• Nem Talált Eredményt

ON A GENERALIZATION OF LIPSCHITZ’S CLASSES

N/A
N/A
Protected

Academic year: 2022

Ossza meg "ON A GENERALIZATION OF LIPSCHITZ’S CLASSES"

Copied!
15
0
0

Teljes szövegt

(1)

Generalization of Lipschitz’s Classes

Xh. Z. Krasniqi vol. 9, iss. 3, art. 73, 2008

Title Page

Contents

JJ II

J I

Page1of 15 Go Back Full Screen

Close

ON A GENERALIZATION OF LIPSCHITZ’S CLASSES

Xh. Z. KRASNIQI

Department of Mathematics and Computer Sciences, Avenue "Mother Teresa" 5

Prishtinë, 10000, Republic of Kosovo EMail:xheki00@hotmail.com

Received: 26 March, 2008

Accepted: 06 August, 2008

Communicated by: H. Bor 2000 AMS Sub. Class.: 42A20, 42A32.

Key words: Lipschitz classes, Fourier series.

Abstract: In this paper we obtain a generalization of Lipschitz’s classesΛm(β, p, r)de- fined in [1]. We give necessary conditions for even or odd functions with Fourier series to belong to the classesΛm(p, r, α). We also give sufficient conditions for even or odd functions with Fourier series to belong to the same classes.

(2)

Generalization of Lipschitz’s Classes

Xh. Z. Krasniqi vol. 9, iss. 3, art. 73, 2008

Title Page Contents

JJ II

J I

Page2of 15 Go Back Full Screen

Close

Contents

1 Definitions and Useful Statements 3

2 Main Results 7

(3)

Generalization of Lipschitz’s Classes

Xh. Z. Krasniqi vol. 9, iss. 3, art. 73, 2008

Title Page Contents

JJ II

J I

Page3of 15 Go Back Full Screen

Close

1. Definitions and Useful Statements

We consider the series

(1.1) a0

2 +

X

n=1

ancosnx

or (1.2)

X

n=1

ansinnx

whereanare Fourier coefficients of integrable functionf.

Definition 1.1. We say that a functionf belongs toW Ap,(1< p <∞)if

X

n=1

np−2

X

k=n

|∆ak|

!p

<+∞

where∆ak =ak−ak+1(see [1]).

We say that any functionα(t)is a function of typeσ(see [4]) if it is measurable in [0,1], integrable in[δ,1]for eachδ ∈ (0,1), and there exist real numbersC1,α >0, σandδ0 ∈(0,1)such that

1. α(t)≥C1,α, for allt ∈[0,1];

2. Rδ

0 α(t)tsdt <∞for eachs > σandδ∈(0, δ0);

3. Rδ

0 α(t)tsdt =∞for eachs < σandδ∈(0, δ0), and Z δ

0

α(t)tσdt≤C2δσ Z

δ

α(t)dt.

(4)

Generalization of Lipschitz’s Classes

Xh. Z. Krasniqi vol. 9, iss. 3, art. 73, 2008

Title Page Contents

JJ II

J I

Page4of 15 Go Back Full Screen

Close

In [1], the classesΛm(β, p, r,)are defined in the following way Definition 1.2. f ∈Λm(β, p, r,), if

f

(m) β,p,r

(Z 1

0

Z 0

|∆mf(x, t)|p tβp dx

pr dt

t )1r

<+∞,

where1< p <+∞,1≤r <+∞, β >0, m∈Nand

mf(x, t) =

m

X

i=1

(−1)iCmi f[x+ (m−2i)t].

Now we define classesΛm(p, r, α)as follows:

Definition 1.3. We sayf ∈Λm(p, r, α), if

f

(m) p,r,α

(Z 1

0

α(t) Z

0

|∆mf(x, t)|pdx pr

dt )1r

<+∞,

whereα(t)is function of the typeσ.

For α(t) = t−rβ−1, β > 0, we get the classes Λm(β, p, r), considered in [1].

Therefore classesΛm(p, r, α)are generalizations of classesΛm(β, p, r).

We need some auxiliary statements.

(5)

Generalization of Lipschitz’s Classes

Xh. Z. Krasniqi vol. 9, iss. 3, art. 73, 2008

Title Page Contents

JJ II

J I

Page5of 15 Go Back Full Screen

Close

Lemma 1.4 ([2]). Let aν, bν and βn be numbers such that aν ≥ 0, bν ≥ 0 and P

ν=naν =anβn:

1. For0< p ≤1the following inequality is valid

X

ν=1

aν

ν

X

µ=1

bµ

!p

≥pp

X

ν=1

aν(bνβν)p;

2. For1≤p < ∞we have

X

ν=1

aν

ν

X

µ=1

bµ

!p

≤pp

X

ν=1

aν(bνβν)p.

