• Nem Talált Eredményt

JJ II

N/A
N/A
Protected

Academic year: 2022

Ossza meg "JJ II"

Copied!
11
0
0

Teljes szövegt

(1)

volume 7, issue 3, article 86, 2006.

Received 06 March, 2006;

accepted 08 March, 2006.

Communicated by:L. Leindler

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

CESÁRO MEANS OFN-MULTIPLE TRIGONOMETRIC FOURIER SERIES

USHANGI GOGINAVA

Department of Mechanics and Mathematics Tbilisi State University

Chavchavadze str. 1 Tbilisi 0128, Georgia

EMail:z_goginava@hotmail.com

c

2000Victoria University ISSN (electronic): 1443-5756 068-06

(2)

Cesáro Means ofN-multiple Trigonometric Fourier Series

Ushangi Goginava

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of11

J. Ineq. Pure and Appl. Math. 7(3) Art. 86, 2006

http://jipam.vu.edu.au

Abstract

Zhizhiashvili proved sufficient condition for the Cesáro summability by negative order of N-multiple trigonometric Fourier series in the spaceLp,1≤p≤ ∞. In this paper we show that this condition cannot be improved .

2000 Mathematics Subject Classification:42B08.

Key words: Trigonometric system, Cesáro means, Summability.

Let RN be N-dimensional Euclidean space. The elements of RN are de- noted by x = (x1, . . . , xN), y = (y1, . . . , yN), . . . . For any x, y ∈ RN the vector (x1 +y1, . . . , xN +yN)of the space RN is denoted by x+y. Let kxk=

PN

i=1x2i1/2

. Denote byC

[0,2]N

the space of continuous on[0,2π]N,2π-periodic rel- ative to each variable functions with the following norm

kfkC = sup

x∈[0,2π]N

|f(x)|

andLp

[0,2π]N

,(1≤p≤ ∞)are the collection of all measurable,2π-periodic relative to each variable functionsf defined on[0,2π]N, with the norms

kfkp = Z

[0,2π]N

|f(x)|pdx 1p

<∞.

(3)

Cesáro Means ofN-multiple Trigonometric Fourier Series

Ushangi Goginava

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of11

J. Ineq. Pure and Appl. Math. 7(3) Art. 86, 2006

http://jipam.vu.edu.au

For the casep=∞, byLp

[0,2π]N

we meanC

[0,2π]N

.

Let M := {1,2, . . . , N}, B := {s1, . . . , sr}, sk < sk+1, k = 1, . . . , r− 1, B ⊂M, B0 :=M\B.Let

{si}(f, x, hsi) :=f(x1, . . . , xsi−1, xsi +hsi, xsi+1, . . . , xN)

−f(x1, . . . , xsi−1, xsi, xsi+1, . . . , xN). The expression we get by successive application of operators∆{s1}(f, x, hs1), . . . ,∆{sr}(f, x, hsr)will be denoted by∆B(f, x, hs1, . . . , hsr),i. e.

B(f, x, hs1, . . . , hsr) := ∆{sr}B\{sr}, x, hsr . Letf ∈Lp

[0,2π]N

.The expression ωBs1, . . . , δsr;f) := sup

|hsi|≤δsi,i=1,...,r

B(f,·, hs1, . . . , hsr) p

is called a mixed or a particular modulus of continuity in the Lp norm, when card(B)∈[2, N]or card(B) = 1.

The total modulus of continuity of the functionf ∈Lp

[0,2π]N

in theLp norm is defined by

ω(δ, f)p = sup

khk≤δ

kf(·+h)−f(·)kp (1≤p≤ ∞).

Suppose that f is a Lebesgue integrable function on[0,2π]N, 2π periodic relative to each variable.Then its N-dimensional Fourier series with respect to

(4)

Cesáro Means ofN-multiple Trigonometric Fourier Series

Ushangi Goginava

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of11

J. Ineq. Pure and Appl. Math. 7(3) Art. 86, 2006

http://jipam.vu.edu.au

the trigonometric system is defined by

X

i1=0

· · ·

X

iN=0

2−λ(i) X

B⊂M

a(B)i1,...,i

N

Y

j∈B0

cosijxj Y

k∈B

sinikxk, where

a(B)i

1,...,iN = 1 πN

Z

[0,2π]N

f(x) Y

j∈B0

cosijxj Y

k∈B

sinikxkdx

is the Fourier coefficient off andλ(i)is the number of those coordinates of the vectori:= (i1, . . . , iN)which are equal to zero.

LetSp1,...,pN (f, x)denote the(p1, . . . , pN)-th rectangular partial sums of the N-dimensional Fourier series with respect to the trigonometric system, i. e.

Sp1,...,pN(f, x) :=

p1

X

i1=0

· · ·

pN

X

iN=0

Ai1,...,iN(f, x), where

Ai1,...,iN(f, x) := 2−λ(i) X

B⊂M

a(B)i

1,...,iN

Y

j∈B0

cosijxj Y

k∈B

sinikxk.

