• Nem Talált Eredményt

supported Au H O on Effects the thermal of and photocatalytic reactions of ethaneon Molecular Catalysis

N/A
N/A
Protected

Academic year: 2022

Ossza meg "supported Au H O on Effects the thermal of and photocatalytic reactions of ethaneon Molecular Catalysis"

Copied!
6
0
0

Teljes szövegt

(1)

MolecularCatalysis440(2017)19–24

ContentslistsavailableatScienceDirect

Molecular Catalysis

jou rn al h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / m c a t

Effects of H 2 O on the thermal and photocatalytic reactions of ethane on supported Au

Anita Tóth, Tamás Bánsági, Frigyes Solymosi

MTA-SZTEReactionKineticsandSurfaceChemistryResearchGroup,RerrichBélatér1,H-6720,Szeged,Hungary

a r t i c l e i n f o

Articlehistory:

Received30May2017

Receivedinrevisedform4July2017 Accepted9July2017

Keywords:

Photo-induceddecompositionofethane EffectsofH2O

ProductionofH2andC2H4

TiO2-supportedPtmetals

a b s t r a c t

TheeffectofilluminationontheH2O+C2H6reactionwasinvestigatedonAudepositedonTiO2,ZnOand CeO2samples.Whereasthephotocatalyticdecompositionofethaneisverylimitedevenonthemost activepureTiO2:theconversionwasonly∼4%at300Kin210min,thedepositionofAumetalontoTiO2

markedlyenhancedtherateofphoto-induceddecompositionofC2H6.AdditionofH2Otoethanefurther enhancedtheconversionandledtotheproductionofH2.Thehighestconversionofethane,23.5%was measuredforAu/TiO2.Ethylenewasnotdetectedevenintraces,indicatingthecompletedegradation ofC2H6toH2andcarboncontainingdeposit.Temperatureprogrammedreaction(TPR)measurements revealedthatthecarbonaceousdepositonthecatalystsisverystable.OnAu/TiO2itreactedwithH2

togiveCH4atTp=453and604KandC2H6andC3H8withTp=602K.Thepromotingeffectofmetals wasexplainedbyabetterseparationofchargecarriersinducedbyilluminationandbytheenhanced electronicinteractionbetweenmetalsandTiO2.

©2017ElsevierB.V.Allrightsreserved.

1. Introduction

Agreatattemptisbeingmadetoobtainhydrogenineconomical ways.Besidesthewater-gasshiftprocess,thecatalyticdecomposi- tionofC HcompoundsisthemostsuitablesourceofH2production [1–8]. Although dispersed metals areeffective catalystsfor the decompositionofmethaneandethane,theirreactionsneedhigh temperature,andwecancountwiththedepositionofcarbonlead- ingtothedeactivationofthecatalysts.Asinothercasesthereaction canbeacceleratedbyillumination[8–19].Therateofthephotocat- alyticreactioncanbefurtherincreasedbyusinganotherreaction partner,CO2orH2O,whichmayreactwiththehydrocarbonsand/or withthecarbondeposition,therebyenhancingtheproductionof H2[20].

There is a growing interest in establishing how the defect structureandelectricpropertiesofoxidicsupportsinfluencethe catalytic performanceof deposited metals [21,22]. Thisinterest canbeledbacktotheearlyfindings, namelythatchangingthe electricconductivityofn-typeTiO2markedlyinfluencesthecat- alyticefficiencyof metalsdeposited onitssurface[23–27].The electricstructureofthesupportwasfoundtobedecisiveinthe differenttypesofreactions,suchasphotocatalyticdecomposition

Correspondingauthor.

E-mailaddress:fsolym@chem.u-szeged.hu(F.Solymosi).

ofdimethylether[16],inthereactionofethanewithCO2 [7],in thehydrogenationofCO2[20],andintheproductionofH2inthe photocatalyticreactionsofethane[15].

InthepresentworkanaccountisgivenontheH2O-promoted thermalandphotocatalyticdecompositionofethaneat300K.The catalystchosenissupportedAu,whichwasdepositedonvarious semiconductionoxides,suchasTiO2,ZnOandCeO2.

