• Nem Talált Eredményt

A SNAP reactor will be the first reactor to survive a rocket launch and the space environment.

N/A
N/A
Protected

Academic year: 2022

Ossza meg "A SNAP reactor will be the first reactor to survive a rocket launch and the space environment. "

Copied!
10
0
0

Teljes szövegt

(1)

STATUS OF THE SNAP 2 R E A C T O R "

R. D. K e e n t and R. R. Eggleston§

A t o m i c s I n t e r n a t i o n a l

A Division of N o r t h A m e r i c a n Aviation, Inc.

Canoga P a r k , California

I. Introduction

At A t o m i c s International, the development or h a r d w a r e p h a s e of the SNAP 2 r e a c t o r s began with the Z e r o P o w e r C r i t i c a l A s s e m b l y m a c h i n e . Information gained f r o m this equipment led to the c o n s t r u c t i o n of the first SNAP 2 power d e m o n s t r a t i o n r e a c t o r known a s the SNAP E x p e r i m e n t a l R e a c t o r (SER). The SER h a s been in o p e r a t i o n now for one y e a r . Operating e x p e r i e n c e and c o n c u r r e n t optimization h a s r e s u l t e d in a " second g e n e r a t i o n " c o m p a c t n u c l e a r power r e a c t o r . T h i s r e a c t o r called the SDR or SNAP D e v e l o p - m e n t a l R e a c t o r i n c o r p o r a t e s vehicle i n t e g r a t i o n and final flight configuration c o n s i d e r a t i o n s . The design for this r e a c t o r h a s been c o m p l e t e d and c o n s t r u c t i o n is u n d e r w a y .

II. P o w d e r C r i t i c a l A s s e m b l y

The f i r s t r e a c t o r in the SNAP p r o g r a m w a s a powder mockup c r i t i c a l a s s e m b l y . A n u c l e a r c r i t i c a l a s s e m b l y w a s needed in 1957 to verify the c r i t i c a l i t y calculations for the z i r c o n i u m h y d r i d e e n r i c h e d U^35 fuel m a t e r i a l . T h i s a s s e m - bly w a s m a d e c r i t i c a l for the f i r s t t i m e in October of 1957, j u s t 6 m o n t h s after the initiation of the development c o n t r a c t . In the f i r s t c r i t i c a l a s s e m b l y , powder p r e s s i n g m e t h o d s w e r e employed to p r o d u c e the r e q u i r e d fuel m o d e r a t o r c o m p a c t s . T h e s e w e r e shaped to a s s e m b l e into two h e m i s p h e r e s . The two h e m i s p h e r e s b e c a m e a c r i t i c a l configuration when brought t o g e t h e r . The s p h e r i c a l g e o m e t r y w a s chosen for convenience

^ P r e s e n t e d at the ARS Space P o w e r S y s t e m s Conference, Santa Monica, California, S e p t e m b e r 27-30, I960.

Work done u n d e r AEC C o n t r a c t : A T ( 1 1 - l ) - G E N - 8 t S u p e r v i s o r , S y s t e m D e v e l o p m e n t a l T e s t i n g

§Supervisor, R e a c t o r O p e r a t i o n s Unit

(2)

in the n u c l e a r c a l c u l a t i o n s . F i g u r e 1 shows the g e n e r a l a r r a n g e m e n t of this equipment. Although the n u c l e a r c a l - culations w e r e verified within a v e r y s h o r t t i m e , the c r i t i c a l a s s e m b l y w a s in u s e for over two y e a r s . During this t i m e , it was a valuable s o u r c e of n e u t r o n s of the e n e r g y s p e c t r u m of the SNAP 2 c o r e concept. Many m e a s u r e m e n t s such a s n u c l e a r w o r t h of s t r u c t u r a l m a t e r i a l s , coolants, and effec- t i v e n e s s of r e f l e c t o r m a t e r i a l s w e r e c a r r i e d out. Such m e a s u r e m e n t s w e r e e s s e n t i a l for the SNAP 2 design since the n u c l e a r c o n t r o l for this concept is a c c o m p l i s h e d by m o v a b l e r e f l e c t o r sections allowing n e u t r o n s to e s c a p e or be r e f l e c t e d .

