• Nem Talált Eredményt

Rh promoted ceria based Co on catalysts: An XPS study Oxidation active catalytic states of centers in ethanol steam reformingreaction Journal of Molecular Catalysis A: Chemical

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Rh promoted ceria based Co on catalysts: An XPS study Oxidation active catalytic states of centers in ethanol steam reformingreaction Journal of Molecular Catalysis A: Chemical"

Copied!
7
0
0

Teljes szövegt

(1)

ContentslistsavailableatScienceDirect

Journal of Molecular Catalysis A: Chemical

j o ur na l h o me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / m o l c a t a

Oxidation states of active catalytic centers in ethanol steam reforming reaction on ceria based Rh promoted Co catalysts: An XPS study

Erika Varga, Zsuzsa Ferencz, Albert Oszkó, András Erd ˝ohelyi, János Kiss

DepartmentofPhysicalChemistryandMaterialsScienceoftheUniversityofSzeged,Aradivértanúktere1,H-6720Szeged,Hungary

a r t i c l e i n f o

Articlehistory:

Received1August2014 Receivedinrevisedform 26September2014 Accepted11November2014 Availableonline15November2014

Keywords:

Steamreformingofethanol Hydrogenproduction Cobalt–ceriacatalyst Rhodiumpromoter XPS

a b s t r a c t

X-rayphotoelectronspectroscopic(XPS)investigationswerecarriedouttostudytheoxidationstates ofCeO2andCeO2supportedCo–Rhcatalystsduringthetemperatureprogrammedstreamreforming ofethanolreaction(SRE).Gaschromatographyalsowasusedtoanalyzetheproductcomposition.An initialre-oxidationofthepre-reducedcatalystswasobservedbywaterreactantandourresultsrevealed atendencyoftheoxidizedmonometalliccatalyststopromotealdolcondensation-typereactions.Itwas foundthatRhenhancesthereductionofCoduringthepretreatment,andthehighestH2selectivitywas obtainedwiththebimetalliccatalystinSREreaction.Moreover,acetoneformationwasnegligibleonthis sample.EnhancedC Cbondscissionandhydrogenproductionweredetectedfrom650K.Incontrast topureethanoldecomposition,duringtheEtOH+H2Oreactionminorbutimportantchangescouldbe detectedontheCe3dspectra.Itwasconcludedthattheaccumulationofstronglybondedcarbidespecies inthecaseofCo/CeO2catalystcancontributetothedecreasingactivity.Thistypeofcarbonwasabsent inthepresenceofatraceamountsofRh,thereforethecatalystwasmorestable.

©2014PublishedbyElsevierB.V.

1. Introduction

Sustainabledevelopmentrequiresnewalternativecheapand renewable sources of energy. Great efforts are currently made toproducehydrogen,e.g.,forfuelcellapplicationsbyheteroge- neouslycatalyzedprocesses.Thisdemandinspiredstudiesofthe dehydrogenationofoxygenatedhydrocarbons[1–3].Inparticular, thelightalcohol ethanolis animportantcandidateasa chemi- calhydrogencarrier.Noblemetals,especiallyRh,areprovedtobe excellentcatalystsforthedehydrogenationreaction[4],buttheir pricesareprohibitivelyhigh.Asanalternative,thelessexpensive transitionmetalCoisconsideredtobeapromisingcatalystforthe steamreformingofethanol(SRE)[5–10].Inaddition,amixtureof carbondioxideandmethanecanserveasafeedforthecatalytic productionofhydrogenbydryreformingofmethane(DRM)[11,12]

wherecobaltcontainingcatalystsmayhaveanimportantrole.Dur- ingSRE,acidicsupportslikeAl2O3favordehydrationandthereby increasethetendencyforcokeformationduetothepolymerization ofethylene[13–15].However,onceria(CeO2),whichisconsidered tobeabasicsupport,dehydrationislimitedanditsredoxprop- ertieshindercokeformation[5,16].Theoxygenexchangecapacity

Correspondingauthor.Tel.:+3662544803;fax:+3662544106.

E-mailaddress:jkiss@chem.u-szeged.hu(J.Kiss).

ofceriumoxideisassociatedwithitsabilitytoreversiblychange theceriumoxidation statesbetweenCe4+and Ce3+[17–19].All theseobservationsledtotheoutstandingattentiontothecatalytic propertiesofCo/ceriasysteminSRE.

Naturally,thesurfacepropertiesofthemetalandoftheoxide support, and also themetal/oxide interface determinethe for- mationandstabilityoftheintermediatespresentintheethanol transformationprocesses.Itisgenerallyacceptedthattheprimary stepinalcoholactivationistheformationofalkoxide[20].Depend- ingontheparticularmetal,dehydrogenationandC Cbondscission leadtotheformationofalkoxide,oxametallacycle,aldehyde,acyl andcokeonthesurfaceandmostlyH2,CH4,CO,CO2andaldehyde inthegasphase[21–30].RecentstudiessuggestedthatCo2+sites aretheactivecentersinSRE,andCo0sitesareresponsibleforcoke formation[29,30],whileotherauthorsconsideredmetalliccobalt toplaythekeyroleinSRE[32].HighpressureX-rayphotoelec- tronspectroscopicstudies(HPXPS)demonstratedthatataconstant ethanol(withoutwater)pressureof0.1mbarthereductionofCe4+

toCe3+increasedsignificantly between320and 600K duetoa highermobility ofoxygenor Ce3+centersatelevatedtempera- tures.Nocokeformationwasobservedupto600KonCeO2.During thereactionofethanolwiththeCo/CeO2(111)modelcatalystthe amountofCo2+decreaseddrasticallywithincreasingtemperature, and at600Kthemajority ofCowasmetallic;this process was accompaniedbyaseverereductionoftheceria[33].

http://dx.doi.org/10.1016/j.molcata.2014.11.010 1381-1169/©2014PublishedbyElsevierB.V.