2. Experimental 2.1. Methods

Catalyticmeasurementswerecarriedoutinafixedbedcontin- uousflowreactormadeofaquartztube.Theflowrateofreactant gases was 12ml/min. The exit gas was analysed by gas chro- matograph(Hewlett-Packard5890)onaPorapakQScolumn.The carriergaswasArwhichcontained12.5%ofC2H6.Inthestudyof H2O+C2H6reactionweappliedagasmixtureof1:1molratio.

Thephotocatalyticreactionwasfollowedinthesamewayas described in ourprevious paper[7]. The reactorwas equipped witha500Wmediumpressuremercuryvaporlamp(TQ718,Her- aeus Noblelight, Germany) as a light source.The approximate lightintensityatthecatalystfilmsis59.4mW/cm2.Thephotore- actor (volume: 670ml) consistsof two concentric quartz glass tubesfittedoneintotheotherandacentrallypositionedlamp.It isconnectedtoa gas-mixingunitservingfortheadjustmentof http://dx.doi.org/10.1016/j.mcat.2017.07.008

2468-8231/©2017ElsevierB.V.Allrightsreserved.

(2)

20 A.Tóthetal./MolecularCatalysis440(2017)19–24

Fig.1. (A)EffectofilluminationontheinfraredspectraofC2H6onAu/TiO2.(a)0min;(b)5min;(c)30min;(d)60min;(e)90min;(f)120minafterdegassing.(B)Interruption ofexperimentanddegassingthesample(a)after15(min):(b)30min;(c)60min;(d)120min.

thecompositionofthegasorvapormixturestobephotolyzedin situ.ThecarriergaswasArwhichwasmixedwithC2H6(∼1.5%, 330␮mol).InthestudyoftheeffectsofH2O,itsamountwasvaried between∼1.5-4.5%.Thegas-mixturewascirculatedbyadiaphragm pump.ThereactionproductswereanalysedwithanAgilent4890 gaschromatographequippedwithPORAPAK1/2Q+PORAPAK1/2S packedandEquity-1capillarycolumns.Thevolumeofthesam- plingloopoftheGCwas500␮l.Theamountofallproductswas relatedtothisloop.TheconversionofC2H6wascalculatedtaking intoaccounttheamountofC2H6consumed.Thisvalueagreedwell withthatbasedontheHbasis,e.g.takingintoaccounttheHcontent oftheC2H6andtheamountofH2formed.

ForFTIRstudiesamobileIRcellhousedinametalchamberwas used[15].InfraredspectrawererecordedwithaBiorad(Digilab.

Div.FTS155)instrument.Sampleswereilluminatedbythefullarc ofaHglamp(100WLPS-220,PTI)outsidetheIRsamplecompart- ment.Thefilteredlightpassedthroughahigh-purityCaF2window intothecell.Allthespectrapresentedinthisstudyaredifference spectra.

Inthetemperatureprogrammeddesorption(TPD)studiesthe heatingratewas5K/mlandtheflowrateofArwas20ml/min.

2.2. Materials

1% Au/TiO2 and 1% Au/ZnO catalysts were purchased from STREM Chem. Inc. Average gold crystallite size is ∼2–3nm.

Other supported Au catalysts were prepared by a deposition- precipitationmethod.HAuCl4×aq(p.a.,49%Au,FlukaAG)wasfirst dissolvedin triply distilled water. Afterthe pHof theaqueous HAuCl4solutionhadbeenadjustedto7.5bytheadditionof1M NaOHsolution,asuspensionwaspreparedwiththefinelypow- deredoxidicsupport,andthesystemwaskeptat343K for1h undercontinuousstirring.Thesuspensionwasthenagedfor24hat roomtemperature,washedrepeatedlywithdistilledwater,dried at353Kandcalcinedinairat573Kfor4h.Theotheroxidesused assupportswere:CeO2(AlfaAesar)andMgO(Reanal).Theaverage

goldcrystallitesizeinthesesamplesis5–8nm.Thesurfaceareaof thecatalystswasdeterminedbyBETmethodwithN2adsorptionat

∼100K.Thedispersionofmetalswasdeterminedbytheadsorption ofH2atroomtemperature.

