• Nem Talált Eredményt

photocatalytic Catalytic and reactions of H + CO on supported Aucatalysts Applied Catalysis A: General

N/A
N/A
Protected

Academic year: 2022

Ossza meg "photocatalytic Catalytic and reactions of H + CO on supported Aucatalysts Applied Catalysis A: General"

Copied!
6
0
0

Teljes szövegt

(1)

AppliedCatalysisA:General506(2015)85–90

Contents lists available atScienceDirect

Applied Catalysis A: General

j o u r n a l h o m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / a p c a t a

Catalytic and photocatalytic reactions of H 2 + CO 2 on supported Au catalysts

Gyula Halasi, Andrea Gazsi, Tamás Bánsági, Frigyes Solymosi

MTA-SZTEReactionKineticsandSurfaceChemistryResearchGroup,RerrichBélatér1,H-6720Szeged,Hungary

a r t i c l e i n f o

Articlehistory:

Received2July2015

Receivedinrevisedform3August2015 Accepted27August2015

Availableonline29August2015

Keywords:

Aucatalysts ReactionofCO2

IRspectroscopy Photocatalysis

a b s t r a c t

TheinteractionandthereactionbetweenH2+CO2havebeeninvestigatedonsupportedAucatalysts.By meansofinfraredspectroscopy,theformationofformatespecieswasdetected.Thereactionbetween H2+CO2occurredabove475–500K.ThemainreactionpathwaywastheformationofCO.Thecatalytic efficiencyofAusensitivelydependeduponthenatureofthesupport.HighestconversionofCO2was foundonAuparticlesdispersedonn-typeoxides,TiO2,ZnO,andCeO2.Audepositedoninsulatingoxides exhibitedmuchlessactivity.Athigherpressure,at8.5atm,asmallamountofCH4andCH3OHwerealso produced.Illuminationoftheactivecatalystsinducedthereactionevenatroomtemperatureresulting intheformationofCH4.ThehighactivityofAuparticlessupportedbyn-typesemiconductingoxideswas ascribedtotheelectronicinteractionbetweenAuandoxidesleadingtotheactivationofCO2.

©2015ElsevierB.V.Allrightsreserved.

1. Introduction

TheactivationofCO2anditsconversionintomorevaluablecom- poundsisagreatchallengeforheterogeneouscatalysis[1–5].We becameinvolvedinthissubjectinearly80s[6–9].Ourmainfind- ingswereasfollows:incontrasttotheearlierbeliefCO2doesnot dissociateonsupportedRhat 300K,but additionof H2 toCO2

inducesitsdissociation even atroomtemperatureand leadsto theformationof formate species.Thisresultwasconfirmed on Rh(111)inUHVbyseveralelectronsspectroscopicmeasurements [10].Itwasanimportantfindingthatthecatalyticperformance ofthePtmetalsinthehydrogenationofCO2isstronglyaffected by thenature ofthe supports. TiO2 was foundtobe themost effectiveone,which wasattributedtotheelectronicinteraction betweenmetalsandTiO2 [9].Thisexplanationwasbasedonour earlyfindingnamelythatvariationoftheworkfunctionofTiO2 appreciablyaffectedthecatalyticperformanceof Nievaporated onTiO2[11–13].Itappearsthattheinterestinthecarriereffect becamemoreintensivenowadaysthankstothemodernsurface sciencemethods,andthepossibleroleofoxygenvacancyofTiO2

cameintoprominence[14–16].

Correspondingauthor.Fax:+3662544106.

E-mailaddress:fsolym@chem.u-szeged.hu(F.Solymosi).

AfterdiscoverythatAuinnanosizeexhibitsasurprisinglyhigh catalyticactivityinmanyreactions[17–19],itsinfluencehasbeen alsotestedinthecatalyticchemistryofCO2[20–23].Audeposited onTiO2andtitanatenanotubewerefoundtobeinactiveinCO2

hydrogenation[21].Athighpressure(50atm)andatrelativelylow spacevelocity(3000h1mlg1),however,asignificantamountof methanolwasfound[22,23].