(2)

Veryrecentlywehavefoundthattraceamountsofrhodium promoter(0.1%)dramaticallyalteredthereactionpathwaysofSRE onCo/ceria catalysts.In contrast toCo/ceria, on rhodiumcon- tainingCo/ceriacatalystsacetonewasnotobserved.Additionof asmallamountofRhaspromotertotheCo/CeO2catalyst,how- ever,resultedinasignificantincreaseinthehydrogenselectivity [34].Theseveryimportantfindingsmotivatedustoestablishthe oxidationstateofthecatalyticallyactivesitesbeforeandafterthe catalyticreactionofethanol+water(SRE)onpureceria,Co/ceria andRh+Co/ceriacatalystsby X-rayphotoelectronspectroscopy (XPS).

2. Experimentalprocedure

Thecatalystspreparationandcharacterizationmethodswere detailedelsewhere[34].TheceriasupportedCocatalystswerepre- paredbyimpregnatingthesupportCeO2(AlfaAesar,43m2/g)with theaqueoussolutionofCo(NO3)2toyieldanominalmetalcon- tentof2wt%(0.056mol%).Theimpregnatedpowdersweredriedat 383K,calcinedat973Kandpressedtopellets.TheRh–Cobimetallic sampleswerepreparedbysequentialimpregnation(impregnation withCofirst,thenthesameprocedureafterimpregnationwith 0.1wt%Rh−0.0017mol%).Aftercalcinedat973KtheBETsurface areasoftheCeO2support,the2%Co/CeO2andofthe0.1%Rh+2%

Co/CeO2 catalystswere21.5m2/g,7.4m2/gand7.6m2/g,respec- tively,whiletheaverageporesizeswerebetween14.4and12.3nm, whichisconsistentwithamesoporousmaterial[9,34].Beforethe measurements,fragmentsofcatalystpelletswereoxidizedat673K inflowing O2 for20minandreducedat773KinflowingH2 for 60mininthecatalyticreactor.

Catalyticreactionswerecarriedoutinafixed-bedcontinuous- flow reactor (200mm long with 8mm i.d.), which was heated externally.Thedeadvolumeofthereactorwasfilledwithquartz beads.Theoperatingtemperaturewascontrolledbyathermocou- pleplacedinsidetheovenclosetothereactorwall,toassureprecise temperaturemeasurement.Forcatalyticstudiessmallfragments (about1mm)ofslightlycompressedpelletswereused.Typically, thereactorfillingcontained50mgofcatalyst.Inthereactinggas mixturetheethanol:watermolarratiowas1:3.Theethanol–water mixturewasintroducedintoanevaporatorwiththehelpofanHPLC pump(Younglin;flowrate:0.007mlliquid/min);theevaporator wasflushedwithArflow(60ml/min).Argonwasusedasacar- riergas(60ml/min).Thereactinggasmixture-containingArflow enteredthereactorthroughanexternallyheatedtubeinorderto avoidcondensation.Thespacevelocitywas72,000h1.Thesam- pleswereheatedinthegasmixturefrom373to773Katarateof 3K/min.

Theanalysisoftheproductsandreactantswasperformedwith anAgilent6890NgaschromatographusingHP-PLOTQcolumn.The gasesweredetectedsimultaneouslybythermalconductivity(TC) andflameionization(FI)detectors.ToincreasethesensitivityofCO andCO2detectionamethanizerwasappliedbeforethedetectors.

Theamountandthereactivityofsurfacecarbonformedinthe catalyticreactionsweredeterminedbytemperature-programmed hydrogenation.Afterperformingthereactionsofethanol–water mixtureat823Kfor120minthereactorwasflushedwithArat thereactiontemperature;thenthesamplewascooledto373K, theAr flowwaschangedtoH2,andthesamplewasheatedup to1173Kwitha10K/minheatingrate.Theformedhydrocarbons weredeterminedbygaschromatography.

ForXPSstudies,thepowdersampleswerepressedintopellets withca. 1cmdiameter anda fewtenthofmmthickness.Sam- pletreatmentswerecarriedoutinahigh-pressurecell(catalytic chamber)connectedtotheanalysischamberviaagatevalve.The sampleswerepre-treatedinthesamewayasdescribedabove.After

930 920 910 900 890 880 870

B

reaction at 773 K reaction

at 773 K

u''' u''

u' u

u0 v0 v v' v'' v'''

u0 v u

u''' v''' v''

reduced

A

930 920 910 900 890 880 870 reduced

v0

u'' u' v'

Binding ene rgy (eV)

Fig.1.Ce3dspectrabeforeandafterSREreactiononreducedceria(A)andon0.1%

Rh+2%Co/ceriacatalysts.

thepre-treatment,theywerecooleddowntoroomtemperaturein flowingnitrogen.Then,thehigh-pressurecellwasevacuated;the samplewastransferredtotheanalysischamberinhighvacuum (i.e.,withoutcontacttoair),wheretheXPspectrawererecorded.