3. Resultsanddiscussion 3.1. IRspectroscopicstudies

InapreviouspaperwedemonstratedthatdepositionofPtmet- alsontoTiO2onlyslightlyinfluencedtheabsorptionspectraofC2H6 attheroomtemperature[15].InthecaseofAu/TiO2theadsorp- tionofH2O+C2H6producedabsorptionbandsat3001,2963,2952, 2928,2890,2870and1636cm1,which agreedwellwiththose obtainedfor pureTiO2 [15]. Illumination only slightly affected thepositions of theabove absorptionbands.After flushingthe C2H6+H2Omixtureabsorptionbandsat2972,2935and2868cm1 remainedinthehighfrequencyregion.Newspectralfeatureswere detectedat1662,1533,1442,1380and1344cm−1inthelowfre- quencyrange,which we attribute tothedifferentvibrationsof adsorbedC2H4andC2Hx fragmentsformedinthephotocatalytic reaction(Fig.1A).Astheseabsorptionbandswereseenonlyafter evacuatingthegasphase,inordertoseethedevelopmentofthese bandsthecellwasevacuatedatvarioustimes.Spectraobtainedare showninFig.1B.Accordingly,theabovebandsdevelopedatvery earlystageofthephotoreactionandtheybecamesomewhatlarger withtheincreaseofilluminationtime.

3.2. TPDmeasurements

Following the adsorption of C2H6 on Au/TiO2 a very small amountofC2H4desorbedfirstwithTp∼363K,followedbyC2H6 (Tp=753K) and CH4 (Tp=723K). A larger amount of H2 was releasedabove600Kwithapeakof663and993K(Fig.2).Adsorb- ingH2O+C2H6gasmixtureoverAu/TiO2 gaveCH4(Tp=753and 903K)andasmalleramountofC2H4(Tp=753K).H2desorbedwith

(3)

A.Tóthetal./MolecularCatalysis440(2017)19–24 21

Fig.2.TemperatureprogrammeddesorptionofC2H6followingitsadsorptionoverAu/TiO2(a)intheabsenceofH2O;(b)inthepresenceofH2O.

Tp=753and 1023K.Averysmallamountof C2H6 continuously releasedabove300Kupto∼850K.

ThefactthattheamountofH2desorbedisincomparablylarger thanthatofC2H4suggeststheoccurrenceofthefollowingreactions

C2H6= C2H4+H2 (1)

C2H4= CH4+C (2)

C2H4= 2C+2H2 (3)

ThedecompositionofC2H6startsaround550K.Thedesorption ofweaklybondedC2H6andC2H4occursslightlyabove300K.The mainfeatureofTPDcurvesremainthesamewhenH2Owasadded toC2H6.QualitativelysimilarTPDcurveswereobtainedforAu/ZnO.

3.3. Thermalcatalyticreaction

Fig. 3 shows the results obtained for the thermal decom- positionof ethane as a functionof temperature on variousAu catalysts.Au/ZnOprovedtobethemostactive:theconversionof ethanereached10%at773K,whereasonothersamplesthisvalue requiredhighertemperaturestobereached.Theproductdistribu- tiondependsonthenatureofthesupports.OnAu/TiO2thesame amountofH2 and C2H4 wasformed inthewholetemperature range,onanotherAusampletheH2/C2H4ratiowaslargerthan1, andawellmeasurableamountofCH4wasalsoproduced.Adding H2OtoC2H6(H2O/C2H6∼1)markedlyincreasedtheconversionof C2H6onallsamples(Fig.4).Itseffectwasmoreexplicitinthefor- mationofH2.OnAu/TiO2theamountofH2increasedbyafactorof 5at950K.Interestingly,muchlessenhancementoccurredinthe productionofC2H4.

3.4. Photocatalyticreactions

ThephotoactivityofpreviouslystudiedAusampleswasinves- tigated at 300K. In the absence of H2O the illumination over supportedmetalsledonly toa verylittle,less than1% decom- position of ethane. Adding H2O to the C2H6 (H2O/C2H6∼1:1) inducedonlyaslightphotoreactioneitheronAu/ZnO,Au/MgOor

onAu/CeO2.ThesituationwascompletelydifferentoverAu/TiO2. AsignificantamountofH2evolvedandalsoasmalleramountof CO2.Thisis shownin Fig.5A. Theslight formationof methane alsooccurred.OnthebasisofH2formedtheconversionofethane approached25%in200min.Theconsumptionofethanegavesome- whatlowervalues.Forcomparisonwementionthatillumination exertedonlyveryslighteffectonthedecompositionofH2Oand C2H6alone.InthecaseofH2Oweregisteredonly1–2%decomposi- tionin200min,whereasalargerphotoeffectwasfoundforC2H6: in200mintheconversionreached∼5%.