Inthepresentwork,weexaminethesurfaceinteractionand reactionbetweenH2andCO2onAucatalysts.Attentionispaidto theeffectsofsupports,promotorsandillumination.Weexpectthat theAuinnanosize(1–3nm)depositedonn-typesemiconducting oxidesmightbeabletoactivatetheratherinertCO2andinducesits thermalandphotoreactionswithH2evenatlowpressure.Recently, itwasfoundtheAu/TiO2 isaveryeffectivecatalystevenforthe photoinducedreactionsofNO+C2H5OHandinthedecomposition ofseveralorganiccompoundsatroomtemperature[24].Asregards theactivationofCO2,recentlywefoundthatthedepositionofKon Au(111)singlecrystalleadstotheformationofnegativelycharged CO2anditsdissociationevenabove300K[25].Illuminationofthe CO2+K/Au(111)systemgreatlypromotedthedissociationofCO2

[26].

http://dx.doi.org/10.1016/j.apcata.2015.08.035 0926-860X/©2015ElsevierB.V.Allrightsreserved.

(2)

Fig.1. SizesofAuparticlesondifferentsupports(A),XPSspectraofdifferentAucatalysts(B).

Fig.2.SelectedIRspectraobservedatroomtemperatureafterH2+CO2(4:1)reactionatdifferenttemperatureonAu/TiO2(A)a,300K(15m);b,373K(30m);c,423K(30m);

d,523K(30m);e,573K(30m);f,afterevacuationat300K;andfollowing0.5TorrHCOOHadsorptiononAu/SiO2(B)a,adsorptionat300K(5m);b,300K(10m);c,373K (10m);d,473K(10m);e,573K(10m).

(3)

G.Halasietal./AppliedCatalysisA:General506(2015)85–90 87 2. Experimental

2.1. Materials

SupportedAucatalystswithagoldloadingof1and5wt%was preparedbyadeposition-precipitationmethod.Chloroauricacid (HAuCl4×aqp.a.49%Au,FlukaAG)wasfirstdissolvedintriply distilledwater.AfterthepHoftheHAuCl4 aqueoussolutionwas adjustedto7.5pHbyadding25%ammoniasolution,thefinepow- derofoxidicsupportwassuspendedandkeptat343Kfor1hwith continuousstirring.Thesuspensionwasagedfor24hatroomtem- peratureandwashedwithdistilledwaterrepeatedly,driedat353K, calcinedinairandreducedat673Kfor4h.Thefollowingsupports wereused:Al2O3(Degussa);SiO2(Aerosil380);CeO2(ALFAAESAR) andMgO(DAB).Inaddition,weusedcommercial1%Au/TiO2and 1%Au/ZnO(AUROlite)samplespurchasedbyStremChem.

2.2. Methodsandcharacterizationtechniques

X-rayphotoelectronspectra(XPS) weretakenwitha Kratos XSAM800instruments,using non-monochromaticAlK˛radia- tion(hv=1486.6eV)anda180 hemisphericalanalyseratabase pressure of 1×10−9mbar.Binding energies werereferenced to theC 1sbinding energy (BE) (285.1eV), withthe exception of Au/SiO2,wheretheSi2pcorelevelat103.4eVwasusedasrefer- ence.Transmissionelectronmicroscopy(TEM)imagesweretaken withaPhilipsCM20andaMorgagni268Delectronmicroscopeat 300K.Approximately1mgofcatalystwasplacedonaTEMgrid.

InfraredspectrawererecordedwithaBiorad(Digilab.Div.FTS 155)withawavenumberaccuracy±4cm−1.Typically,128scans werecollected.Allsubstractionsofthespectraweretakenwithout theuseofascalingfactor(f=1.0).Thesamplecanbeheatedand cooledinsitu.Thechambercanbeevacuatedto10−6mbar.