III. SNAP E x p e r i m e n t a l R e a c t o r

Simultaneously with the o p e r a t i o n of the powder c r i t i c a l facility, design c a l c u l a t i o n s w e r e c a r r i e d out for the design of the f i r s t power d e m o n s t r a t i o n r e a c t o r . T h i s w a s called the SNAP E x p e r i m e n t a l R e a c t o r . The operating conditions w e r e 50 kw t h e r m a l power, 1200°F exit t e m p e r a t u r e . The m o s t significant change needed in going from the powder c r i t i c a l configuration to a power configuration w a s the p r o - vision of coolant c h a n n e l s . A r m e d with the r e s u l t s of m a n y t e s t s on the powder c r i t i c a l a s s e m b l y , the c o r e w a s r e - designed to u s e solid cylinder fuel e l e m e n t s . T h e s e w e r e a r r a n g e d on a t r i a n g u l a r l a t t i c e so that the c o m p l e t e d a r r a y of 61 e l e m e n t s f o r m e d a hexagonal p r i s m . T h i s a p p r o x i - m a t e d c y l i n d r i c a l g e o m e t r y which r e s u l t e d in a s o m e w h a t h e a v i e r c o r e than the s p h e r i c a l configuration. This cost in additional weight bought a c o m p a r a t i v e l y s i m p l e configura- tion with well defined coolant p a s s a g e s f o r m e d by the cusp

shaped s p a c e between adjacent fuel e l e m e n t s . The g e n e r a l a r r a n g e m e n t of this c o r e is shown in F i g u r e 2. A photo of the SER c o r e is shown in F i g u r e 3.

N u c l e a r c o n t r o l w a s achieved with t h r e e s e m i - c y l i n d r i c a l r o t a t a b l e sections of the r e f l e c t o r . N u c l e a r shutdown w a s achieved by a r r a n g i n g the r e m a i n d e r of the e x t e r n a l r e f l e c t o r in hinged s e c t i o n s which could drop away f r o m the c o r e tank.

Six b e r y l l i u m p i e c e s w e r e needed within the c o r e tank to fill the s p a c e between the hexagonal fuel a r r a y and the tank w a l l . The fuel m a t e r i a l w a s z i r c o n i u m alloyed with 7 w / o of fully e n r i c h e d u r a n i u m h y d r i d e d to 6 x 1 0 " a t o m s of hydrogen p e r cubic c e n t i m e t e r s .

E u t e c t i c s o d i u m - p o t a s s i u m w a s s e l e c t e d for the p r i m a r y coolant, in o r d e r to e l i m i n a t e s y s t e m s t a r t u p h e a t e r s . T h e weight of the SER c o r e , tank, r e f l e c t o r m a t e r i a l , and n e c e s - s a r y h a r d w a r e is about 250 p o u n d s .

(3)

The SER r e a c t o r w a s p l a c e d in o p e r a t i o n in S e p t e m b e r 1959. By N o v e m b e r 1 it had o p e r a t e d at 50 kwt and 1200°F outlet coolant t e m p e r a t u r e . On A p r i l 23, I960 the r e a c t o r c o m p l e t e d a 1000 hour continuous t e s t at the above design conditions. It h a s a c c u m u l a t e d a total of 1/3 of a full power y e a r to d a t e . The g e n e r a l a r r a n g e m e n t of the t e s t i n s t a l l a - tion is shown in F i g u r e 4. T h i s w a s d e s i g n e d with the single p u r p o s e of testing the SNAP c o r e . The h e a t t r a n s f e r s y s t e m is a r r a n g e d with an i s o l a t e d p r i m a r y loop for containment and shielding of the r a d i o a c t i v e p r i m a r y coolant. The s e c o n d - a r y coolant s y s t e m is n o n r a d i o a c t i v e and d u m p s the e n t i r e heat load to the a t m o s p h e r e . T h i s is a c c o m p l i s h e d by m e a n s of an a i r b l a s t heat e x c h a n g e r . In this t e s t only the r e a c t o r h a s any r e s e m b l a n c e to flight configuration. P u m p s a r e t h r e e p h a s e l i n e a r induction units so that rotating shaft s e a l s a r e avoided.

During o p e r a t i o n s to date, m a n y m e a s u r e m e n t s have been m a d e which verify and refine the n u c l e a r calculations and heat t r a n s f e r c a l c u l a t i o n s involved in the design of the SNAP 2 r e a c t o r , t h e s e m e a s u r e m e n t s include:

T e m p e r a t u r e coefficient of r e a c t i v i t y P o w e r coefficient of r e a c t i v i t y

E x c e s s r e a c t i v i t y

W o r t h of safety e l e m e n t W o r t h of c o n t r o l e l e m e n t

W o r t h of fuel e l e m e n t s in v a r i o u s c o r e l o c a t i o n s E q u i l i b r i u m xenon defect.

The SER o p e r a t i n g p a r a m e t e r s a r e shown in T a b l e I.