IntheexplanationofthehighphotoactivityofAu/TiO2wehave totakeintoaccountthatTiO2isasemiconductingoxide.Thefact thatonpureTiO2theilluminationcausedonlyaslightincreasein theconversionisprobablyduetotherecombinationofthecharges inducedbyillumination

TiO2+h␯= h++e (4)

h++e= h␯ (5)

isveryfastonTiO2.ThedepositionofAumetalontoTiO2,how- ever,markedlyenhancedtheextentofphoto-effectofTiO2.This promotingeffectofmetalsinphotocatalyticprocessesisgenerally explainedbythebetterseparationofthechargecarriersgenerated intheprimaryprocess[8,9],whichprovidesagreaterpossibility fortheactivationofC2H6

C2H6+e=C2H6␦− (6)

C2H6␦−= C2H5(a)+H(a)+e (7) It can bealsoassumed that the Schottkybarrier at Au/TiO2

interfacecanfunctionasanefficientbarrierpreventingelectron- holerecombination[10,14].In thecase ofAucatalystWuetal.

[28]pointedoutthatsmallermetalparticlesinducemorenegative Fermilevelshiftthanthelargerparticles.Inadditionthesurface plasmon resonance absorptionmayalsocontribute tothetotal absorptiontherebytotheenhancedphotoactivityofAu/TiO2cat- alyst[17,23].AstheworkfunctionofAumetalishigher(5.16eV) thanthatofTiO2(4.6eV),wecanexpectthetransferofelectrons fromTiO2tometalattheAu/TiO2interfacecontributesalsotothe

(4)

22 A.Tóthetal./MolecularCatalysis440(2017)19–24

Fig.3. EffectofsupportonthethermaldecompositionofC2H6fromAu/ZnOAu/CeO2,andAu/TiO2.

Fig.4.EffectofH2OonthedecompositionofC2H6catalyzedbysupportedAucatalysts.

(5)

A.Tóthetal./MolecularCatalysis440(2017)19–24 23

Fig.5.PhotocatalyticreactionofC2H6inthepresenceofH2OonAu/TiO2catalyst.

enhancedactivationofadsorbedmolecules.Theroleoftheelectron transferintheenhancedcatalyticeffectofTiO2supportedmetals catalystshasbeenassumedandconfirmedlongtimeago[24–27]

andthisideahasbeengenerallyusedsincethen.

Asregardsthefurtherstepswecouldassumethedecomposition ofC2H5radicaltoC2H4

C2H5(a)=C2H4(g)+H(a) (8)

oraswasfoundonmanymetalsurfaces[29,30],itsrecombina- tion

2C2H5(a)= C4H10(a) (9)

ThefactthatneitherC2H4norC4H10wasdetectableintheprod- uctssuggeststhatthelifetimeoftransientlyformedC2H5orCxHy isveryshort,andinsteadoftheircouplingreactionstheyunder- wentfastphoto-generateddegradationresultinginsomekindof carbonaceousdepositontothecatalyst.

C2H5(a)=C(s)+2.5H2 (10)

ItisanopenquestionhowtheH2Oparticipatesinthephoto- catalyticprocess.AseparatestudyonthephotolysisofH2Oonthe sameAu/TiO2catalystindicatedthatilluminationinducesonlya veryslightdecompositionofH2O,lessthan2%.Thepossiblerea- sonisthattheproductofdissociationofH2O,verylikelyOatoms formedintherecombinationofOHgroups

2OHa=H2O+O (11)

remainthesurfaceoccupyingtheactivecenter.Weassumethat inthecaseofTiO2-containingsampletheoxygenvacanciesarethe activecentersforthisprocess.ThefactthatZnOdoesnotcontain Ovacancy,butZnexcessoccupiesinterstitialpositioninthelattice maybeoneofthereasonsofthelessactivityofAu/ZnOcompared toAu/TiO2.