2.3. Catalytictest

ThereactionofH2+CO2 wasinvestigatedina flowmicrore- actoratatmosphericpressure.Theinnerdiameterofthereactor was8mm,and itslengthwas250mm.Thereactorwasheated by anexternal oven.The weight of thecatalyst was0.3g.The spacevelocitieswere3000–6000h1.Inthekineticmeasurements theconversionofCO2waskeptlessthan10–15%.Experimentsat 9.5barpressurewerecarriedoutinstainlesssteeltube.Analyses ofthegaseswereperformedwithanAgilent4890Dgaschromato- graph.A2mlong0.25indiametercolumnpackedwithPorapakQS allowedcompleteseparationanddeterminationofreactantsand products.

Thephotocatalyticreactionwasfollowedinathermallycontrol- lablephotoreactor(volume:1650cm−1)equippedwitha 500W medium pressuremercury vapor lamp(TQ 718, Heraeus Noble light,Germany)asalightsource.Thislampemitspredominantly inthewavelengthrangeof250–440nm.Itsmaximumintensityis at254nm.

3. Results

3.1. Characterizationofthecatalysts

AsshowninFig.1A,theparticlesizedistributiondependedon thenatureofthesupport.InthecaseofAu/TiO2 andAu/ZnOthe mainsizeoftheAuparticlesissmall,1.5–2.5nm,anduniform.This valueforAu/SiO2andAu/Al2O3fellsintherangeof2–10nm.The averagesizesofAuparticlesondifferentoxidicsupportsaregiven inTable1.TheXPSspectraofsomeselectedAusamplesareshown inFig.1B.IntheanalysisofXPSspectra,weacceptedtheBEsofthree Austates:84.0eVforAu0,84.6eVforAu1+and85.9eVforAu3+

[31–33].BindingenergiesarealsogiveninTable1.Accordingly, theAuinthereducedsamplesisintheformofAu0.However,we cannotexcludethepresenceofAu1+intheAu/TiO2andAu/CeO2in averysmallconcentration.

3.2. FTIRstudies

TheprimaryaimoftheIRspectroscopicmeasurementsisthe detection of formate species formed in the surface interaction betweenH2 and CO2.This surfacegroup wasvery easilyiden- tified in the case of supported Pt metals [6–9,27–30]. As was established beforetheasymmetric stretch of adsorbedformate isat155–1591cm1 andthesymmetriconeat1351–1390cm1 [6–9,27–30].AsCO2 formingdifferentcarbonatespeciesonTiO2 andotheroxidesgavesimilarspectralfeatures,itisnot easyto establish thepresence ofa very small amountofformate gen- eratedintheH2+CO2 interactiononsupportedAucatalysts.In Fig.2A,wepresentedtheselectedregionofthespectrafollowing thecoadsorptionofH2+CO2overAu/TiO2sample.Itshowsthatno absorptionbandisdevelopedat1384cm1at300K,butitclearly appearedat373K.Itsintensityslightlyincreasedupto423K,then startedattenuatingathighertemperature.Inordertoestablishthe locationformatespecies,HCOOHwasadsorbedonAu/SiO2 sam- ple.AsseeninFig.2B,intenseabsorptionbandsappearedat1727, 1598,1380and1361cm−1.Theirintensitiesgraduallydecreased withtheraisingoftheadsorptiontemperature.

3.3. Catalyticstudy

Onthemostactive1%Au/TiO2catalystthereactionofH2+CO2 wasmeasurableevenaround450K.TheconversionofCO2reached 50%at773K.Thisvaluewas∼35%onthe1%Au/CeO2and28%on Au/ZnO.MuchlessactivitywasexhibitedbyAu/SiO2andAu/MgO.

