physisorbedcarbondioxidecanbeidentifiedat2337cm−1. The Rh-bonded linear carbon-monoxide resulted in a peak at 2100cm−1onpartiallyoxidizedRh,whereasbridgedCOappeared at1924cm−1[66–68].Thepeakat2141cm−1representsthethe- oreticalvibrationenergyofgasphaseCOwhichisphysisorbedon thesurfacelikethecarbondioxideinourcase.Thephysisorption ofCOandCO2wasnotobservedpreviouslyonthefreshcatalysts sowecanassumethatsomechangesareoccurredonthesurface duringthephoto-inducedreaction.

Duringphotoilluminationashoulderappearedat1664cm−1 intheCH4 decompositionandintheCH4+CO2reactiononpris- tineTNT.Thisbandcanbeattributedtoadsorbedformyl group [69] which forms inthe reaction.Monodentateformate can be alsoidentifiedfromthebandsat1585and1384cm−1[66,70].The absorptionbandofformylismissingwhenmetalispresent.Very probablythisintermediateishighlyinstableandthemetalcataly- sesitsfurtherreactiontoformCO.Monodentateformateispresent inallcaseswhichmeanthatitsfurtherreactionisslow.

3.5. Ramanspectroscopyresults

WeperformedRamanspectroscopymeasurementsinorderto getinformation aboutthestructureofthesurface depositsdis- cussedintheprevioussection.TheRamanspectraareplottedin Fig.7.

Absorptionbandsappearedonlyinthe1800–100cm−1region.

Theabsorptionbandswerelocatedatthesamewavenumbersin bothcases.Onlytheareaofthebandsdiffers.Thebandsat1598 and1335cm−1correspondtotheGandDbandsofstructuredcar- bonlayerssuchasgraphene[71].TheDandDbandsataround 1620and1100cm1werenotobserved.TheintensityoftheDband ishighrelativetotheGbandwhichmeanshighdefectdensityin thegrapheneplane.Thispeakratioiscommoninthecaseofmulti- walledcarbonnanotubes.Wecanconcludethatstructuredcarbon withhighdefectdensityformedonthesurfaceduringmethane conversion.TheremainingbandsintheRamanspectrabelongto thetitanatenanotube[34,72].

(8)

Fig.6.DRIFTspectraofthecatalystscollectedafter1hUVirradiationintwodifferentreactionsperformedontheTNTbasedcatalysts.Thegasphasereactantswereflushed outwithheliumbeforecollectingspectra.

Fig.7.RamanspectraoftheRh/TNTcatalystsusedintheCH4+H2Oandinthe CH4+CO2reactions.

3.6. XPSmeasurements

HighresolutionXPspectrawerecollectedinthebindingenergy rangeofcarbon1sandrhodium3dorbitalsinordertoinvestigate theoxidationstatesoftheseelements(Fig.8).TheRh3d5/2-3d3/2 doublethasashoulder athigherbindingenergies. The307.3eV peakfor3d5/2canbeidentifiedasRh0whereasthehighenergy shoulderat309.4eVischaracteristicforRh3+.Thisassignationis inaccordancewiththeinfraredspectroscopyresultsmentioned previouslybecausetheinfrared absorptionat2100cm1 corre- spondsto carbon monoxide bonded to oxidized rhodium. The colourchangeofthecatalystfromdarkgreytobrownishgreywas experiencedunderirradiationwhichisthesignofre-oxidationtoo.

ThehigherbindingenergystateofRh3delectronsmaycorrespond tosmallerRh-clustersizesontheotherhandandisaconsequence ofthefinalstateeffectwhichismoredominantinthecaseofcat- alystswithlessthan2%metalcontent[28].

Fig.8. TheXPspectraoftheRh/TNTcatalystusedintheCH4decompositionreaction.

AdditionalC1sspectrum(lower)showsthecarbonregionbeforeuse,justafter reduction.

Additional C 1s spectrum (lower) shows the carbon region beforeuse,justafterreduction.