The Cesáro(C;α1, . . . , αN)-means ofN-multiple trigonometric Fourier se- ries defined by

σmα11,...,α,...,mN

N(f, x) =

N

Y

i=1

Aαmi

i

!−1 m

1

X

p1=0

· · ·

mN

X

pN=0 N

Y

j=1

Aαmjj−−1p

jSp1,...,pN(f, x),

(5)

Cesáro Means ofN-multiple Trigonometric Fourier Series

Ushangi Goginava

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of11

J. Ineq. Pure and Appl. Math. 7(3) Art. 86, 2006

http://jipam.vu.edu.au

where

Aαn = (α+ 1) (α+ 2)· · ·(α+n)

n! , α6=−1,−2, . . . , n= 0,1, . . . . It is well-known that [4]

(1) c1(α)nα≤Aαn≤c2(α)nα.

For the uniform summability of Cesáro means of negative order of one- dimensional trigonometric Fourier series the following result of Zygmund [3] is well-known: if

ω(δ, f)C =o(δα)

and α ∈ (0,1), then the trigonometric Fourier series of the function f is uni- formly(C,−α)summable tof.

In [2] Zhizhiashvili proved sufficient conditions for the convergence of Cesáro means of negative order ofN-multiple trigonometric Fourier series in the space Lp

[0,2π]N

,(1≤p≤ ∞). The following is proved.

Theorem A (Zhizhiashvili). Letf ∈Lp

[0,2π]N

for somep∈[1,+∞]and α1+· · ·+αN <1, whereαi ∈(0,1),i= 1,2, . . . , N. If

ω(δ, f)p =o δα1+···+αN , then

σm−α1,...,−αN

1,...,mN (f)−f

p →0 as mi → ∞,i= 1, . . . , N.

(6)

Cesáro Means ofN-multiple Trigonometric Fourier Series

Ushangi Goginava

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of11

J. Ineq. Pure and Appl. Math. 7(3) Art. 86, 2006

http://jipam.vu.edu.au

In casep=∞the sharpness of TheoremAhas been proved by Zhizhiashvili [2]. The following theorem shows that TheoremAcannot be improved in cases 1≤p < ∞. Moreover, we prove the following

Theorem 1 (for N = 1 see [1]). Let α1 +· · ·+ αN < 1 and αi ∈ (0,1), i= 1,2, . . . , N,then there exists the functionf0 ∈C

[0,2π]N

for which (2) ω(δ, f0)C =O δα1+···+αN

and

m→∞lim

σ−αm,...,m1,...,−αN(f0)−f0 1 >0.

Proof. We can define the sequence{nk:k ≤1} satisfying the properties (3)

X

j=k+1

1

nαj1+···+αN =O

1 nαk1+···+αN

,

(4)

k−1

X

j=1

n1−(αj 1+···+αN)=O

n1−(αk 1+···+αN) ,

(5) nk−1

nk < 1 k. Consider the functionf0 defined by

f0(x1, . . . , xN) :=

X

j=1

fj(x1, . . . , xN),

(7)

Cesáro Means ofN-multiple Trigonometric Fourier Series

Ushangi Goginava

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of11

J. Ineq. Pure and Appl. Math. 7(3) Art. 86, 2006

http://jipam.vu.edu.au

where

fj(x1, . . . , xN) := 1 nαj1+···+αN

N

Y

i=1

sinnjxi. From (3) it is easy to show thatf0 ∈C

[0,2π]N

.First we shall prove that (6) ωi(δ, f)C =O δα1+···+αN

, i= 1, . . . , N.

Let n1

k ≤δ < n1

k−1. Then from (3) and (4) we can write that

|f0(x1, . . . , xi−1, xi+δ, xi+1, . . . , xN)−f0(x1, . . . , xi−1, xi, xi+1, . . . , xN)|

X

j=1

1

nαj1+···+αN |sinnj(xi+δ)−sinnjxi|

k−1

X

j=1

1

nαj1+···+αN |sinnj(xi+δ)−sinnjxi|+ 2

X

j=k

1 nαj1+···+αN

k−1

X

j=1

njδ

nαj1+···+αN +O

1 nαk1+···+αN

=O

δn1−(αk−1 1+···+αN) +O

1 nαk1+···+αN

=O δα1+···αN , which proves (6).

(8)

Cesáro Means ofN-multiple Trigonometric Fourier Series

Ushangi Goginava

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of11

J. Ineq. Pure and Appl. Math. 7(3) Art. 86, 2006

http://jipam.vu.edu.au

Since

ω(δ, f)C

N

X

i=1

ωi(δ, f)C, we obtain the proof of estimation (2).

Next we shall prove thatσn−α1,...,−αN

k,...,nk (f0)diverge in the metric ofL1

[0,2π]N . It is clear that

σ−αn 1,...,−αN

k,...,nk (f0)−f0 1

σn−α1,...,−αN

k,...,nk (fk) 1

(7)

k−1

X

j=1

σn−α1,...,−αN

k,...,nk (fj)−fj C

X

j=k+1

σn−α1,...,−αN

k,...,nk (fj) C

X

j=k

kfjkC

=I−II −III −IV.