Asthenextstep,thesamplewasmovedbackintothecatalytic chamber,whereitwastreatedwiththereactinggasmixtureatthe reactiontemperatureunderthesameexperimentalconditionsas usedforthecatalyticreaction.XPspectraweretakenwithaSPECS instrumentequippedwithaPHOIBOS150MCD9hemispherical electronenergyanalyzer,usingAlKradiation(h=1486.6eV).The X-raygunwasoperatedat210W(14kV,15mA).Theanalyzerwas operatedintheFATmode,withthepassenergysetto20eV.The takeoffangleofelectronswas20withrespecttosurfacenormal.

Typicallyfivescansweresummedtogetasinglespectrum.For dataacquisitionandevaluationbothmanufacturer’s(SpecsLab2) andcommercial(CasaXPS,Origin)softwarewereused.Thebind- ingenergyscalewascorrectedbyfixingtheCe3du peak(see below)to916.6eV.

3. Resultsanddiscussion

Basedonformerstudies[34,35],itcanbeconcludedthatthe oxidized and reduced ceria is not fully inactive either in the decomposition of ethanol or in the SRE reaction. On the CeO2

support(withoutcobaltandrhodium),initiallyonlyacetaldehyde wasformed(at3–5%ethanolconversion),butbetween650and 800K (where the ethanol conversion was ∼25–30%) the main product was ethylene besidesthe less amount of acetone and CO2.

TheCe3dspectraofreducedceriabeforeandafterSREreac- tionat773KareshowninFig.1A.Generally,theCe3dregionof CeO2israthercomplex,i.e.,itiscomposedofthreedoublets,(u, v),(u,v)and(u,v)correspondingtotheemissionsfromthe spin-orbitsplit3d3/2and3d5/2corelevelsofCe4+.Thethreedou- bletsareassigned todifferentfinalstates:u (916.6eV)andv (898.4eV)areduetoaCe03d94f0O2p6finalstate,u(907.7eV) andv(889.0eV)toaCe3d94f1O2p5finalstate,andu(900.9eV) andv(882.5eV)toaCe3d94f2O2p4finalstate[36,37].Aminor reduction ofCe4+ toCe3+ isbestdetectableas thesmallinten- sityincreaseoftheu(903.9eV)andv(885.3eV)peaksandalso theweakeru0(899.3eV)andv0(880.2eV)components,whichare characteristicofCe3+.Interestingly,thisspectralfeatureofceriadid notchangeafterthereactionwithethanol–watermixtureat773K (Fig.1A).ToquantifytheamountofCe3+,theratiooftheintegrated peakareasofCe3+spectralcontributionstothetotalCe3dspec- trum,i.e.,Ce3+/(Ce3++Ce4+)wasused.TheCe3+contentwas11%

(3)

duringthewholeprocess.Thisisincontrastwiththeethanol–ceria interactionwithoutwater,wherethereductionofCe4+toCe3+was morepronouncedbetween320and600Kduetoahighermobility ofoxygenorCe3+centersatelevatedtemperatures[33].Itseems that thedissociation of water in SREcould re-oxidize theCe3+

centers.

On2%Co/CeO2theconversionoftheethanolandtheproduct distributioninSREreactionaredisplayedinFig.2A.Atlowconver- sionupto500K,acetaldehydeandacetoneweredetectedinthegas phase.From500to700K,theacetaldehydeselectivityattenuated, whiletheselectivitiesofH2,ethyleneandCO2increasedmoder- atelyandthemaincarbon-containingproductstillwasacetone.

Above700KthedominantproductswereH2,acetaldehyde,eth- ylene,CO2,CO,andmethane.ThemaineffectofCoascompared tothepureCeO2casewasmanifestedinthemediumtemperature range(650–750K)astheincreasedconversion,accompaniedby enhancedselectivitiesforacetoneandH2attheexpenseofethyl- ene(Fig.2A).Themainreactionrouteofacetaldehydeformationis thedehydrogenationofethoxyspecies[34]:

C2H5O(ads)→ CH3CHO(ads)+H(ads) (1)

Acetaldehydedesorbseitherasaproductorimmediatelyoxi- dizestosurfaceacetatespeciesbylatticeoxygenorbyOHgroups.

The other reaction path is the formation of acetone (CH3COCH3(g)), which is the dominant product at medium temperaturesinourcase.Accordingtotheliteraturedata,acetone canbeproducedthroughaldolcondensationofacetate(Reaction (2)) or via the reaction of acetyl groups (CH3CO) withmethyl species(Reactions(3)–(5))[5,34,38]:

2CH3COO(ads)→ CH3COCH3(g)+CO2+O(ads) (2)

CH3CHO(ads)→CH3CO(ads)+H(ads) (3)

CH3CO(ads)→ CH3(ads)+CO (4)

CH3CO(ads)+CH3(ads)→CH3COCH3(g) (5)

At∼800K, theconversionand the H2 selectivitytransiently dropped,whichwasalsoseenasanincreaseintheacetaldehyde selectivity.Apossiblereasonistheacetaldehydedesorptionand recombination/reductionwithhydrogenformingethanol.