5. Conclusions

(i)n-typeoxides(TiO2,ZnO,CeO2)onlyslightlycatalysesthether- malandthephotoreactionofH2O+C2H6.

(ii)DepositionofAuontheaboveoxidesenhancesthethermal reactionofH2O+C2H6atveryhightemperature;theconver- sionexceeds40%onthemostactivecatalystat900K (iii)Illumination,however,inducestheH2O+C2H6 reactionover

Au/TiO2evenatroomtemperatureresultingin20%conversion ofC2H6in200minyieldingH2andsomeCHxfragments.

Acknowledgement

ThisworkwassupportedbytheHungarianAcademyofSciences.

References

[1]D.M.Bibby,C.D.Chang,R.F.Howe,S.Yurchak(Eds.),MethaneConversion:

StudiesonSurfaceScienceandCatalysis,Vol.36,Elsevier,Amsterdam,1998.

[2]J.R.Rostrup-Nielsen,SyngasforC1-chemistry:limitsofthesteamreforming process,Stud.Surf.Sci.Catal.36(1988)73–78.

[3]J.R.Rostrup-Nielsen,K.Aasberg-Petersen,P.S.Schoyube,Theroleofcatalysis intheconversionofnaturalgasforpowergeneration,Stud.Surf.Sci.Catal.

107(1997)473–488.

[4]Y.Ono,Transformationofloweralkanesintoaromatichydrocarbonsover ZSM-5zeolites,Catal.Rev.Sci.Eng.34(1992)179–226.

[5]F.Solymosi,etal.,Molecularchemistryofalkaneactivation,in:E.G.Derouane (Ed.),AromatizationofHydrocarbonsonSupportedMo2CCatalysts, SustainableStrategiesfortheUpgradingofNaturalGas:Fundamentals, ChallengesandOpportunities,Springer,2005,pp.25–50.

[6]F.Solymosi,P.Tolmacsov,T.SüliZakar,Dryreformingofpropaneover supportedRecatalyst,J.Catal.233(2005)51–59.

[7]A.Tóth,G.Halasi,F.Solymosi,ReactionsofethanewithCO2oversupported Au,J.Catal.330(2015)1–5.

[8]A.Linsebigler,G.Lu,J.T.YatesJr.,PhotocatalysisonTiO2surfaces:principles:

mechanismsandselectedresults,Chem.Rev.95(1995)735–758.

[9]M.R.Hoffmann,S.T.Martin,W.Choi,D.W.Bahnemann,Environmental applicationsofsemiconductorphotocatalysis,Chem.Rev.95(1995)69–96.

[10]A.A.Ismail,D.W.Bahnemann,I.Bannat,M.Wark,Goldnanoparticleson mesoporousinterparticlenetworksoftitaniumdioxidenanocrystalsfor enhancedphotonicefficiencies,J.Phys.Chem.C113(2009)7429–7435.

(6)

24 A.Tóthetal./MolecularCatalysis440(2017)19–24

[11]K.Wada,K.Yoshida,T.Takatani,Y.Watanabe,Selectivephoto-oxidationof lightalkanesusingsolidmetaloxidesemiconductors,Appl.Catal.A:Gen.99 (1993)21–36.

[12]C.T.Brigden,S.Poulston,M.V.Twigg,Photo-oxidationofshort-chain hydrocarbonsovertitania,Appl.Catal.B:Environ.32(2001)63–71.

[13]W.R.Murphy,T.F.Veerkamp,T.W.Leland,Effectofultravioletradiationon zincoxidecatalysts,J.Catal.43(1976)304–321.

[14]M.Alvaro,B.Cojocaru,A.A.Ismail,N.Petrea,B.Ferrer,F.A.Harraz,V.I.

Parvulescu,H.Garcia,Visible-lightphotocatalyticactivityofgold

nanoparticlessupportedontemplate-synthesizedmesoporoustitaniaforthe decontaminationofthechemicalwarfareagentSoman,Appl.Catal.B:

Environ.99(2010)191–197.

[15]G.Halasi,A.Tóth,T.Bánsági,F.Solymosi,ProductionofH2inthe photocatalyticreactionsofethaneonTiO2-supportednoblemetals,Int.J.