O1sat530.4eVrepresentsthelatticeoxygenofTNT.Thepho- toemissionpeakat532.7eVinvolvesCO,methoxyandcarbonate likespeciesformedduringphotoreaction.AdsorbedH2Oappears at534.9eV[34].

Wecouldidentify3peaksinthecarbon1sregionwhichcor- respondtodifferentoxidationstates:Thepeakat286.7eVisthe characteristicbindingenergyfortheC OandC Ocarbons.Itcan originatefromthecarbon-monoxidechemisorbedbyRhparticles whichisalready revealedbyinfraredspectroscopy.Thepeakat 284.4eVcorresponds to sp2 hybrid state carbon (C, CH and CH2)whichconfirmsthepresenceofstructuralcarbonconcluded fromRamanresults.Thepeakat282.2eVbelongstoreducedcar- bonwhichmeansmetal-carbonbonds.Itmeansthatthecarbon depositsaresittingonthesurfaceofRhparticles[73].Anadditional C1sspectrumisplottedinFig.8fromafreshlyreducedRh/TNTcat- alysthadnotbeenusedinphotocatalyticreactionyet.Itcanbeseen

(9)

Fig.9. Formationrateofmethaneduringthetemperatureprogrammedreduction experiments.

thatthecarboncontentismuchlowerinthiscasethanafterreac- tion.sp2 carbonat284.5eVandoxidizedcarbonoriginatesfrom carbonatesat289.7eVcanbeidentified.

3.7. Temperatureprogrammedreductionmeasurements

Temperatureprogrammedreductionexperimentswerecarried outtoinvestigatethequantityandthereactivityofthesurfacecar- bonassumedtobeformedduringthephotocatalyticreactions.Two experimentswerecarriedoutontheRh/TNTusedintheCH4+H2O andintheCH4+CO2reactions.Twoblankexperimentswerecar- riedoutadditionallytomakesurefromthesourceofthesurface carbon.

Nomethaneformationwasobservedatallinthefirstblank experimentwherefreshRh/TNTwasheatedupinhydrogenflow.

Onlytraceamountofcarbondioxidewasdetected.Thismeansthat thefreshlypretreatedsampleisfreeofreduciblesurfacecarbon.

Ontheotherhandsmallamountofmethaneformedinthesec- ondblankexperimentwherethecatalystwastreatedinmethane flowfor1hat403KbeforetheTPRexperiment.Theformationofa largeamountofmethanewasdetectedduringthemeasurements madeontheusedcatalysts.Casually,theformationofsomeethane andthedesorptionofcarbon-dioxidewasobservedinthesecases.

Theappearanceofmethaneandethaneistheresultofthein-situ reductionofcarboncontainingsurfacedepositsformedduringthe photocatalyticreactions. Thesourceofthecarbondioxideisthe surfacecarbonateorhydrogencarbonatespecieswhich decom- posewithoutreductionasthetemperaturerises.Theformation rateofmethanewascalculatedinallcasesandwasplottedagainst temperatureinFig.9.

Themaximumofthemethaneformationrateoccurredatthe sametemperaturemeaningthatthereactivityofthesurfacecar- bonequalsinallcases.Themethane-waterreactionresultedin moresurfacecarbonwhichcorrespondswithlargerphotocatalytic methaneconversionsobservedinthiscase(notshown).Thetime integralof theTPRcurves givesustheoverall formedmethane relatedtocatalystquantitywhichis354␮mol/gand528␮mol/g for the used catalysts respectively. The 354␮mol/g value is in goodagreementwiththecalculatedcarbondeficitalreadyshowed inTable1. becausethematching iswithinthemarginoferror.

38␮mol/gmethaneformedintheblankexperimentwhichisone orderofmagnitudesmallerthanintheothercases.Wecancon- cludethatthemissingcarbonisonthesurfaceintheformofsome kindofeasilyreduciblecarboncontainingdeposit.