CH3CHO(a)+2H(a)→ CH3CH2OH(g) (6) Inordertogetclosertotheclarificationofsurfacemechanism, weidentifiedtheoxidationstateofcobaltandceriabeforeandafter reactionatdifferenttemperatures.InFig.4AwedisplaysomeCo 2p3/2photoemissionsfromthe2%Co/ceriasample.Afteroxidation at673KthesignalfromCo2+appearedat780.4eVwiththechar- acteristicshake-upsatelliteat786.2eV.Afterreductionat773K, thepeakpositionspracticallydidnotchange,butasmallerreduced statewasdeveloped(777.8eV),itmeansthatCoishardlyreducible atthistemperature.Afterthereductionprocedure,someintensity decreasewasobserved.Thischangemaybeattributedtothesin- teringandsomeencapsulationofcobaltclustersbysupport.After reactionsat473and 623KtheCowasmainlyinoxidizedstate.

Thedeconvolutedpeaksobtainedafterreductionandafterreac- tionat473KaredisplayedinFig.6A.Thesatellitepeakat786.2eV remainedalsodetectablewhichalsosupportsthepresenceofoxi- dizedCo.ItisworthmentioningthatCo2+gainedintensityafterthe reactionat473and623Kwhichcouldbeexplainedbysomedis- ruptionofCoclustersduetostronginteractionwiththereactants.

Followingthe773Kpost-reactionofCo/ceriatheCo2p3/2 spec- trumshowedaweakshoulderat777.8eVduetoaslightreduction ofCo2+(Fig.4Aand6A).Thechangeinitsintensityafterthereac- tionat773Kmayreflectaslightencapsulationbyceriasupport orcoveringbycarbonspeciesformedinthecatalyticprocess(see Fig.7).Sinteringordiffusionofcobaltintothebulkalsocannotbe

excluded.AfteracarefulanalysisoftheCe3dspectraofCo/ceria catalyst(notshown)wemayconcludethattheSREreaction(in contrasttothedecompositionreactionofethanolwithoutwater) causedonlyaminoradditionalreductioninceria.Itshouldbemen- tionedthatusingpureethanolintheinteractionwithCo/ceria,the ceriabecamemoreandmorereducedwithincreasingreactiontem- perature[33].ItisveryprobablethatwaterduringtheSREreaction mayservesufficientOHgroupstore-oxidizethereducedcenterof ceria.

Theacetaldehydeformationbelow600Kandhighacetonepro- ductionbetween500and750Ksuggestsapropensityoftheoxide phasesforaldolcondensation-typereactionssinceourcatalystcon- tainsasignificantnumberofCo2+sitesandceriaisstilloxidized inthistemperaturerangeinthesteamreforming(SRE)reaction.

Inharmonywiththeliteraturedata[5]andourrecentfindings theacetoneformationmaybeattributedtotheunreduced,nearly stoichiometricceriasupport[34].

BeforeturningtotheRhpromotedCo/ceriasystem,wesumma- rizetheproductdistributionandtheconversionofethanolobtained onceriasupportedsmallamountofRhwithoutCo(Fig.2B).On 0.1% Rh/CeO2 initially acetaldehyde and small amounts of CO andmethanewereformed,butbetween650and800Kthemain productswerehydrogen,acetone,andCO2.AstheRhsurfacecon- centrationwasverylowtheethanolconversionwasalsolow,at 770Kitwasnotmorethan58–60%.TheRhXPSsignalsobtained beforeandafterSREat473,623Kand773KaredisplayedinFig.4B.

AfteroxidationtheRh3d3/2 appearedat309.2eV,while theRh 3d1/2wasdetectedat314.0eV.Afterreductionat773K,theRh3d3/2 movedto307.4eV.Thisvalueissomewhathigher(by0.3eV)as wasobservedonbulkphasemetallicrhodium.Thisbindingenergy differencecanbeattributedtothesmallparticlesizeofRhclus- tersonceria.Thepeak positiondidnotalter afterthereaction (Fig.4B).

The presence of a small amount of Rh in Co/ceria catalyst increasedtheethanolconversionandbasicallyalteredtheproduct distributionofSREreaction,significantlyincreasedthehydrogen selectivity(Fig.2C).Themostcatalyticandspectroscopicmeasure- mentswerecarriedouton0.1%Rh+2%Co/CeO2catalyst.TheCo/Rh atomicration is33.0in thiscase.On theRh-promotedCo/CeO2 catalyst,below 550Ktheproductswereacetaldehyde,methane andCO.Between600and750Khydrogen,methane,CO,CO2,and acetaldehydeweredetected,andaround800K(wheretheethanol conversionreaches90–95%),hydrogenandCO2 weredominant, butCH4andCOaswellassmallamountsofethyleneandacetalde- hyde were also formed (Fig. 2C). It is worth emphasizing that acetonewasnotdetectedatanytemperatureontheRh-promoted Co/CeO2catalyst,inspiteofthefactthataround700Kitwasthe majorhydrocarbonproductadsorbedon2%Co/CeO2andon0.1%

Rh/CeO2,and itwaswelldetectableeven onCeO2 atthesame temperature.

Toobtainadditionalinformation, time-dependentisothermal measurementswerecarriedoutat723K.Fig.3AandBdisplaythe ethanolconversionandhydrogenselectivityasafunctionofreac- tiontimeondifferentceriabasedcatalysts.Itisclearlyseenthat themostefficientwastheRhpromotedCo/ceriacatalyst.Inorder topointouttheefficiencyofthe0.1%Rhpromoter,weperformed someexperimentswithaRh-free10%Co/CeO2catalyst.Fig.3Aand Bclearlydemonstratesthattheeffectof0.1%Rhon2%Co/CeO2is moresignificantthantheincreaseinColoadingintermsofboth conversionandselectivity.