M e a s u r e m e n t s of this type c o n f i r m the SNAP 2 design and add new information for future d e s i g n s . P e r h a p s the m o s t significant point in the o p e r a t i o n of the SER to date is the p r o v e n capability of operating continuously and r e l i a b l y at full SNAP 2 design power and t e m p e r a t u r e of 50 kw t h e r - m a l and 1200°F outlet t e m p e r a t u r e r e s p e c t i v e l y .

IV. SNAP D e v e l o p m e n t a l R e a c t o r - I

The final design of the second SNAP type power r e a c t o r called SNAP D e v e l o p m e n t a l R e a c t o r - I (SDR-I) is now n e a r l y completed, with s t a r t u p for t h i s r e a c t o r scheduled for J a n u a r y 1961. The g e n e r a l configuration of this r e a c t o r c o r e is the s a m e a s the SER, but s e v e r a l m a j o r changes w e r e m a d e a s a r e s u l t of optimization for m i n i m u m weight and m a x i m u m r e l i a b i l i t y . T h e s e changes included reducing the n u m b e r of fuel e l e m e n t s f r o m 61 to 37 with an a p p r o p r i - ate i n c r e a s e in rod d i a m e t e r . C o n t r o l is now a c c o m p l i s h e d

(4)

Table I

SER Operating P a r a m e t e r s F u e l loading 3. 5 kg

C o r e volume 0. 35 ft3

F u e l m o d e r a t o r fraction 0. 845 Cladding fraction 0. 035 Coolant fraction 0. 1Z0 P r o m p t n e u t r o n lifetime 10 μ sec

/ 3e f f 0. 0084

Cold clean e x c e s s $ 9 . 7 5 Total control d r u m w o r t h (3) $ 1 0 . 8 0

Total safety w o r t h (3) $16. 20 P r o m p t t e m p e r a t u r e coefficient at

1100°F - 0 . 1 # / ° F O v e r a l l t e m p e r a t u r e coefficient - 0 . 35f£/°F

P o w e r coefficient (constant c o r e

a v e r a g e ) - 0 . 3 ^ / k w Radial p e a k - t o - a v e r a g e flux 1. 26

Axial p e a k - t o - a v e r a g e flux 1. 22

A v e r a g e power density 5.45 x 10^ B t u / h r - f t ^ A v e r a g e heat flux 1. 24 x 1 θ4 B t u / h r - f t ^ M a x i m u m fuel t e m p e r a t u r e at

1200°F out 1300°F with two s e m i - c y l i n d r i c a l r e f l e c t o r sections as c o m p a r e d to

the t h r e e u s e d in the SER. In a s i m i l a r m a n n e r , only two shutdown sections of r e f l e c t o r a r e u s e d in the SDR-I. In approaching the flight configuration w h e r e g r a v i t y cannot be u s e d for e l e m e n t actuation, the shutdown sections a r e spring loaded to o p e r a t e independently of the e a r t h ' s g r a v i t a t i o n a l f o r c e . F i g u r e 5 shows the g e n e r a l a r r a n g e m e n t of SDR-I.

Optimization and r e - d e s i g n have r e s u l t e d in a total weight for c o r e , tank, r e f l e c t o r m a t e r i a l s and r e l a t e d h a r d w a r e of about 200 pounds. This is a net saving of 50 pounds over the SER design. F u e l specifications a l s o changed a s a r e s u l t of the weight optimization studies so that it now c o n s i s t s of Z r + 10% fully e n r i c h e d u r a n i u m . This alloy will be hydrided to 6.5 x 10^2 a t o m s of hydrogen p e r cubic c e n t i m e t e r of fuel m a t e r i a l . The SDR-I will be a r r a n g e d to o p e r a t e the f i r s t complete v e r s i o n of the P o w e r C o n v e r s i o n S y s t e m . All of the individual components involved in this s e r i e s of t e s t s will be of the flight design but the o v e r a l l a r r a n g e m e n t will be one of convenience for installation, operation, and m a i n - t e n a n c e . A special building ( F i g u r e 6) called the SNAP E n v i r o n m e n t a l T e s t F a c i l i t y (SETF), is n e a r i n g completion and will be used for the SDR-I power t e s t s as well a s for final m o d e l s of the SNAP 2.

(5)

Conclusion

Design and development to date has r e s u l t e d in a very- w o r k a b l e , r e l i a b l e SNAP 2 r e a c t o r of d e m o n s t r a t e d capability.

