• Nem Talált Eredményt

JJ II

N/A
N/A
Protected

Academic year: 2022

Ossza meg "JJ II"

Copied!
16
0
0

Teljes szövegt

(1)

volume 1, issue 1, article 7, 2000.

Received and acepted 14 December, 1999.

Communicated by:J.E. Pe˘cari´c

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

REVERSE WEIGHTEDLP–NORM INEQUALITIES IN CONVOLUTIONS

SABUROU SAITOH, V ˜U KIM TU ´ÂN AND MASAHIRO YAMAMOTO

Department of Mathematics Faculty of Engineering Gunma University Kiryu 376-8515, JAPAN.

EMail:ssaitoh@eg.gunma-u.ac.jp

Department of Mathematics and Computer Science Faculty of Science

Kuwait University

P.O. Box 5969, Safat 13060, KUWAIT.

EMail:vu@sci.kuniv.edu.kw

Department of Mathematical Sciences The University of Tokyo

3-8-1 Komaba

Tokyo 153-8914, JAPAN.

EMail:myama@ms.u-tokyo.ac.jp

2000c School of Communications and Informatics,Victoria University of Technology ISSN (electronic): 1443-5756

018-99

(2)

Reverse WeightedLp–Norm Inequalities in Convolutions

Saburou Saitoh,V ˜u Kim Tu ´ânand Masahiro Yamamoto

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of16

J. Ineq. Pure and Appl. Math. 1(1) Art. 7, 2000

http://jipam.vu.edu.au

Abstract

Various weighted Lp(p > 1)–norm inequalities in convolutions were derived by using Hölder’s inequality. Therefore, by using reverse Hölder inequalities one can obtain reverse weightedLp–norm inequalities. These inequalities are important in studying stability of some inverse problems.

2000 Mathematics Subject Classification:44A35, 26D20

Key words: Convolution, weightedLpinequality, reverse Hölder inequality, inverse problems, Green’s function, integral transform, stability.

The authors wish to express their sincere thanks to Professor Josip Pe˘cari´c for his valuable information on the reverse Hölder inequality. The work of the second named author was supported by Kuwait University Research Administration under project SM 187.

Contents

1 Introduction. . . 3

2 A general reverse weightedLpconvolution inequality. . . 6

3 Examples . . . 9

3.1 The first order differential equation. . . 9

3.2 Picard transform. . . 10

3.3 Poisson integrals . . . 12

3.4 Heat equation. . . 14

(3)

Reverse WeightedLp–Norm Inequalities in Convolutions

Saburou Saitoh,V ˜u Kim Tu ´ânand Masahiro Yamamoto

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of16

J. Ineq. Pure and Appl. Math. 1(1) Art. 7, 2000

http://jipam.vu.edu.au

1. Introduction

For the Fourier convolution

(f ∗g)(x) = Z

−∞

f(x−ξ)g(ξ)dξ, the Young’s inequality

(1.1)

kf∗gkr ≤ kfkpkgkq, f ∈Lp(R), g ∈Lq(R), r−1 =p−1+q−1−1 (p, q, r >0), is fundamental. Note, however, that for the typical case of f, g ∈ L2(Rn), the inequality (1.1) does not hold. In a series of papers [4, 5, 6, 7] (see also [1]) the first author obtained the following weighted Lp(p > 1)inequality for convolution.

Proposition 1.1. ([7]). For two nonvanishing functionsρj ∈ L1(R) (j = 1,2) the followingLp(p >1)weighted convolution inequality

(1.2)

((F1ρ1)∗(F2ρ2)) (ρ1∗ρ2)1p−1

p ≤ kF1kL

p(R,|ρ1|)kF2kL

p(R,|ρ2|)

holds forFj ∈Lp(R,|ρj|) (j = 1,2). Equality holds if and only if

(1.3) Fj(x) =Cjeαx,

whereαis a constant such thateαx ∈Lp(R,|ρj|) (j = 1,2).

Here

kFkLp(R;ρ) = Z

−∞

|F(x)|pρ(x)dx 1p

.

(4)

Reverse WeightedLp–Norm Inequalities in Convolutions

Saburou Saitoh,V ˜u Kim Tu ´ânand Masahiro Yamamoto

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of16

J. Ineq. Pure and Appl. Math. 1(1) Art. 7, 2000

http://jipam.vu.edu.au

Unlike the Young’s inequality, the inequality (1.2) holds also in casep= 2.