OneofthemostimportantXPSobservationsisthatrhodium promotedthereductionofcobaltat773K.Fig.5Aand6Bshow thatinthereductionprocesstheCo3d3/2issplitup,anewcompo- nentbelongingtometallicCodevelopedasashoulderat777.8eV.

Theeffectcanbeexplainedbythehydrogenspilloverphenomenon [34,39].The promotingeffectof noble metals onthereduction

(4)

400 500 600 700 800 900 1000 0

20 40 60 80 100

%

400 500 600 700 800 900 1000 0

20 40 60 80 100

%

400 500 600 700 800 900 1000 0

20 40 60 80 100

%

hydrogen carbon monoxide methane carbon dioxide ethylene ethane acetaldehyde acetone diethyl ether ethyl acetate Conversion of ethanol

Temperature (K) C A

B

Fig.2. Selectivitiesasafunctionoftemperatureintheethanol–watersteamreformingreaction(1:3ratio)performedwithlinearheating(3K/min)from373to800K.(A) 2%Co/ceria,(B)0.1%Rh/ceriaand(C)0.1%Rh+2%Co/ceriacatalyst.

ofcobaltwasobservedearlieronaluminasupportedCocatalyst [12,39,40].Itwasassumedthathydrogenreducedthenoblemetal first,wasactivatedonit,andspilloverledtotheincreaseofthe reducibilityofCo[39].Anotherexplanationcanbethatinthepres- enceofnoble metalchanges ofthecrystal sizeresulted higher reducibility.Zhangetal.[41]foundbymeansofXPSandXRDthat aminoramountofRhcanpreservethedispersionofCoonalu- minaandthiswayalsohindersthedeactivationofthecatalystin methanedryreformingreaction.

Thesecondimportantresultoftheelectronspectroscopicmea- surementsisthattraceamountsofrhodiumsignificantlyaltered

Fig.3.Conversionofethanol(A)andselectivityforhydrogen(B)asafunctionof reactiontimeat723Kon2%Co/CeO2(䊉),10%Co/CeO2(),0.1%Rh+2%Co/CeO2

(),0.1%Rh/CeO2()andCeO2()catalysts.

theoxidationstatesofcobaltandceriaduringtheethanol–water (SRE)reaction(Figs.1B,5Aand6B).Interestingly,afterSREreaction at473–623K,whereacetaldehyde,methaneandcarbonmonox- ide were the dominant products, the cobalt was re-oxidized (Figs.5Aand6B).ThemostintensivepeakwasdetectedforCo2+, andthesatellitestrengthenedat786.2eV.The existenceofthis satelliteindicatesthatthecobaltoxidationstateismainly+2at thistemperaturerangeandonlyamuchsmallercomponentcould

795 790 785 780 775 770 316 312 308 304

777.8

200 cps 786.2 780.4

773 K

623 K 473 K reduced

oxidized

Binding energy(eV)

1000 cps

314.0

309.2 312.2

Rh3d

B 307.4

A Co2p3/2

Fig.4.Co2pspectraafterethanol–watersteamreformingreactionatdifferenttem- peratureson2%Co/ceriacatalyst(A)andRh3dspectraon0.1%Rh/ceriacatalyst.

Thespectraafteroxidationandreductionpretreatmentarealsoshown.

(5)

795 790 785 780 775 770 316 312 308 304

Binding energy (eV) 786.7 777.8

773 K

623 K 473 K reduced

780.4

oxidized

1000 cps Co 2p

3/2 Rh 3d

314.0

309.2 312.2

307.4

200 cps

B A

Fig.5.Co2pspectraafterethanol–watersteamreformingreactionatdifferenttem- peratureson0.1%Rh+2%Co/ceriacatalyst(A)andRh3dspectraon0.1%Rh+2%

Co/ceriacatalyst.Thespectraafteroxidationandreductionpretreatmentarealso shown.

bedetectedformetalliccobalt(777.8eV).ThesignatureofCo3+

isaCo2p3/2peakat780–781eVwithnosatellite[29,31].These observationevidencedthatthisre-oxidationoccursthroughisthe formationofwater-inducedCooxidesunderreactioncondition.

VeryrecentlyLinandco-workers[42]foundsuchkindofprocess onaverysimilarsystem(supportedcobalt/ceria–zirconiacatalysts) underethanolsteamreformingconditions.Whenthereactiontem- peraturewasincreasedto773K,wherethehydrogenproduction isdominated,asignificantfractionofmetallicCoappearedagain (Fig.5AandFig.6B).Similarre-oxidationandreductionstepswere detectedbyXRDonCo/ceriaduringESR[9].AsitwasexpectedRh remainedinreducedstateonbimetalliccatalystatanyreaction temperature(Fig.5B).It isworthmentioningthatthereduction degreeofceriaisincreasedupslightlyupto773Kduringreaction.

TheCe3+concentrationafter773Kreactionwas17%(Fig.1B).

795 790 785 780 775 770 795 790 785 780 775 770

Binding energ y (e V)

500 cps 500 cps

1000 cps 500 cps

500 cps

786.7 780.4 777.8 786.2 780.4

777.8

Co 2p3/2

500 cps

A B

reduced reaction at 473 K reaction at 773 K

Fig.6.PeakfittingforselectedCo2p3/2ofFigs.4and5.Co2p3/2afterreductionand afterreactionatdifferenttemperatures;2%Co/ceria(A)and0.1%Rh+2%Co/ceria (B).