Allthecatalystsexhibitedaremarkablestabilityat773K.Themain productofthereactionwasCOandH2O.Methaneandmethanol formedonlyintracequantitiesevenontheactivesamples.Increas- ingtheamountofAufrom1%to5%didnotleadtohighercatalytic performance.Notethatthepureoxidesexhibitednoorverylit- tleactivityevenat773K.ThecatalyticbehaviorofCeO2nanowire andnanotubewasalsotestedwithoutanypositiveresults.Some importantdataarepresentedinFig.3A.

Theeffectofpotassiumpromotorwasexaminedinthecaseof Au/CeO2.AsshowninFig.3B,adding1%K2OtoAu/CeO2appre- ciablyenhanceditscatalyticperformance.TheconversionofCO2

increased from 38 to 50% and a slight formation of CH4 also occurred.Notethatpotassiumexertednopromotoreffectinthe caseofpureCeO2support.

ThedependenceoftherateofCOformationonthepartialpres- suresofH2andCO2wasdeterminedonAu/TiO2fromtheslopes oflog–logplotsoftherateagainstthereactantpartialpressures (Fig.3C). It wasfound that thekinetic orderfor CO2 was0.62 and thatfor H2 0.57. Theactivationenergyof thereactionwas determinedfromthetemperaturedependenceoftherateofCOfor- mationinthesteadystate.TheArrheniusplotisshowninFig.3D.

Weobtainedavalueof64.8kJ/mol.

Somemeasurementwerecarriedoutathigherpressure,9.5bar.

On Au/TiO2, beside CO a significant amount of methane and methanolalsoformed.Lessamountofthesecompoundswerepro- ducedonAu/CeO2andAu/ZnO.Importantresultsarepresentedin Fig.4.

3.4. Effectofillumination

Illuminationoftheactivecatalystsinitiatedthereactionevenat roomtemperature.ThemostefficientsamplewasAu/TiO2followed byAu/ZnOandAu/CeO2.ResultsareplottedinFig.5.Themajor

(4)

Fig.3.ConversionofCO2intheH2+CO2(4:1)reactiononvariousAucatalystsatdifferenttemperatures(A)and(B).DependenceofrateofCOformationonthepartial pressureofCO2andH2onAu/TiO2catalyst(C).ArrheniusplotofH2+CO2reactionforAu/TiO2(D).

productinthiscasewasCH4,COformedonlyinatraceamount.

TheconversionofCO2onAu/TiO2reached3.5%in220m.

4. Discussion 4.1. IRstudies

BeforediscussingtheresultsofIRspectroscopicmeasurements, wementionthatintheinteractionofH2+CO2onsupportedPtmet- als,theformationofadsorbedCOandformatespecieswasdetected [6,7,26–29].Asthenumberof formategroups onRh/Al2O3 and Rh/MgOwas5–7timeshigherthanthatofsurfaceRhatoms,itwas concludedthatformateresidesonthesupportandnotontheRh [6–9].Thisconclusionwassupportedbythefindingthatnoformate wasdetectedonSiO2-supportedPtmetalsabove300K[6–9].AsCO adsorbsweaklyonAuparticlesatandabove300K[17–19],itisnot surprisingthatwefoundnoabsorptionbandsduetoCObondedto

Aumetal.Itisanopenquestion,whetheradsorbedformateisbeing formedinthecatalyticreactionofH2andCO2

H2+CO2= HCOO(a)+H(a)(1)

on supported Au catalyst. The difficulty of the detection of a verysmall amountof formatein thepresence of largeamount of CO2 is described in chapter 1. After several unsuccessful attempts,weidentifiedthesymmetricstretchofformatespeciesat 1384cm1generatedbytheH2andCO2reactiononAu/TiO2cata- lyst(Fig.2A).ThefindingthatadsorptionHCOOHonAu/SiO2gave intenseabsorptionbandsat1598cm−1 (asymmetricstretch)and 1380cm1 (symmetricstretch)suggeststhattheformategroup existsonAuparticles (Fig.2B).Theseabsorption featureswere detectedevenafterheatingtheadsorbedlayerto573Kindicat- ingthehighstabilityofformatespeciesonAumetal,andtheless reactivityofAuparticlescomparedtothatofPtmetals.Theintense

Table1

SomecharacteristicdataforthesupportedAucatalysts.