In many cases of interest, the convolution is given in the form

(1.4) ρ2(x)≡1, F2(x) = G(x),

whereG(x−ξ)is some Green’s function. Then the inequality (1.2) takes the form

(1.5) k(F ρ)∗Gkp ≤ kρk1−

1 p

p kGkpkFkL

p(R,|ρ|), whereρ, F, andGare such that the right hand side of (1.5) is finite.

The inequality (1.5) enables us to estimate the output function (1.6)

Z

−∞

F(ξ)ρ(ξ)G(x−ξ)dξ

in terms of the input functionF. In this paper we are interested in the reverse type inequality for (1.5), namely, we wish to estimate the input functionF by means of the output (1.6). This kind of estimate is important in inverse prob- lems. Our estimate is based on the following version of the reverse Hölder inequality

Proposition 1.2. ([2], see also [3], pages 125-126). For two positive functions f andgsatisfying

(1.7) 0< m≤ f

g ≤M <∞

(5)

Reverse WeightedLp–Norm Inequalities in Convolutions

Saburou Saitoh,V ˜u Kim Tu ´ânand Masahiro Yamamoto

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of16

J. Ineq. Pure and Appl. Math. 1(1) Art. 7, 2000

http://jipam.vu.edu.au

on the setX, and forp, q >0, p−1+q−1 = 1,

(1.8)

Z

X

f dµ 1pZ

X

gdµ 1q

≤Ap,qm M

Z

X

f1pg1qdµ, if the right hand side integral converges. Here

Ap,q(t) = p1pq1qtpq1(1−t)

1−t1pp1

1−t1q1q

.

(6)

Reverse WeightedLp–Norm Inequalities in Convolutions

Saburou Saitoh,V ˜u Kim Tu ´ânand Masahiro Yamamoto

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of16

J. Ineq. Pure and Appl. Math. 1(1) Art. 7, 2000

http://jipam.vu.edu.au

2. A general reverse weighted L

p

convolution in- equality

Our main result is the following

Theorem 2.1. LetF1 andF2be positive functions satisfying (2.1)

0< m

1 p

1 ≤F1(x)≤M

1 p

1 <∞, 0< m

1 p

2 ≤F2(x)≤M

1 p

2 <∞, p >1, x∈R. Then for any positive functions ρ1 and ρ2 we have the reverse Lp–weighted convolution inequality

(2.2)

((F1ρ1)∗(F2ρ2)) (ρ1∗ρ2)1p−1 p

Ap,q

m1m2

M1M2 −1

kF1kL

p(R1)kF2kL

p(R2). Inequality (2.2) and others should be understood in the sense that if the left hand side is finite, then so is the right hand side, and in this case the inequality holds.

Proof. Let

f(ξ) = F1p(ξ)F2p(x−ξ)ρ1(ξ)ρ2(x−ξ), g(ξ) =ρ1(ξ)ρ2(x−ξ).

Then condition (2.1) implies m1m2 ≤ f(ξ)

g(ξ) ≤M1M2, ξ ∈R.

(7)

Reverse WeightedLp–Norm Inequalities in Convolutions

Saburou Saitoh,V ˜u Kim Tu ´ânand Masahiro Yamamoto

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of16

J. Ineq. Pure and Appl. Math. 1(1) Art. 7, 2000

http://jipam.vu.edu.au

Hence, one can apply the reverse Hölder inequality (1.8) forf andg to get Ap,q

m1m2

M1M2 Z

−∞

F1(ξ)ρ1(ξ)F2(x−ξ)ρ2(x−ξ)dξ

≥ Z

−∞

F1p(ξ)F2p(x−ξ)ρ1(ξ)ρ2(x−ξ)dξ

1pZ

−∞

ρ1(ξ)ρ2(x−ξ)dξ 1−p1

.

Hence, (2.3)

Z

−∞

F1(ξ)ρ1(ξ)F2(x−ξ)ρ2(x−ξ)dξ

pZ

−∞

ρ1(ξ)ρ2(x−ξ)dξ 1−p

Ap,q

m1m2 M1M2

−pZ

−∞

F1p(ξ)F2p(x−ξ)ρ1(ξ)ρ2(x−ξ)dξ.

Taking integration of both sides of (2.3) with respect to xfrom−∞ to∞we obtain the inequality

(2.4) Z

−∞

Z

−∞

F1(ξ)ρ1(ξ)F2(x−ξ)ρ2(x−ξ)dξ

pZ

−∞

ρ1(ξ)ρ2(x−ξ)dξ 1−p

dx

Ap,q

m1m2 M1M2

−pZ

−∞

F1p(ξ)ρ1(ξ)dξ Z

−∞

F2p(x)ρ2(x)dx.