FromourobservationsweconcludethatthepromoterRhhasat leasttwodifferentrolesinthiscatalyticsystem.First,thereduction ofCo(andCeO2)inH2wasmuchmoreefficientinthepresence ofRhduetothehydrogenspilloverphenomena[34].SinceH2is alsopresentasaproduct,Rhmayalsohelptokeepthecobaltin themetallicstate.Ontheotherhand,RhpromotestheC Cbond scissionreactionofethanol,producingadsorbedCH3[3,43].This isinagreementwiththefactthatonourRh-containingsamples theselectivityofmethaneishigherthanontheCeO2andCo/CeO2 systems.Takingintoaccounttheseobservations,weproposethat Reactions(3)and(4)arethemainreactionstepson0.1%Rh+2%

Co/CeO2catalyst,followedbyReactions(5)–(7):

CH3(ads)→ C(ads)+H(ads)+H2(g) (7)

CH3(ads)+H(ads)→ CH4(g) (8)

2H(ads)→H2(g) (9)

Thefactthatthebimetalliccatalyst wasthemostactiveand selectiveinhydrogenproductionandatthesametimeitcontained thelargestfractionofCoinmetallicstateindicatesthatmetallic cobaltsitesareactiveintheSREreaction.Thebimetalliccatalyst withethanol–watermixturerepresentsaninterestingredoxsys- tem.ThereareaRhassistedcobaltreductionandareoxidationstep withwater.Mostlikely,bothCo2+andmetallicCoplayrolesindif- ferentstepsoftheSREreaction.Supposedly,Co2+isactiveinthe dehydrogenationofethanolatlowtemperatures(aldehydeforma- tion),whilemetallicsitesareparticularlyactiveabove700KinC C bondruptureanddecarbonylation.ThepromotingeffectofRhwas mainlyrationalizedbyanincreasedefficiencyinC Cbondscission andhydrogenformationonbothRhandmetallicCosites.

The amountand type of carbon formed in catalytic ethanol steamreformingisanimportantissue.Surfacecarbonisaknow reactionproductinthedecompositionofethanol[21].Inagreement withearlierfindings[44],carbondepositswereformedcovering bothsupportandcobaltparticles,regardlessofthetypeofsup- portused.Theextentofcokeformationandprobablyitssurface structuredependedonthesupport.Inthecaseofpureceria,in harmonywithearlierfindings[33,34]theformationofcarbona- ceousspecies is almostnegligible. After120min of reactionat 823K,theamountofdepositedcarbononCo/CeO2was344␮mol/g.

Interestingly, although the Rh-promoted Co/CeO2 showed the highestandmoststablehydrogenselectivity,theamountofsurface carbon, 1135␮mol/g, was higher than that on Co/CeO2. Previ- ousstudiessuggestedthatcarbonbuild-updoesnotnecessarily leadtodeactivation[5,45,46].Inorder togetmoreinformation aboutthetypeofcarbonaceousspecies, wemonitoredtheC 1s region before and after reaction at 473 and 773K on Co/ceria andRhpromotedCo/ceriacatalysts.OnCo/ceriawherethecon- version wasratherlow, (473K),themainC 1scomponent was detectedat284.5eV(Fig.7A).Theintensityofthisphotoemission increased with increasing reaction temperature (773K). Earlier electronmicroscopicresultsobtainedonceria-typesupportedCo catalystrevealedtwotypesofcarbonspecies:eithercarbonaceous layeronthesurfaceofthegrains,orfilaments[46].Presumably, thesetypesofcarboncanbedetectedat284.5eVbindingenergy.

VerylikelythesetypescannotberesolvedinourXPSapparatus.

Ashoulderatthehigherbindingenergysideat286.3eVcanbe attributedtochemisorbedethanol/ethoxide.Inharmonywiththe DRIFTSresultsthesespeciesarepresentupto773K[34].Thesignals oftheothercarboncontainingintermediates(aldehyde,acetate) overlapwiththebroadCe4sphotoemissiondetectedat288.8eV.

Interestingly,athighreactiontemperature,atwhichtheconversion ishigh(∼90–95%),anewC1speakdevelopedat282.3eV(Fig.7A).

Weattributethisphotoemissiontocarbide-likespecies.Carbidic carbonatlowbindingenergywasdetectedafterpotassiuminduced COdissociationonCofoil[47],andcarbidiccarbonformationwas

(6)

296 294 292 290 288 286284282280 296294292290288 286 284 282 280 282.3

286.3 288.8 Ce 4s

reaction at 473 K reaction at 773 K

284.5

1000 cps

B

1000 cps

288.8 Ce 4s

284.5

286.1

500 cps

reduced

500 cps

500 cps

A

C 1s

400 cps

Binding energ y (e V)

Fig.7.C1sspectrawithCe4scontributionafterethanol–watersteamreforming reactionatdifferenttemperatureson2%Co/ceria(A)andon0.1%Rh+2%Co/ceria catalyst(B).C1sregionafterhydrogenpretreatmentisalsoshowninbothcases.

observedwithC1speakmaximumat282.3eVonSi(100)during thedecompositionofCo2(CO)8[48].