HydrogenEnergy41(2016)13485–13492.

[16]G.Schubert,A.Gazsi,F.Solymosi,Photocatalyticdecompositionandoxidation ofdimethyletheroverAu/TiO2,J.Catal.313(2014)127–134.

[17]A.Primo,A.Corma,H.Garcia,Titaniasupportedgoldnanoparticlesas photocatalyst,Phys.Chem.Chem.Phys.13(2011)886–910.

[18]D.W.Bahnemann,Mechanismsoforganictransformationsonsemiconductor paritcles,in:E.Pelizzetti,M.Schiavello(Eds.),PhotochemicalConversionand StorageofSolarEnergy,KluwerAcademicPublishers,Dordrecht,1991,pp.

251–276.

[19]M.Anpo,PhotocatalysisonsmallparticleTiO2catalystsreaction intermediatesandreaction-mechanisms,Res.Chem.Intermed.11(1989) 67–106.

[20]H.Sakurai,M.Haruta,Carbondioxideandcarbonmonoxidehydrogenation overgoldsupportedontitaniumiron,andzincoxides,Appl.Catal.A:Gen.127 (1995)93–105.

[21]H.J.Freund,Oxygenactivationonoxidesurfaces:aperspectiveattheatomic level,Catal.Today238(2014)2–9.

[22]G.Pacchioni,H.J.Freund,Electrontransferatoxidessurfaces.TheMgO paradigm:fromdefectstoultrathinfilms,Chem.Rev.113(2013)4035–4072.

[23]V.Subramanian,E.E.Wolf,P.V.Kamat,CatalysiswithTiO2/gold

nanocomposites.EffectofmetalparticlesizeontheFermilevelequilibration, J.Am.Chem.Soc.126(2004)4943–4950.

[24]G.M.Schwab,J.Block,D.Schultze,KontaktkatalytischeVerstärkungdurch dotierteTräger,Angew.Chem.71(1959)101–104.

[25]Z.G.Szabó,F.Solymosi,Influenceofthedefectstructureofsupportonthe activityofcatalyst,ActesCongr.Intern.Catalyse,2eParis,1960,1961, 1627–1651.

[26]F.Solymosi,Importanceoftheelectricpropertiesofsupportsinthecarrier effect,Catal.Rev.1(1968)233–255.

[27]F.Solymosi,Commentson:electroniceffectsinstrongmetal-support interactionsontitania-depositedmetalcatalysts,J.Catal.94(1985)581–585.

[28]G.Wu,T.Chen,W.Su,G.Zhou,X.Zong,Z.Lei,C.Li,H2productionwith ultra-lowCOselectivityviaphotocatalyticreformingofmethanolonAu/TiO2

catalyst,Int.J.HydrogenEnergy33(2008)1243–1251.

[29]F.Solymosi,ThermalstabilityandreactionsofCH2,CH3andC2H5specieson themetalsurfaces,Catal.Today28(1996)193–203.

[30]F.Zaera,Determinationofthemechanismforethyldiyneformationfrom chemisorbedethyleneontransitionmetalsurfaces,J.Am.Chem.Soc.111 (1989)4240–4244.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

We determined the melting point and the decomposition temperature of the synthesis product, because these are the most important thermal properties from the viewpoint of

- PAULIK, J.: Kinetic studies of thermal decomposition reactions un- der quasi-isothermal and quasi-isobaric conditions by means of the derivatograph.. - PAULlK, F.:

Deposition of Pt metals on TiO 2 exerted a remarkable photo- catalytic effect on the decomposition of ethane.. Results are displayed

By examining the factors, features, and elements associated with effective teacher professional develop- ment, this paper seeks to enhance understanding the concepts of

Usually hormones that increase cyclic AMP levels in the cell interact with their receptor protein in the plasma membrane and activate adenyl cyclase.. Substantial amounts of

The reduction of CO 2 to carbohydrate via the carbon- linked reactions of photosynthesis is coupled to the consumption of NADPH and ATP synthesized by the light reactions of

Both light microscopic and electron microscopic investigation of drops, strands, or compact layers of Physarum plasmodia prove that many of the fibrils found have con- tact

Although acid-base reactions, complex formation reactions and redox reactions can result in precipitation too, differentiation of reactions involving precipitation