While the p r e s e n t configuration would a p p e a r to bè a c c e p t a b l e for flight, further weight r e d u c t i o n is p o s s i b l e . C o n s i d e r a b l e w o r k r e m a i n s to be done in the a r e a of e n v i r o n m e n t a l t e s t i n g . This w o r k will be p r i m a r i l y c o n c e r n e d with the durability of the r e a c t o r c o r e (and power c o n v e r s i o n s y s t e m ) when s u b - j e c t e d to shock and v i b r a t i o n r e s u l t i n g from vehicle launch and a t t a i n m e n t of orbit. In addition, r a t h e r s e v e r e m e c h a n i - cal loads a r e likely to be e n c o u n t e r e d on the ground, during shipping, and set up. As a r e s u l t , a n a l y s i s and evaluation of e n v i r o n m e n t a l conditions, which have long been c o m m o n - p l a c e in the development of r o c k e t s and m i s s i l e s , a r e now being applied to n u c l e a r power p l a n t s . This is being c a r r i e d out by a strong a n a l y t i c a l effort evaluating all of the launch and flight conditions that can be identified. In p a r a l l e l , l a b - o r a t o r y t e s t s involving the u s e of shock m a c h i n e s and v i b r a - tion m a c h i n e s which can s i m u l a t e the m e c h a n i c a l loads in- volved in delivering a n u c l e a r power plant into s p a c e a r e u n d e r w a y .

The final SNAP 2 flight r e a c t o r will be v e r y s i m i l a r to the SDR-I design but will have been further o p t i m i z e d for m i n i m u m weight and m a x i m u m r e l i a b i l i t y . The p a r a m e t e r s of the SNAP 2 r e a c t o r a r e shown in Table II.

T a b l e II SNAP R e a c t o r

SNAP 2 P o w e r

Coolant t e m p e r a t u r e out Coolant t e m p e r a t u r e in C o r e v o l u m e

Rod d i a m e t e r N u m b e r of r o d s NH

U r a n i u m F u e l loading A v e r a g e heat flux P o w e r density Weight:

F u e l m o d e r a t o r e l e m e n t s B e r y l l i u m r e f l e c t o r V e s s e l and s t r u c t u r e

Total

50 kw t h e r m a l 1200°F

1000°F 0. 3 ft3 1.25 in.

37 6. 5 x 10^2 a t o m s / c c 10 w / o

4. 0 kg

17, 000 B t u / h r - f t2 0. 165 M w / f t3 120 pounds

70 35

225 pounds

(6)

A SNAP reactor will be the first reactor to survive a rocket launch and the space environment.

Fig. 1. Critical Assembly Machine

(7)

OPERATING POSITION

SCRAM POSITION

\CORE VESSEL CONTROL ELEMENT Be CONTROL

DRUM REACTOR

CORE

END &

„REFLECTOR

BERYLLIUM

Fig. 2. SER (Core Schematic)

SAFETY ELEMENT

Fig. 3. SER Core

(8)

00 00

ΓΠ TO

CO

(9)

THERMO-MECHANICAL CONTROL

CONTROL ELEMENT

INLET

CONTROL DRUM DRIVE

Be SAFETY ELEMENT

FUEL· . ELEMENT

Fig. 5. SNAP 2 Reactor (SDR-I)

(10)

o

O

-<

co CO

Fig. 6. SNAP Environmental Test Facility (SETF)

Ábra

Table I  SER Operating  P a r a m e t e r s  F u e l loading 3. 5 kg  C o r e volume 0
Fig. 1. Critical Assembly Machine
Fig. 3. SER Core
Fig. 5. SNAP 2 Reactor (SDR-I)
+2

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

In order to slow down the high energy neutrons produced in the fission process, these reactor types use a so called moderator material (mainly light water or heavy water or graphite

For example, some metals may be exposed to the intense radiation field of a nuclear reactor for years without significant deterioration, whereas some organic materials will

If high degree of mixing is present in our system the actual reactor model can be described by applying Completely Stirred Tank Reactor (CSTR) model. 2 also shows that

Hypothesis 3 (Sequential environment and bank runs due to panic behavior): In the sequential environment, patient depositors may submit positive bids in the rst stage of the game

Keywords: folk music recordings, instrumental folk music, folklore collection, phonograph, Béla Bartók, Zoltán Kodály, László Lajtha, Gyula Ortutay, the Budapest School of

Reactor runaway develops every investigated operating regions and the time of the first detected operating point based on Ljapunov’s indirect stability analysis can be found next

In principle, if we could introduce an electrode in the center of the high temperature core, energy could be taken (Jut of it as from a galvanic cell working according

According to the values of the thermoelastic equivalent stresses, we can assume that, for the welding joint between the plate cover and cylindrical shell of the tubular reactor,