Raising both sides of the inequality (2.4) to power 1p yields the inequality (2.2).

(8)

Reverse WeightedLp–Norm Inequalities in Convolutions

Saburou Saitoh,V ˜u Kim Tu ´ânand Masahiro Yamamoto

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of16

J. Ineq. Pure and Appl. Math. 1(1) Art. 7, 2000

http://jipam.vu.edu.au

Inequality (1.8) reverses the sign if 0 < p < 1. Hence, inequality (2.2) reverses the sign if0< p <1.

In formula (2.3) replacingρ2 by1, andF2(x−ξ)by G(x−ξ), and taking integration with respect toxfromctodwe arrive at the following inequality (2.5)

Z d c

Z

−∞

F(ξ)ρ(ξ)G(x−ξ)dξ p

dx

≥n Ap,q

m M

o−pZ

−∞

ρ(ξ)dξ

p−1Z

−∞

Fp(ξ)ρ(ξ)dξ Z d−ξ

c−ξ

Gp(x)dx,

valid if positive continuous functionsρ,F, andGsatisfy

(2.6) 0< m1p ≤F(ξ)G(x−ξ)≤M1p, x∈[c, d], ξ∈R.

Inequality (2.5) is especially important when G(x−ξ) is a Green’s function.

See examples in the next section.

(9)

Reverse WeightedLp–Norm Inequalities in Convolutions

Saburou Saitoh,V ˜u Kim Tu ´ânand Masahiro Yamamoto

Title Page Contents

JJ II

J I

Go Back Close

Quit Page9of16

J. Ineq. Pure and Appl. Math. 1(1) Art. 7, 2000

http://jipam.vu.edu.au

3. Examples

3.1. The first order differential equation

The solutiony(x)of the first order differential equation y0(x) +λ y(x) =F(x), y(0) = 0,

is represented in the form

y(x) = Z x

0

F(t)e−λ(x−t)dt.

So we shall consider the integral transform f(x) =

Z x 0

F(t)ρ(t)e−λ(x−t)dt, λ >0.

Take

G(x) =

e−λx, x >0 0, x <0 . The condition (2.6) reads

(3.1) 0< m1p ≤F(t)e−λ(x−t) ≤M1p. It will be satisfied for0≤t≤x≤d <∞, if we have (3.2) 0< m1peλd−λt ≤F(t)≤Mp1, 0< d < 1

pλlog M m.

(10)

Reverse WeightedLp–Norm Inequalities in Convolutions

Saburou Saitoh,V ˜u Kim Tu ´ânand Masahiro Yamamoto

Title Page Contents

JJ II

J I

Go Back Close

Quit Page10of16

J. Ineq. Pure and Appl. Math. 1(1) Art. 7, 2000

http://jipam.vu.edu.au

Notice that

Z d−ξ c−ξ

Gp(x)dx=

( e−λpc−e−λpd

λp eλpξ, ξ < c,

1−eλpξ−λpd

λp , c < ξ < d.

Thus the inequality (2.5) yields (3.3)

Z d c

fp(x) Z x

0

ρ(t)dt 1−p

dx

≥n

Ap,qm M

o−p 1 λp

(e−λpc−e−λpd) Z c

0

Fp(ξ)ρ(ξ)eλpξ

+ Z d

c

Fp(ξ)ρ(ξ)(1−e−λpdeλpξ)dξ

. Here we assume thatρis a positive continuous function on[0, d], andF satisfies (3.2).

3.2. Picard transform

Note that 12e−|x−t|is the Green’s function for the boundary value problem y00−y= 0, lim

x→±∞y(x) = 0.

So, we shall consider the Picard transform f(x) = 1

2 Z

−∞

F(t)ρ(t)e−|x−t|dt.

(11)

Reverse WeightedLp–Norm Inequalities in Convolutions

Saburou Saitoh,V ˜u Kim Tu ´ânand Masahiro Yamamoto

Title Page Contents

JJ II

J I

Go Back Close

Quit Page11of16

J. Ineq. Pure and Appl. Math. 1(1) Art. 7, 2000

http://jipam.vu.edu.au

TakeG(x) =e−|x|. Since

e−ae|t|≤e|x−t| ≤eae|t|, |x| ≤a, we see that the condition (2.6)

(3.4) 0< m1p ≤F(t)e−|x−t| ≤M1p, holds if

(3.5) 0< m1peae|t|≤F(t)≤Mp1e−ae|t|, t∈R, 0< a < 1

2plogM m. We have

Z d−t c−t

Gp(x)dx= Z d−t

c−t

e−p|x|dx=





ept p

e−pc−e−pd

, t < c,

e−pt p

epd−epc

, t > d,

1

p 2−epc−pt−ept−pd

, c < t < d.