3.8. Presumedreactionmechanism

Wecanestablishthemechanismofmethanetransformationon thebasisofthepreviousconclusions.Electron-holepairsweregen- eratedonmetal(goldorrhodium)promotedtitanatenanotubes uponabsorptionofUV-lightirradiation[Eq.(2)].

TNT→hTNT

e,h+

(2) TNT

e,h+

TNT

e

+TNT

h+

(3) Afterthedissociation oftheexciton describedbyEq.(3) the electronandtheholestartstomigratetotheenergeticallyfavorable positions.Electronshavehigherpossibilitytobefoundonthemetal particles[Eq.(4).]duetoFermi-levelequilibrationwhichappears betweenthemetalandtheoxide[74].

TNT

e

M

e

(4) Inthecaseofcontinuousirradiationthis processresultsina potentialdifferencethatbuildsupbetweenthemetalandtheoxide henceanadditionaldriftcurrentstartsinthereversedirection.The chargeseparationreachesanequilibriumcontrolledbythediffu- sionanddriftcurrentsandstronglydependsontheratesofcharge carriergenerationandrecombination.

Surfacewatermoleculescancatchtheholeandproducereactive OH-radicalandH+whichdelocalisesonthenearbywatermolecules [Eq.(5)].Hydroxideradicalcanformfromhydroxideion,too,bythe sameprocess[Eq.(6)].

TNT

h+

+H2O(TNT)→TNT+OH(TNT)+H+ (5) TNT

h+

+OH(TNT)→TNT+OH(TNT) (6)

Theasgenerated hydroxideradicals areveryaggressiveoxi- dantsandstarttooxidizemethaneinaradical-typereaction[Eq.

(7)].Theformedmethylradicaladsorbsonthemetalsurface.

OH(TNT)+CH4(g)

MH2O(TNT)+CH3(M) (7)

Wecannotexcludethatmethanedirectlyreactingwithholes resultsinmethylradicalsonthetitanatesurface[Eq.(8)].

TNT

h+

+CH4(g)→TNT+CH3(TNT)+H+ (8)

Thefurtherreactionrouteisdeterminedbythenatureofthe metal.Itisgenerallyacceptedthatthecouplingofmethylradicalsis favouredongold[75][Eq.(9)],whilethedehydrogenationprocess ratheroccursonrhodium[63][Eq.(10)].

2CH3(M)MC2H6(M)→C2H6(g) (9) CH3(M)MCH2(M)+H(M)→→C(M)+3

2H2(g) (10)

Gasphasehydrogenformsinthefollowingcouplingreaction [eq.(11)]:

2H(M)MH2(M)→H2(g) (11)

Therecombinationofamethylandhydrogenradicalalsohasto beconsidered[eq.(12)]

CH3(M)+H(M)MCH4(M)→CH4(g) (12) HydrogenradicalcanformfromH+,too,bythecaptureofa photoelectronatthemetal-supportinterface:

M

e

+H+MM+H(M) (13) Thesourceof thesurplusCO canbemostlythereductionof carbondioxide.Duringthereductionprocessphotoelectronsand

(10)

hydrogenionsbringsabouttheCO2 reductionviaCO2radical anion:

M

e

+CO2(g)→M+CO2(M) (14) TNT

e

+CO2(TNT)→TNT+CO2(TNT) (15)

TNT

e

+CO2(TNT) +H+→TNT+CO(TNT)+OH(TNT) (16) ConsequentlybothCH4andCO2arefirstadsorbedoverthecat- alystsurfaceandthenconvertedtoCH3andCO2species.TiO2

[19]andmodifiedTiO2nanocomposites[12]arealsoactiveinCO2 photoinducedactivationbutthepresenceofmetaladatoms(Auor Rh)significantlyincreasesthespeedoftheactivationprocesses.

Monodentateformatecanformfromcarboxylateradicalanion andhydrogenion[Eq.(17)]:

CO2(TNT) +H+→HCOO(TNT) (17)

The formation of oxygen containing compounds can be explainedbythefollowing equations:Methanolisformedby a couplingreaction[Eq.(18)]ontheperimeterofthemetal-support interfacethenitrecombineswithaholetooxidizefurther[Eq.(19)].