Lemma 1.5 ([2]). Let aν, bν and γn be numbers such that aν ≥ 0, bν ≥ 0 and Pn

ν=1aν =bnγn:

1. For0< p ≤1, we have

X

ν=1

aν

X

µ=ν

bµ

!p

≥pp

X

ν=1

aν(bνγν)p;

2. For1≤p < ∞, we have

X

ν=1

aν

X

µ=ν

bµ

!p

≤pp

X

ν=1

aν(bνγν)p.

(6)

Generalization of Lipschitz’s Classes

Xh. Z. Krasniqi vol. 9, iss. 3, art. 73, 2008

Title Page Contents

JJ II

J I

Page6of 15 Go Back Full Screen

Close

Lemma 1.6 ([3]). Let µ, τ and aν be numbers such that 0 < µ < τ < ∞ and aν ≥0. Then

X

ν=1

aτν

!1τ

X

ν=1

aµν

!µ1 .

We denote byC a constant that depends only onm, p, r and may be different in different relations.

Theorem 1.7 ([1]). Iff ∈W Ap,1< p <+∞, then

ωp(m)(h;f) p ≤Chmp X

n≤[h1]

n(m+1)p−2

X

k=n

|∆ak|

!p

+C X

n>[h1] np−2

X

k=n

|∆ak|

!p

,

whereωp(m)(h;f)is the integral modulus of smoothness of orderm.

(7)

Generalization of Lipschitz’s Classes

Xh. Z. Krasniqi vol. 9, iss. 3, art. 73, 2008

Title Page Contents

JJ II

J I

Page7of 15 Go Back Full Screen

Close

2. Main Results

Let us denote

A(n) :=

Z 1/n 1/(n+1)

α(t)dt,

b(n) :=b1(n) +b2(n) =nmr Z 1/n

0

α(t)tmrdt+ Z 1

1/(n+1)

α(t)dt.

We have the following first main result.

Theorem 2.1. Letmbe any natural number and

f ∈AWp, 1< p <+∞, 1≤r <+∞.

If for the coefficients of series(1.1)or(1.2)we haveP

k=1|∆ak|<+∞, then:

1. Forp≤rwe have

f

(m) p,r,α≤C

( X

n=1

nr 1−2p

X

k=n

∆ak

!r

b(n)

b(n) A(n)

rp−1)1r

;

2. Forp > rwe have

f

(m) p,r,α ≤C

( X

n=1

nr 1−2p

X

k=n

∆ak

!r

b(n) )1r

.

(8)

Generalization of Lipschitz’s Classes

Xh. Z. Krasniqi vol. 9, iss. 3, art. 73, 2008

Title Page Contents

JJ II

J I

Page8of 15 Go Back Full Screen

Close

Proof. Using the characteristics of the integral modulus of smoothness we have n

f

(m) p,r,α

or

= Z 1

0

α(t) Z

0

|∆mf(x, t)|pdx pr

dt

X

N=1

Z 1/N 1/(N+1)

α(t)

ω(m)p (f;t)r dt

X

N=1

ω(m)p (f; 1/N)r Z 1/N

1/(N+1)

α(t)dt

=

X

N=1

A(N)

ωp(m)(f; 1/N)r .

According to the Theorem1.7, we have n

f

(m) p,r,α

or

≤C

X

N=1

A(N)N−mr ( N

X

n=1

n(m+1)p−2

X

k=n

|∆ak|

!p)rp

+C

X

N=1

A(N) (

X

n=N+1

np−2

X

k=n

|∆ak|

!p)rp

=I1+I2.

Now we estimateI1 andI2. Letr/p≥1. Then according to Lemma1.4we have I1 ≤C

X

N=1

A(N)N−mr (

N(m+1)p−2

X

k=N

|∆ak|

!p

βN )rp

.

(9)

Generalization of Lipschitz’s Classes

Xh. Z. Krasniqi vol. 9, iss. 3, art. 73, 2008

Title Page Contents

JJ II

J I

Page9of 15 Go Back Full Screen

Close

Now we estimate the quantityβN: A(N)N−mrβN =

X

i=N

A(i)i−mr

=

X

i=N

i+ 1 i

mr

· 1 (i+ 1)mr

Z 1/i 1/(i+1)

α(t)dt

≤2mr Z 1/N

0

α(t)tmrdt, or

βN ≤Cb1(N) A(N). Consequently

(2.1) I1 ≤C

X

N=1

A(N)Nr(1−2p)

X

k=N

|∆ak|

!r

b1(N) A(N)

rp .