Thus, for−a≤c, d≤athe inequality (2.5) yields (3.6)

Z d c

fp(x)dx≥ 1 2pp

n

Ap,qm M

o−pZ

−∞

ρ(t)dt p−1

e−pc−e−pd Z c

−∞

Fp(t)ρ(t)eptdt+ epd−epc Z

d

Fp(t)ρ(t)e−ptdt

+ Z d

c

Fp(t)ρ(t) 2−epc−pt−ept−pd dt

, ifρis positive continuous, andF satisfies (3.5).

(12)

Reverse WeightedLp–Norm Inequalities in Convolutions

Saburou Saitoh,V ˜u Kim Tu ´ânand Masahiro Yamamoto

Title Page Contents

JJ II

J I

Go Back Close

Quit Page12of16

J. Ineq. Pure and Appl. Math. 1(1) Art. 7, 2000

http://jipam.vu.edu.au

3.3. Poisson integrals

Consider the Poisson integral

(3.7) u(x, y) = 1

π Z

−∞

F(ξ)ρ(ξ) y

(x−ξ)2+y2dξ.

Take

G(x) = y x2 +y2. Let

ξ ∈[a, b], x∈[c, d].

Denote

α= max{|a−c|,|a−d|,|b−c|,|b−d|}.

We have

y

α2+y2 ≤ y

(x−ξ)2+y2 ≤ 1 y. Thus,

Z d−ξ c−ξ

Gp(x)dx= Z d−ξ

c−ξ

y x2+y2

p

dx ≥(d−c) y

α2+y2 p

.

Hence, for a functionF satisfying α2+y2

y m1p ≤F(ξ)≤y M1p,

(13)

Reverse WeightedLp–Norm Inequalities in Convolutions

Saburou Saitoh,V ˜u Kim Tu ´ânand Masahiro Yamamoto

Title Page Contents

JJ II

J I

Go Back Close

Quit Page13of16

J. Ineq. Pure and Appl. Math. 1(1) Art. 7, 2000

http://jipam.vu.edu.au

and for a positive continuous functionρon[a, b]we obtain (3.8)

Z d c

up(x, y)dx≥ (d−c) πp

y α2+y2

p

n

Ap,qm M

o−p

Z b a

ρ(ξ)dξ

p−1Z b a

Fp(ξ)ρ(ξ)dξ.

Consider now the conjugate Poisson integral

(3.9) v(x, y) = 1

π Z

−∞

F(ξ)ρ(ξ) x−ξ

(x−ξ)2+y2dξ.

Take

G(x) = x x2 +y2. For

ξ ∈[a, b], x∈[c, d], (b < c), we have

c−b

(d−a)2+y2 ≤ x−ξ

(x−ξ)2+y2 ≤ d−a (c−b)2+y2. Thus,

Z d−ξ c−ξ

Gp(x)dx= Z d−ξ

c−ξ

x x2+y2

p

dx≥(d−c)

c−b (d−a)2+y2

p

. Hence, for a functionF satisfying

(d−a)2+y2

c−b m1p ≤F(ξ)≤ (c−b)2+y2 d−a M1p,

(14)

Reverse WeightedLp–Norm Inequalities in Convolutions

Saburou Saitoh,V ˜u Kim Tu ´ânand Masahiro Yamamoto

Title Page Contents

JJ II

J I

Go Back Close

Quit Page14of16

J. Ineq. Pure and Appl. Math. 1(1) Art. 7, 2000

http://jipam.vu.edu.au

and for a positive continuous functionρon[a, b]we obtain (3.10)

Z d c

vp(x, y)dx≥ (d−c) πp

c−b (d−a)2+y2

p

n

Ap,qm M

o−p

Z b a

ρ(ξ)dξ

p−1Z b a

Fp(ξ)ρ(ξ)dξ.

3.4. Heat equation

We consider the Weierstrass transform (3.11) u(x, t) = 1

√4πt Z

−∞

F(ξ)ρ(ξ) exp

−(x−ξ)2 4t

dξ,

which gives the formal solutionu(x, t)of the heat equation ut = ∆u on R+×R,

subject to the initial condition

u(x,0) = F(x)ρ(x) on R.