CH3(M)+OH(TNT)MCH3OH(TNT)

slowCH3OH(g) (18)

TNT

h+

+CH3OH(TNT)→TNT+CH3O(TNT)+H+ (19) Formaldehydemostprobablyformonthesupportasconcluded frominfraredresults[Eq.(20)]butmetalisneededforitsfurther reactions[Eqs.(21)–(22).]

CH3O(TNT)+OH(TNT)→CH2O(TNT)+H2O(TNT) (20) CH2O(TNT)+OH(TNT)→CHO(M)+H2O(TNT) (21)

CHO(M)MCO(M)+H(M) (22)

Itisremarkablethattherearemanyroutesinwhichhydrogenis formed.Asaconsequencethemainproductofthephoto-induced methanetransformationisthehydrogen.

3.9. Surface-modifiedtitanatenanotubesphotocatalysis

Thepristinetitanatenanotubesshowedmeasurablephotocat- alyticactivitysincethetimescaleofelectron-holerecombinationis commensuratewiththeredoxreaction.Inthisprocesstheincrease amountofdefects(Ti3+andoxygendeficient)intitanatesplayalso asignificantrole[34,76,77].Modificationoftheopticalandelec- tronicpropertiesofTiO2 resultsinnotonlythereductionofthe bandwidthviatheincorporationofadditionalenergylevelsbut increasedlifetimeofthephotogeneratedelectronsandholesvia effectivechargecarrierseparationandsupressonofelectron-hole recombination[20].Thisisvalidfortitanatenanotubes,too.UV irradiationinducesFermilevelequilibrationbetweenTiO2andAu viachargedistributionand thereby Fermilevel shiftbyaround

−22mV[74,78].Such Fermilevel shiftincreasesthenumber of morereductiveelectronsonthemetalandpromotesefficientpho- tocatalyticreaction.Aswediscussedabovethismechanismcould playasignificantroleinourphoto-inducedreactionsintheCO2- methanesystemontitanatenanotubesmodifiedwithAuandRh nanoparticles.

ThenanoparticlesofAu(andsomeothermetals)arecoupled toTiO2(includingtitanatenanorods)toutilizetheirpropertyof localized surface plasmonic resonance (LSPR) in photocatalysis [42,79–82].LSPRisthecollectivefreeelectronchargeoscillation inthemetallicnanoparticlesthatareexcitedbylight[83].This phenomenonusuallyoccursinnanoparticles(>3nm),andstrongly dependsontheparticlesize,shapeandlocaldielectricenvironment

[80].Duringlightirradiation,theelectrontransferfromthephoto- excitedAunanoparticlestotheTiO2conductionbandmayoccur.

Theotherscenarioisalsoplausible,namely;electronsexcitedfrom metaltransfertoreactantmolecules.SuchkindofAumediated reductionofC60wasdemonstrated[74].

We believe thatsimilar Auand Rh mediated photo-assisted reactionoccursinCO2 activation[Eq.(14)]intheCH4+H2Oand CH4+CO2reactionsontitanatenanotubes.Asitisdemonstratedin Table1thegoldcontainingtitanatenanotubesexhibitsignificantly higherphotocatalyticactivitythanAu/TiO2(anatase),thoughthe puretitanatenanotubesalonedonotshowhighactivity.Theinten- sityofplasmonabsorption(at2.31eV)washigheronAu/TNTthan onAu/TiO2 (Fig.4).Consequently,theelectrontransferfromthe metaltothereactantsismorefavorable.Itshouldbenotedthat theLSPR-inducedphotoeffectsaresignificantlyinfluencedbythe propertiesofTiO2(size,shape,surfacearea,crystallinity)[80].We believethatthetitanatenanostructureshaveapositivefeatureto localizethemetalnanoparticlesinthispointofview.