Asimilar C 1sseriesis displayed inFig.7Bfor0.1% Rh+2%

Co/CeO2catalyst.Thecarbonaceouslayerandfilamentsstructure appearedat284.5eV.ThespeciesduetoC Obond(286.3eV)was detectedwithlessintensity,indicatingthatethoxidestability is limitedonthissurface[34].Itisveryremarkablethatcarbide-like speciesdoesnotformonthiscatalystduringethanolsteamreform- ing.Itwaspointedoutearlierthatthedecreasingactivityisrelated totheformationofcarbonfilaments[46].Inthelightofourresults wemayconcludethattheaccumulationofstronglybondedcar- bidespeciesinthecaseofCo/CeO2catalystcancontributetothe decreasingactivity.Thistypeofcarbonisabsentinthepresenceof traceamountsofRh,thereforethecatalystwasmorestable.

4. Conclusions

Combined X-ray photoelectron spectroscopic and gas chro- matographicexperimentswerecarriedouttofindarelationship between the efficient H2 production from EtOH+H2O mixture (SRE)andtheoxidationstateofceriasupportedCo–Rhcatalysts.

Accordingtotheresults,CeO2alonealsohadaslightactivityin the reaction, but on mono- and bimetallic Co–Rh samples the conversionandH2selectivityweremuchhigher.Becauseofthere- oxidationofCe3+centerbywater,wecouldnotfollowthereaction mechanismbymeansofCe3dspectraonCo/ceriacatalyst.Cobalt sinteredduringthepre-reaction,butunderreactionitdisrupted, andre-oxidized.Inthisstageacetoneformationwasdominant,soit canbeconcludedthatoxidizedcentersareneededforaldolconden- sation.For0.1%Rh+2%Co/ceriarhodiumremainedinmetallicstate afterreduction,anditenhancedthereductionofCoandslightly inducedthereductionofceria,too.OnheatinginEtOH+H2Omix- ture,CowasbeingpartiallyreducedandincreasingH2production couldbedetected.Atthesametime,inthepresenceofrhodiumin Co/ceriacatalyst,theacetoneformationwashindered.Thepromot- ingeffectofRhwasmainlyrationalizedbyanincreasedefficiency inC CbondruptureonbothRhandmetallicCosites.Finallywe canconcludethattheRhpromotedCo/CeO2catalystisthemost appropriateforhydrogenproductionabove700Kinethanolstream

reformingduetoitshighmetalCocontent,butCo2+isalsonec- essaryforthelowtemperaturereaction,probablybecauseofits dehydrogenationactivityinwhichthealdehydeisthemainreac- tionproduct.Inthelightofourresultswemaysuggestthatthe accumulationof stronglybonded carbide speciesin thecase of Co/CeO2catalystcancontributetothedecreasingactivity.Thistype ofcarbonisabsentinthepresenceoftraceamountsofRh,therefore thecatalystwasmorestable.

Acknowledgements

ThefinancialsupportbytheAlexandervonHumboldtFounda- tionwithintheResearchGroupLinkageProgram,byCOSTAction CM1301, by TÁMOP-4.2.2.A-11/1KONV-2012-0047 is acknowl- edged. The authors wish to thank Mrs. Kornélia Baán for the preparationandcharacterizationofthecatalysts.

References

[1]L.F.Brown,Int.J.HydrogenEnergy26(2001)381–397.

[2]A. Haryanto,S.Fernando, N.Murali,S.Adhikari,EnergyFuels19(2001) 2098–2106.

[3]P.R.delaPiscina,N.Homs,Chem.Soc.Rev.37(2008)2459–2467.

[4]A.Yee,S.J.Morrison,H.Idriss,Catal.Today63(2000)327–335.

[5]L.V.Mattos,B.H.Jacobs,F.B.Noronha,Chem.Rev.112(2012)4094–4123,and referencestherein.

[6]J.Llorca,N.Homs,P.R.delaPiscina,J.Catal.227(2004)556–560.

[7]S.S.-Y.Lin,D.H.Kim,S.Y.Ha,Catal.Lett.122(2008)295–301.

[8]H.Song,U.S.Ozkan,J.Mol.Catal.A318(2010)21–29.

[9]B.Bayram,I.I.Soykal,D.Deak,J.T.Miller,U.S.Ozkan,J.Catal.284(2011)77–89.

[10]I.I.Soykal,H.Sohn,U.S.Ozkan,ACSCatal.2(2012)2335–2348.

[11]S.S.Itkulova,G.D.Zakumbaeva,A.A.Mukazhanova,Y.Y.Nurmakov,Cent.Eur.J.

Chem.12(2014)1255–1261.

[12]Zs.Ferencz,K.Baán,A.Oszkó,Z.Kónya,T.Kecskés,A.Erd ˝ohelyi,Catal.Today 228(2014)123–130.

[13]M.Badlani,I.E.Wachs,Catal.Lett.75(2001)137–149.

[14]A.Erd ˝ohelyi,J.Raskó,T.Kecskés,M.Tóth,M.Dömök,Catal.Today116(2006) 367–376.

[15]M.Dömök,M.Tóth,J.Raskó,A.Erd ˝ohelyi,Appl.Catal.B:Environ.69(2006) 262–272.

[16]A.Yee,S.J.Morrison,H.Idriss,J.Catal.186(1999)279–295.

[17]J.Kaspar,P.Fornasiero,M.Graziani,Catal.Today50(1999)285–298.

[18]A.Trovarelli,CatalysisbyCeriaandRelatedMaterials,ImperialCollegePress, London,2002,pp.1–528.

[19]A.M.daSilva,K.R.Souza,L.V.Mattos,G.Jacobs,B.H.Davis,F.B.Noronha,Catal.

Today164(2011)234–239.