Take

G(x) = ex

2 4t. Let

x∈[−a, a], ξ∈[−b, b], a+b≤ s

4t p logM

m.

(15)

Reverse WeightedLp–Norm Inequalities in Convolutions

Saburou Saitoh,V ˜u Kim Tu ´ânand Masahiro Yamamoto

Title Page Contents

JJ II

J I

Go Back Close

Quit Page15of16

J. Ineq. Pure and Appl. Math. 1(1) Art. 7, 2000

http://jipam.vu.edu.au

From

1≤exp

(x−ξ)2 4t

≤exp

(a+b)2 4t

, we have

0< m1p ≤F(ξ) exp

−(x−ξ)2 4t

≤Mp1,

if

(3.12) m1p exp

(a+b)2 4t

≤F(ξ)≤M1p, ξ∈[−b, b].

It is easy to see that Z d−ξ

c−ξ

epx

2

4t dx=

rπt p

erf

p(d−ξ) 2√

t

−erf √

p(c−ξ) 2√

t

, where

erf (x) = 2

√π Z x

0

e−t2dt

is the error function. Therefore, for−a≤c < d≤a,the inequality (2.5) yields (3.13)

Z d c

u(x, t)pdx≥ 1 2p(πt)(p−1)/2

p n

Ap,qm M

o−pZ b

−b

ρ(ξ)dξ p−1

Z b

−b

Fp(ξ)ρ(ξ)

erf √

p(d−ξ) 2√

t

−erf √

p(c−ξ) 2√

t

dξ, whereρis a positive continuous function on[−b, b], andF satisfies (3.12).

(16)

Reverse WeightedLp–Norm Inequalities in Convolutions

Saburou Saitoh,V ˜u Kim Tu ´ânand Masahiro Yamamoto

Title Page Contents

JJ II

J I

Go Back Close

Quit Page16of16

J. Ineq. Pure and Appl. Math. 1(1) Art. 7, 2000

http://jipam.vu.edu.au

References

[1] M. CWICKELANDR. KERMAN, On a convolution inequality of Saitoh, Proc. Amer. Math. Soc., 124 (1996), 773-777.

[2] L. XIAO-HUA, On the inverse of Hölder inequality, Math. Practice and Theory, 1 (1990), 84-88.

[3] D.S. MITRINOVI ´C, J.E. PE ˘CARI ´CANDA.M. FINK, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht, 1993.

[4] S. SAITOH, A fundamental inequality in the convolution of L2 functions on the half line, Proc. Amer. Math. Soc., 91 (1984), 285-286.

[5] S. SAITOH, Inequalities in the most simple Sobolev space and convolution of L2 functions with weights, Proc. Amer. Math. Soc., 118 (1993), 515- 520.

[6] S. SAITOH, Various operators in Hilbert spaces introduced by transforms, Intern. J. Appl. Math., 1 (1999), 111-126.

[7] S. SAITOH, Weighted Lp-norm inequalities in convolutions, Handbook on Classical Inequalities, Kluwer Academic Publishers, Dordrecht (to ap- pear).

[8] H.M. SRIVASTAVAANDR.G. BUSCHMAN, Theory and Applications of Convolution Integral Equations, Kluwer Academic Publishers, Dordrecht, 1992.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

On the basis of the elementary proof in the weighted L p convolution inequalities, by using reverse Hölder inequalities, we can obtain reverse weighted L p convolution inequalities

FINK, Classical and New Inequalities in Analysis, Kluwer Academic Publishers,

ZHIZHIASHVILI, Trigonometric Fourier Series and their Conjugates, Kluwer Academic Publishers, Dobrecht, Boston, London, 1996.

Some norm inequalities for sequences of linear operators defined on Hilbert spaces that are related to the classical Schwarz inequality are given.. Applica- tions for

Some norm inequalities for sequences of linear operators defined on Hilbert spaces that are related to the classical Schwarz inequality are given.. Applications for vector

ON CHEBYSHEV TYPE INEQUALITIES INVOLVING FUNCTIONS WHOSE DERIVATIVES BELONG TO L p SPACES VIA ISOTONIC

FINK, Inequalities Involving Functions and Their Integrals and Derivatives, Kluwer Academic Publishers, Dordrecht, 1994..

FINK, Inequalities Involving Functions and Their Integrals and Derivatives, Kluwer Academic Publishers, Dordrecht, Boston,