According to Lemma1.5, forr/p≥1we have I2 ≤C

X

N=1

A(N) (

Np−2

X

k=N

|∆ak|

!p

γN )rp

.

We estimate the quantityγN: A(N)γN =

N

X

i=1

A(i) = Z 1

1/(N+1)

α(t)dt⇒γN = b2(N) A(N).

(10)

Generalization of Lipschitz’s Classes

Xh. Z. Krasniqi vol. 9, iss. 3, art. 73, 2008

Title Page Contents

JJ II

J I

Page10of 15 Go Back Full Screen

Close

Consequently

(2.2) I2 ≤C

X

N=1

A(N)Nr(1−2p)

X

k=N

|∆ak|

!r

b2(N) A(N)

rp .

By (2.1) and (2.2) we get n

f

(m) p,r,α

or

≤C

X

N=1

A(N)Nr(1−2p)

X

k=N

|∆ak|

!r(

b1(N) A(N)

rp +

b2(N) A(N)

rp) .

Finally, according to Lemma1.6, forr≥pwe have f

(m) p,r,α ≤C

( X

N=1

A(N)Nr(1−2p)

X

k=N

|∆ak|

!r

b(N) A(N)

rp)1r .

Now letr/p <1. Then, according to Lemma1.6, we have I1 ≤C

X

N=1

A(N)N−mr

N

X

n=1

n(m+1)r−2rp

X

k=n

|∆ak|

!r

.

If we change the order of summation we get I1 ≤C

X

n=1

n(m+1)r−2rp

X

k=n

|∆ak|

!r

X

N=n

A(N)N−mr

≤C

X

n=1

nr(1−2p)

X

k=n

|∆ak|

!r

b1(n).

(2.3)

(11)

Generalization of Lipschitz’s Classes

Xh. Z. Krasniqi vol. 9, iss. 3, art. 73, 2008

Title Page Contents

JJ II

J I

Page11of 15 Go Back Full Screen

Close

Now we estimateI2. Using Lemma 1.6 and changing the order of summation we have:

I2 ≤C

X

N=1

A(N)

X

n=N

nr(1−2p)

X

k=n

|∆ak|

!r

=C

X

n=1

nr(1−2p)

X

k=n

|∆ak|

!r n

X

N=1

A(N)

=C

X

n=1

nr(1−2p)

X

k=n

|∆ak|

!r

b2(n).

(2.4)

From (2.3) and (2.4) we deduce f

(m) p,r,α ≤C

( X

n=1

nr 1−2p

X

k=n

∆ak

!r

b(n) )1r

,

which fully demonstrates Theorem2.1.

Theorem 2.2. Letmbe any natural number and

1< p ≤2, 1≤r <+∞, 1/p+ 1/q= 1.

Ifanare the coefficients of series(1.1)or(1.2), then:

1. Forr≤qwe have

f

(m) p,r,α ≥C

( X

n=1

n−mr|an|rb1(n)

b1(n) A(n)

rq−1)1r

;

(12)

Generalization of Lipschitz’s Classes

Xh. Z. Krasniqi vol. 9, iss. 3, art. 73, 2008

Title Page Contents

JJ II

J I

Page12of 15 Go Back Full Screen

Close

2. Forr > qwe have

f

(m) p,r,α ≥C

( X

n=1

n−mr|an|rb1(n) )1r

.

Proof. Letf be an even function. Iff is an odd function then the proof of the theo- rem is analogous to the even case. It is not difficult to see that the Fourier series of

mf(x, t)is

mf(x, t)∼









(−1)m22m

P

n=1

ancosnxsinmnt, formeven

(−1)m−12 −12m

P

n=1

ansinnxsinmnt, formodd.

According to the well-known Hausdorf-Young’s theorem we find C

Z 0

|∆mf(x, t)|pdx rp

X

n=1

|an|q|sinnt|mq

!rq ,

and then n

f

(m) p,r,α

or

≥C

X

ν=1

Z 1/ν 1/(ν+1)

α(t)

ν

X

n=1

|an|q|sinnt|mq

!rq dt.

Using the well-known inequalitysinB ≥ π2B for0≤B ≤ π2, we get n

f

(m) p,r,α

or

≥C

X

ν=1

A(ν)

ν

X

n=1

n−mq|an|q

!rq .