[20]M.Happel,J.Myslivecek,V.Johánek,F.Dvorak,O.Stetsovych,Y.Lykhach,V.

Matolín,J.Libuda,J.Catal.289(2012)118–126.

[21]M.Mavrikakis,M.Barteau,J.Mol.Catal.131(1998)135–147.

[22]C.Diagne,H.Idriss,A.Kiennemann,Catal.Commun.3(2002)565–571.

[23]P.-Y.Sheng,A.Yee,G.Bowmaker,H.Idriss,J.Catal.208(2002)393–403.

[24]M.Tóth,M.Dömök,J.Raskó,A.Hancz,A.Erd ˝ohelyi,Chem.Eng.Trans.4(2004) 229–234.

[25]J.Raskó,M.Dömök,K.Baán,A.Erd ˝ohelyi,Appl.Catal.A299(2006)202–211.

[26]J.Raskó,J.Kiss,Appl.Catal.A287(2005)252–260.

[27]C.J.Weststrate,H.J.Gericke,M.W.G.M.Verhoeven,I.M.Ciobica,A.M.Saib,J.W.

Niemantsverdriet,J.Phys.Chem.Lett.1(2011)1767–1770.

[28]D.R. Mullins, S.D. Senanayake, T.-L. Chen, J. Phys. Chem. C 114 (2010) 17112–17119.

[29]E.Martono,J.M.Vohs,J.Catal.291(2012)79–86.

[30]E. Martono,M.P.Hyman,J.M. Vohs, Phys.Chem.Chem.Phys. 13(2011) 9880–9886.

[31]M-.P.Hyman,J.M.Vohs,Surf.Sci.605(2011)383–389.

[32]M.S.Batista,R.K.S.Santos,E.M.Assaf,J.M.Assaf,E.A.Ticinalli,J.PowerSources 124(2003)99–103.

[33]L.Óvári,S.KrickCalderon,Y.Lykhach,J.Libuda,A.Erd ˝ohelyi,C.Papp,J.Kiss, H.-P.Steinrück,J.Catal.307(2013)132–139.

[34]Zs.Ferencz,A.Erd ˝ohelyi,K.Baán,A.Oszkó,L.Óvári,Z.Kónya,C.Papp,H.-P.

Steinrück,J.Kiss,ACSCatal.4(2014)1205–1218.

[35]A.Gazsi,A.Koós,T.Bánsági,F.Solymosi,Catal.Today160(2011)70–80.

[36]P.Burroughs,A.Hamnett,A.F.Orchard,G.Thornton,Chem.Soc.DaltonTrans.

17(1976)1686–1698.

[37]D.R.Mullins,S.H.Overbury,D.R.Huntley,Surf.Sci.409(1998)307–319.

[38]H.Idriss,C.Diagne,J.P.Hinderman,A.Kiennemann,M.A.Barteau,J.Catal.155 (1995)219–237.

[39]K.M.Cook,S.Poudyal,J.T.Miller,C.H.Bartholomew,Appl.Catal.A:Gen.449 (2012)69–80.

[40]G.Jacobs,T.K.Das,Y.Zhang,J.Li,G.Racoille,B.H.Davis,Appl.Catal.A:Gen.233 (2002)263–281.

[41]Y.Zhang,L.Chen,G.Bai,Y.Li,X.Yan,J.Catal.236(2005)176–180.

(7)

[42]S.S.-Y.Lin,D.H.Kim,M.H.Engelhard,S.-Y.Ha,J.Catal.273(2010)229–235.

[43]J.Zhang,Z.Zhong,X.-M.Cao,P.Hu,M.B.Sullivan,L.Chen,ACSCatal.4(2014) 448–456.

[44]B.G.Johnson,C.H.Bartholomew,D.W.Goodman,J.Catal.128(1991)231–247.

[45]J.M.Guil,N.Homs,J.Llorca,P.R.delaPiscina,J.Phys.Chem.B109(2005) 10813–10819.

[46]J.C.Vargas, S.Libs, A.C. Roger,A. Kiennemann,Catal. Today107 (2005) 417–425.

[47]D.A.Wesner,G.Linden,H.P.Bonzel,Appl.Surf.Sci.26(1986)335–356.

[48]D.-X.Ye,S.Pimanpang,C.Jezewski,F.Tang,J.J.Senkevich,G.-C.Wang,T.-M.Lu, ThinSolidFilms485(2005)95–100.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

The rate of methane conversion and hydrogen formation slightly decreased over time on Rh/TNT catalyst (see Figs. 3, 4) because surface carbon deposits form in the reaction.. The

The LIBS spectra segments of the analyzed sample with a focus on the copper line are shown in Figure 1. Each spectrum represents an averaged spectrum from 5 laser pulses while

It showed that the presence of the different oxidation states of the manganese plays an essential role in the CO 2 activation process aside from the advantage of the higher surface

Major research areas of the Faculty include museums as new places for adult learning, development of the profession of adult educators, second chance schooling, guidance

The decision on which direction to take lies entirely on the researcher, though it may be strongly influenced by the other components of the research project, such as the

In this article, I discuss the need for curriculum changes in Finnish art education and how the new national cur- riculum for visual art education has tried to respond to

Conversion of methane and formation of products as a function of irradiation time on Rh/TNT and Au/TNT catalysts in the methane transformation reaction.. under the

In this article, we have chosen CeO 2 as the support and incorporated different non-noble metals like Cu, Co, and Ni to find out CO 2 consumption rate in CO 2