Catalyst Surfaceareaofthe support(m2/g)

Averagesizeofthe Auparticles(nm)

Calculatedsurface areaofAuparticles (nm2)

D(%) Bindingenergyof theAuondifferent supports(eV)

1%Au/TiO2 50 2 12 70 84.2

1%Au/Al2O3 100 5,5 35 26

1%Au/ZnO 40–50 2 12 70

1%Au/MgO 170 2,1 13 67 84.1

1%Au/SiO2 380 6,5 133 21 84.0

1%Au/CeO2 50 1,9 11 74 84.2

(5)

G.Halasietal./AppliedCatalysisA:General506(2015)85–90 89

Fig.4.ConversionofCO2intheH2+CO2(4:1)reactionoverAu/TiO2at9.5barasafunctionoftemperature(A)andintimeat773K(B).FormationofCO(C)andCH4and CH3OH(D).

Fig.5.EffectofilluminationonthephotocatalyticreactionofH2+CO2(4:1)ondifferentcatalystsat300K.

(6)

absorptionbandat1727cm−1isverylikelyduetothevibrationof molecularlyadsorbedHCOOHonsilicasurface.

4.2. Catalyticstudies

AsthemethanationofCO2onsupportedPtmetalsalsoinvolves thedissociationof COand thehydrogenationofsurface carbon [7–9],itisnotsurprisingtheabsenceofmethaneinthecatalytic reactionofH2+CO2onsupportedAu(seeFig.3).Theweakbond- ingbetweenCOandAumetalisprobablythereasonthatH2+CO2

reactiondidnotproduceCH4evenathightemperatures.

Accordingtoourpreviousresults,CO2alonedoesnotdissoci- ateoneitherAu(111)orsupportedAu[25].Inharmonywiththis finding,thereactionbetweenH2 andCO2 isverylimitedonAu depositedoninsulatingSiO2,Al2O3andMgO.However,whenAu isdepositedonn-typesemiconductingoxides,TiO2,ZnOandCeO2, apartialactivationofCO2occurredattheAu/oxideinterface,which reactedwithhydrogenleadingtotheproductionofCO.Asthework functionofAu(5.31eV)ishigherthanthatofTiO2 (4.6eV),ZnO (3.9–4.2eV)andCeO2(2.5–2.7eV),weexpectanelectrontransfer fromtheseoxidestothedepositedAuparticles.Thisassiststhe activationofCO2onAu,e.g.theformationofnegativelycharged CO2,whichreactsmoreeasilywithhydrogentogiveCO

CO2+e=CO2ı−(2)

CO2(a)ı−+H2=CO+H2O+e(3)

IntheexplanationofthehighefficiencyofTiO2 asasupport recently,agreatattentionispaidtotheroleofitsoxygenvacancy [34–36].AstheZnO,whichcontainsexcessZnintheinterstitial position,wasalsoaneffectivesupport,webelievethatintheelec- tricpropertiesofthesupportingoxidesinthisreactionaremore importantthanthenatureoftheirdefectstructure.

ThepositiveeffectofpotassiumadditiononAu/CeO2(Fig.3B) canbealsoattributedtothedonationof anelectrontotheAu particles,whichcontributestotheactivationofCO2[25].Itisto bementionedthatPraliaudetal.[37]disclosedthatanelectron donationcanalsooccurfromK+–O2–overlayerstothemetal.The electrondonatingcharacterofthisoverlayerwasalsoconsidered byothersaswell[38,39].