(13)

Generalization of Lipschitz’s Classes

Xh. Z. Krasniqi vol. 9, iss. 3, art. 73, 2008

Title Page Contents

JJ II

J I

Page13of 15 Go Back Full Screen

Close

Letr ≤q, then according to Lemma1.4we have n

f

(m) p,r,α

or

≥C

X

ν=1

A(ν)

ν−mq|aν|qβνrq .

It is easy to prove thatβνbA(ν)1(ν), from which we get

(2.5) n

f

(m) p,r,α

or

≥C

X

ν=1

ν−mr|aν|rb1(ν)

b1(ν) A(ν)

rq−1

.

Letq < r, then according to Lemma1.6 and with the change of the order of sum- mation we have

n f

(m) p,r,α

or

≥C

X

ν=1

A(ν)

ν

X

n=1

n−mr|an|r

=C

X

n=1

n−mr|an|r

X

ν=n

A(ν)

≥C

X

n=1

n−mr|an|rb1(n).

(2.6)

Relations (2.5) and (2.6) prove Theorem2.2.

We can deduce three corollaries from Theorem2.1and Theorem2.2.

Corollary 2.3. Under the conditions of Theorem2.1 and with b(n) ≤ CA(n), we have

f

(m) p,r,α ≤C

( X

n=1

nr 1−2p

X

k=n

∆ak

!r

b(n) )1r

.

(14)

Generalization of Lipschitz’s Classes

Xh. Z. Krasniqi vol. 9, iss. 3, art. 73, 2008

Title Page Contents

JJ II

J I

Page14of 15 Go Back Full Screen

Close

Corollary 2.4. Under the conditions of Theorem2.2 and withb1(n) ≤ CA(n), we have

f

(m) p,r,α≥C

( X

n=1

n−mr|an|rb1(n) )1r

.

As a special case, forα(t) =t−βr−1, it is easy to prove the estimates:

A(n)≤Cnβr−1 and b(n)≤Cnβr.

From Theorem 2.1 and the last estimates we can deduce the following result proved in [1].

Corollary 2.5 ([1]). Letmbe any natural number and

0< β ≤m, 1< p <+∞, 1≤r <+∞, 1/p+ 1/q= 1.

If the coefficients of series (1.1) or (1.2) satisfyP

k=1|∆ak|<+∞, then f

(m) β,p,r ≤C

( X

n=1

nr(β+1q)−1

X

k=n

∆ak

!r)1r .

(15)

Generalization of Lipschitz’s Classes

Xh. Z. Krasniqi vol. 9, iss. 3, art. 73, 2008

Title Page Contents

JJ II

J I

Page15of 15 Go Back Full Screen

Close

References

[1] T.Sh. TEVZADZE, Some classes of functions and trigonometric Fourier series, Some Questions of Function Theory, v. II, 31–92, Tbilisi University Press, 1981 (in Russian).

[2] M.K. POTAPOVANDM. BERISHA, Moduli of smoothnes and Fourier coeffi- cients of functions of one variable, Publ. Inst. Math. (Beograd) (N.S.), 26(40) (1979), 215–228 (in Russian).

[3] B. HARDY, E. LITLEWOOD AND G. POLYA, Inequalities, GIIL Moscow, 1948, 1–456 (in Russian).

[4] M.K. POTAPOV, A certain imbedding theorem, Mathematica (Cluj), 14(37) (1972), 123–146.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

CHANDRA, On the degree of approximation of a class of functions by means of Fourier series, Acta Math.. CHANDRA, A note on the degree of approximation of continuous function,

CHANDRA, On the degree of approximation of a class of functions by means of Fourier series, Acta Math. CHANDRA, A note on the degree of approximation of continuous function,

CHANDRA, On the degree of approximation of a class of functions by means of Fourier series, Acta Math.. CHANDRA, A note on the degree of approximation of continuous function,

It appears that while the study of the order of magnitude of the trigonometric Fourier coefficients for the functions of various classes of generalized variations such as BV (p) (p ≥

The generalizations of the classical theorems have been obtained in two main directions: to weaken the classical monotonicity condition on the coefficients λ n ; to replace

TEVZADZE, Some classes of functions and trigonometric Fourier series, Some Questions of Function Theory, v. BERISHA, Moduli of smoothnes and Fourier coefficients of functions of

CHANDRA, On the degree of approximation of a class of functions by means of Fourier series, Acta Math. CHANDRA, A note on the degree of approximation of continuous functions,

CHANDRA, On the degree of approximation of a class of functions by means of Fourier series, Acta Math.. CHANDRA, A note on the degree of approximation of continuous functions,