Theotherimportantobservationisthattitanatenanotubescan stabilizegold(andalsoRh)insmallsizes,below3nm(Figs.2and3).

Insuchdimensiontheplasmonicfeature(LSPR)doesnotoperate.

Atthesametimemultiplemolecular-liketransitionsofthegold clusterwasobservedbyUV–visspectroscopy(Fig.4).Theintensi- tiesofthesetypesoftransitionswerealsosignificantlyhigheron titanatenanotubes.Aswehavealreadydiscussedabove,thesmall metalclusterscanstronglybondtothedefectsitesintitanatenano- tubes.Theseclustersmaybedirectlyinvolvedinthephoto-induced reactions.Themolecular-likeclustersmayformcomplexeswith thereactantswheretheelectrontransferdirectlyoccursduringUV irradiation.

In the light of the possible photocatalytic mechanisms it seemsthatthetypesofinteractionbetweenmetalandsubstrate (titanates)playimportantrole.Fromthisrespectthelong-range andshortrange interactions shouldbetaken intoaccount[84].

Whilethereisnosignificantbandgapdecreaseduetothemetal adatoms,theAuandRhchangesthebandgappopulationandshift- ingoftheFermilevel.SuchFermilevelshiftincreasesthenumberof electronsonthemetalandpromotesefficientphotocatalyticreac- tion.Thisshiftisa consequenceof chargetransferbetweenthe metalandsupport[48,84].Besidesofthislong-rangeinteraction, short-rangeinteraction,affectingtheatomsoratomclusters(for exampleAu25inpresentcase)atthegas-metal-supportinterface, couldbemoreimportant.Theshort-rangeinteractioncanbecon- sideredasa consequenceofthestrongelectricfields,whichare presentattheinterface.

Finally wecalculated photo-conversion efficienciesfromthe amount of hydrogen formed in each photo-induced reactions (Table.1).Thecalculatedvaluesareratherlow.Itiswell-known thatthecomplicated charge-carrier dynamicsand surfacereac- tionkinetics mainlylead tothe low quantum efficiency inthe multi-step processes of heterogeneousphotocatalysis [85]. The suitablethermodynamicproperties(includingbandgapsandCB/CV levels)donotguaranteegoodphotocatalyticefficiency.Itiscom- monly accepted that the mechanism governing heterogeneous photocatalysisconsistsoffourconsecutivetandemsteps;(1)light harvesting,(2)chargeexcitation/separation,(3)chargemigration, transportandrecombination,and(4)chargeutilization[86].There- fore,theoverallphotocatalysisefficiencyisstronglydependenton thecumulativeeffectsofthesefourconsecutivesteps.

4. Conclusions

Itwasdemonstratedinthepresentstudythattitanatenano- tubeshavenumerousadvantageouspropertiesthatplayimportant role in theinvestigated reactions. It is well knownthat larger

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

On the XP spectra of the AueRh/TiO 2 and AueRh/Al 2 O 3 powders and wires the binding energy of the Au 4f emission was practically unaffected by the presence of Rh, the position of

Rh was deposited on the Au/TiO 2 (1 1 0) surface, a very efficient place exchange between Rh and Au atoms was observed by LEIS even at room temperature, moving Rh atoms into

H 2 gas mixture the position and intensity of the component attributed to metallic Rh did not change, but the intensity of the high binding energy highly dispersed component

Methane share in the landfill gas is variable but usu- ally ranges between 50 % and 65 %.. The high level of methane is maintained in the fourth phase, then

(i) Mitochondria themselves can be sources of endogenous CH 4 generation under oxido-reductive stress conditions; chemical inhibition of the mitochondrial electron transport

Although dispersed metals are effective catalysts for the decomposition of methane and ethane, their reactions need high temperature, and we can count with the deposition of

With the help of this model it is possible to estimate the endogenous production rate of methane in the large intestine by measuring breath gas concentrations of

The presence of a small amount of Rh in Co/ceria catalyst increased the ethanol conversion and basically altered the product distribution of SRE reaction, significantly increased