Asregardstheeffectofillumination,wemayassumethegen- erationofanelectroninaphotoexcitationprocess,

TiO2+h=h++e(4)

whichenhancesthechargetransferbetweenn-typeoxidesandAu particlesleadingalsototheactivationofCO(adsorbedmolecules) andtotheslightformationofCH4

CO+3H2= CH4+H2O(5)

Athigherpressure(9.5atm)asmallamountofmethanolwas alsoproduced,

3H2+CO2= CH3OH+H2O(6)

butthedominantpathwayoftheH2+CO2 reactionwasstillthe formationofCO.

5. Conclusions

(i)Infraredspectroscopicmeasurementsrevealedaslightforma- tionofformatespeciesintheH2+CO2reactiononAu/TiO2.

(ii)Auparticlesdepositedonn-typesemiconductingoxides(ZnO, TiO2,CeO2)catalysestheH2+CO2reactiontogiveCOabove 500K,whichwasexplainedbytheoccurrenceofanelectronic interactionbetweenAuandtheoxides.

(iii)Athigherpressure,9.5barasmallamountofmethanolalso formed.

(iv)IlluminationofAu/TiO2inducedtheH2+CO2reactionevenat roomtemperature.

Acknowledgements

ThisworkwassupportedbyTÁMOPundercontract number 4.2.2.A-11/1/KONV-2012-0047andbyOTKAundercontractnum- berPD115769.

References

[1]W.M.Ayers(Ed.),CatalyticActivationofCarbonDioxide,ACSSymp.Ser.,vol.

363,AmericanChemicalSociety,Washington,DC,1988.

[2]M.M.Halmann,ChemicalFixationofCarbonDioxide:MethodsforRecycling CO2intoUsefulProducts,CRCPress,BocaRaton,FL,1993.

[3]M.M.Halmann,GreenhouseGasCarbonDioxideMitigation:Scienceand Technology,LewisPublishers,BocaRaton,FL,1999.

[4]T.Inui,M.Anpo,K.Izui,S.Yanagida,T.Yamaguchi(Eds.),StudiesinSurface ScienceandCatalysis,vol.114,Elsevier,Amsterdam,1998.

[5]G.A.Olah,Á.Molnár,HydrocarbonChemistry,Wiley-Interscience,JohnWiley

&SonsInc.,NewJersey,2003.

[6]F.Solymosi,A.Erd ˝ohelyi,M.Kocsis,J.Catal.65(1980)428–436.

[7]F.Solymosi,A.Erd ˝ohelyi,M.Kocsis,J.Chem.Soc.Far.Trans.77(1981) 1003–1012.

[8]A.Erd ˝ohelyi,T.Bánsági,F.Solymosi,J.Catal.68(1981)371–382.

[9]A.Erd ˝ohelyi,F.Solymosi,J.Catal.91(1985)327–337.

[10]F.Solymosi,G.Klivényi,Surf.Sci.315(1994)255–268.

[11]Z.G.Szabó,F.Solymosi,PaperpresentedatConferenceonSomeAspectsof PhysicalChemistry,1959,Szeged;Magy.Kém.Foly.66(1960)289.

[12]Z.G.,Szabó,F.,Solymosi,ActesDuDeuxiemeCongresInternationalDe Catalyse,Paris(1961)1627–1651.

[13]F.Solymosi,Catal.Rev.1(1968)233–255.

[14]H.J.Freund,Catal.Today238(2014)2–9.

[15]G.Pacchioni,H.J.Freund,Chem.Rev.113(2013)4035–4072.

[16]G.Pacchioni,Chem.Phys.Chem.4(2003)1041–1047.

[17]T.Haruta,H.Kobayashi,N.Sano,Chem.Lett.(1987)408.

[18]A.S.K.Hashmi,G.J.Hutchings,Angew.Chem.Int.Ed.45(2006)7896–7936.

[19]G.C.Bond,C.Louis,D.T.Thompson,CatalysisbyGold,ImperialCollegePress, London,2006.