It is evident that

(8) σ−αn 1,...,−αN

k,...,nk (fj) = 0, j =k+ 1, k+ 2, . . . . Using (3) forIV we have

(9) IV ≤

X

j=k

1

nαj1+···+αN =O

1 nαk1+···+αN

.

(9)

Cesáro Means ofN-multiple Trigonometric Fourier Series

Ushangi Goginava

Title Page Contents

JJ II

J I

Go Back Close

Quit Page9of11

J. Ineq. Pure and Appl. Math. 7(3) Art. 86, 2006

http://jipam.vu.edu.au

Since [2]

σn−αk,...,n1,...,−αk N(fj)−fj

C =O X

B⊂M

ωB

1 nk, fj

C

n

P

s∈B

αs

k

!

and

ωi 1

nk, fj

=O 1

nαj1+···+αN nj

nk

! ,

from (4) and (5) we get

II =O 1

n1−(αk 1+···+αN)

k−1

X

j=1

n1−(αj 1+···+αN)

! (10)

=O 1

n1−(αk 1+···+αN)

k−2

X

j=1

n1−(αj 1+···+αN)+n1−(αk−1 1+···+αN) n1−(αk 1+···+αN)

!

=O n1−(αk−1 1+···+αN) n1−(αk 1+···+αN)

!

=O 1

k

1−(α1+···+αN)!

=o(1) as k → ∞.

Since

a(B)i1,...,i

N(fk) = 0, for B ⊂M, B 6=M and

a(Mi1,...,i)

N(fk) =

n−αk 1−···−αN, for i1 =· · ·=iN =nk;

0, otherwise,

(10)

Cesáro Means ofN-multiple Trigonometric Fourier Series

Ushangi Goginava

Title Page Contents

JJ II

J I

Go Back Close

Quit Page10of11

J. Ineq. Pure and Appl. Math. 7(3) Art. 86, 2006

http://jipam.vu.edu.au

from (1) we have σn−α1,...,−αN

k,...,nk (fk) 1

(11)

= Z

0

· · · Z

0

σn−α1,...,−αN

k,...,nk (fk;x1, . . . , xN)

dx1· · ·dxN

Z 0

· · · Z

0

σn−α1,...,−αN

k,...,nk (fk;x1, . . . , xN)

N

Y

i=1

sinnkxidx1· · ·dxN

=

1 A−αnk1

· · · 1 A−αnkN

nk

X

i1=0

· · ·

nk

X

iN=0 N

Y

j=1

A−αnk−1i−1j

× Z

0

· · · Z

0

Si1,...,iN(fk;x1, . . . , xN)

N

Y

i=1

sinnkxidx1· · ·dxN

N 1 A−αnk1

· · · 1 A−αnkN

a(Mn )

k,...,nk(fk)

N 1 A−αnk1

· · · 1 A−αnkN

n−αk 1−···−αN ≥c(α1, . . . , αN)>0.

Combining (7) – (11) we complete the proof of Theorem1.

(11)

Cesáro Means ofN-multiple Trigonometric Fourier Series

Ushangi Goginava

Title Page Contents

JJ II

J I

Go Back Close

Quit Page11of11

J. Ineq. Pure and Appl. Math. 7(3) Art. 86, 2006

http://jipam.vu.edu.au

References

[1] U. GOGINAVA, Cesáro means of trigonometric Fourier series, Georg.

Math. J., 9 (2002), 53–56.

[2] L.V. ZHIZHIASHVILI, Trigonometric Fourier Series and their Conjugates, Kluwer Academic Publishers, Dobrecht, Boston, London, 1996.

[3] A. ZYGMUND, Sur la sommabilite des series de Fourier des functions verfiant la condition de Lipshitz, Bull. de Acad. Sci. Ser. Math. Astronom.

Phys., (1925), 1–9.

[4] A. ZYGMUND, Trigonometric Series, Vol. 1, Cambridge Univ. Press, 1959.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

RASSIAS (Eds.), Ostrowski Type Inequalities and Applications in Numerical Integration, Kluwer Academic Publishers, Dordrecht, 2002..

ZHIZHIASHVILI, Trigonometric Fourier Series and their Conjugates, Kluwer Academic Pub- lishers, Dobrecht, Boston, London, 1996..

FINK, Inequalities Involving Functions and Their Integrals and Derivatives, Kluwer Academic Publishers, Dordrecht, 1994..

GOGINAVA, Maximal operators of Fejér means of double Vilenkin-Fourier series, Colloq. FUJII, Cesàro summability of Walsh-Fourier

GOGINAVA, Maximal operators of Fejér means of double Vilenkin- Fourier series, Colloq.. FUJII, Cesàro summability of Walsh-Fourier

VYAS, Fourier series with small gaps and func- tions of generalized variations, J. SHIBA, On the absolute convergence of Fourier series of functions of

VYAS, Fourier series with small gaps and functions of generalized varia- tions, J.. SHIBA, On the absolute convergence of Fourier series of functions of

HEYWOOD, On the integrability of functions defined by trigonometric series, Quart. IGARI, Some integrability theorems of trigonometric series and mono- tone decreasing functions,