[20]A.Baiker,M.Kilo,M.Maciejewski,S.Menzi,A.Wokaun,in:L.Guczi,F.

Solymosi,P.Tétényi(Eds.),NewFrontiersinCatalysis,Elsevier,Amsterdam, 1993,pp.1257–1272.

[21]M.Tóth,J.Kiss,A.Oszkó,G.Pótári,B.László,A.Erd ˝ohelyi,Top.Catal.55(2012) 747–756.

[22]H.Sakurai,M.Haruta,Appl.Catal.AGen.127(1995)93–105.

[23]H.Sakurai,M.Haruta,Catal.Today29(1996)361–365.

[24]HalasiGy,T.Bánsági,F.Solymosi,J.Catal.325(2015)60–67.

[25]A.P.Farkas,F.Solymosi,J.Phys.Chem.C113(2009)19930–19936.

[26]A.P.Farkas,F.Solymosi,J.Phys.Chem.C114(2010)16979–16982.

[27]N.M.Gupta,V.S.Kamble,V.B.Kartha,R.M.Iyer,K.RavindranathanThampi,M.

Gratzel,J.Catal.146(1994)173–184.

[28]Z.Zhang,A.Kladi,X.E.Verykios,J.Catal.156(1995)37–50.

[29]L.-F.Liao,C.-F.Lien,D.-L.Shieh,M.-T.Chen,J.-L.Lin,J.Phys.Chem.B106 (2002)11240–11245.

[30]A.Gazsi,T.Bánsági,F.Solymosi,J.Phys.Chem.C115(15)(2011)459–15466, andreferencestherein.

[31]P.-Y.Sheng,G.A.Bowmaker,H.Idriss,Appl.Catal.AGen.261(2004)171–181.

[32]E.D.Park,J.S.Lee,J.Catal.186(1999)1–11.

[33]A.Karpenko,R.Leppelt,V.Plzak,R.J.Behm,J.Catal.252(2007)231–242.

[34]Y.Cui,X.Shao,S.Prada,L.Giordano,G.Pacchioni,H.J.Freund,N.Nilius,Phys.

Chem.Chem.Phys.16(2014)12764–12772.

[35]H.J.Freund,Catal.Today238(2014)2–9.

[36]G.Pacchioni,H.J.Freund,Chem.Rev.113(2013)4035–4072.

[37]H.Praliaud,M.Primet,G.Martin,Appl.Surf.Sci.17(1983)107–123.

[38]Z.Paál,G.Ertl,S.B.Lee,Appl.Surf.Sci.8(1981)231–249.

[39]H.P.Bonzel,G.Broden,H.J.Krebs,Appl.Surf.Sci.16(1983)373–394.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Although dispersed metals are effective catalysts for the decomposition of methane and ethane, their reactions need high temperature, and we can count with the deposition of

The determined thermodynamic data are summarized in Table 1 based on the integrated van’t Hoff analysis (Eq. It was found that instead of the widely applied linear

Deposition of Pt metals on TiO 2 exerted a remarkable photo- catalytic effect on the decomposition of ethane.. Results are displayed

Our main purpose was to reveal the adsorption properties of borazine on the Rh(1 1 1) single crystal surface by electron spec- troscopic methods; furthermore we investigated

The catalytic performance of the synthesized Pt/BCNT samples were examined in the hydrogenation of 1-butene, in order to show that the catalytic activity of the bamboo

Abstract: The catalytic performance of multi-walled carbon nanotubes (MWCNTs) with different surface chemistry was studied in the decomposition reaction of H 2 O 2

In the catalytic test reaction of ethanol − water steam reforming (1:3 ratio), the conversion of ethanol, the hydrogen selectivity, and the product distribution were studied on

As a continuation of our studies of the photo- catalytic decomposition of HCOOH, C 2 H 5 OH and CH 3 OH on Au/TiO 2 samples [20,21], we now present an account of the