• Nem Talált Eredményt

that that than

N/A
N/A
Protected

Academic year: 2022

Ossza meg "that that than"

Copied!
20
0
0

Teljes szövegt

(1)

A T E C H N I Q U E O F E V A L U A T I N G F U E L LOSSES DUE T O M E T E O R O I D P U N C T U R E A N D

S O M E T I M E L Y E X A M P L E S1 2 A n d r e w H . J a z w i n s k i

M a r t i n C o m p a n y , B a l t i m o r e 3 , M a r y l a n d A B S T R A C T

A n i m p o r t a n t h a z a r d to which s p a c e v e h i c l e s a r e e x p o s e d is l o s s of fuel due to m e t e o r o i d puncture of fuel t a n k s . T h e m e t e o r o i d s p e c t r u m of s i g n i f i c a n c e h e r e is p o o r l y d e f i n e d , s i n c e s a t e l l i t e m e a s u r e m e n t s - - t o d a t e - - h a v e dealt with m e t e - o r o i d s of c o n s i d e r a b l y s m a l l e r m a s s than those of i n t e r e s t . V i s u a l , photographic and r a d i o - r a d a r data do not y i e l d m a s s d i r e c t l y . A c o n s e r v a t i v e m e t e o r o i d e n v i r o n m e n t is d e f i n e d . W i t h the aid of a h y p e r v e l o c i t y p e n e t r a t i o n r e l a t i o n ( 1 8 ) 5 a hole p r o d u c t i o n m o d e l is i n t r o d u c e d - - a n d methods a r e p r e - sented f o r c a l c u l a t i n g fuel l o s s e s as a function of t i m e and p r o b a b i l i t y . T w o s p a c e m i s s i o n s a r e a n a l y z e d as e x a m p l e s : 1) E a r t h - M o o n t r a n s f e r of a l i q u i d h y d r o g e n fuel tank to be used f o r E a r t h - r e t u r n , and 2) s t o r a g e of a s i m i l a r fuel tank in an E a r t h - p a r k i n g o r b i t f o r l a t e r r e n d e z v o u s . Tank skins of s t e e l and aluminum a r e c o n s i d e r e d , with equivalent tank skin t h i c k n e s s as a p a r a m e t e r . It is found that fuel l o s s e s m a y i n d e e d be significant and that m e a n s should be taken to l i m i t o r e l i m i n a t e t h e m by s h i e l d i n g the fuel tanks.

I N T R O D U C T I O N

The advent of space e x p l o r a t i o n has s t i m u l a t e d i n t e r e s t in the m e t e o r o i d e n v i r o n m e n t and i t s e f f e c t s on s p a c e v e h i c l e s . K o r n h a u s e r ( 1 ) c a l c u l a t e d h o l e a r e a p r o d u c e d and p r e s s u r e

P r e s e n t e d at the A R S L u n a r M i s s i o n s M e e t i n g , C l e v e l a n d , Ohio, July 17-19, 1962.

^ R e s e a r c h conducted at G e n e r a l D y n a m i c s / A s t r o n a u t i c s , San D i e g o , C a l i f o r n i a .

2

Senior E n g i n e e r , A e r o - S p a c e M e c h a n i c s D e p a r t m e n t . 3

N u m b e r s in p a r e n t h e s e s i n d i c a t e R e f e r e n c e s at end of p a p e r .

(2)

l o s s e s v s t i m e at v a r i o u s p r o b a b i l i t y l e v e l s , a s s u m i n g an a v e r a g e c o n s e r v a t i v e situation. B j o r k ( 2 ) e s t i m a t e d s t e e l and aluminum a r m o r w e i g h t s r e q u i r e d to p r o t e c t a v e h i c l e at any confidence l e v e l . T h e author ( 3 - 5 ) e s t i m a t e d c o n s e r v a t i v e fuel l o s s e s on the Centaur v e h i c l e , using at f i r s t an a p p r o x i - m a t e p r o b a b i l i s t i c a p p r o a c h . M o r e r e c e n t l y E d m i s t o n (6) d e v e l o p e d r e l a t i o n s for the m e t e o r o i d h o l e a r e a p r o d u c e d as a function of t i m e and p r o b a b i l i t y , based on t w o p e n e t r a t i o n m o d e l s .

F o u r distinct p r o b l e m a r e a s e x i s t in evaluating fuel l o s s e s due to m e t e o r o i d p u n c t u r e . T h e y a r e 1) p r o p e r t i e s of the m e t e o r o i d e n v i r o n m e n t which the v e h i c l e t r a v e r s e s , 2) the p e n e t r a t i o n p r o c e s s w h e r e b y h o l e s a r e p r o d u c e d in the v e h i c l e , 3) flow r e l a t i o n s f o r the e s c a p i n g f u e l , and 4) p r o b a b i l i s t i c e v a l u a t i o n of the fuel l o s s e s . T h e s e p r o b l e m s a r e d i s c u s s e d in the s e q u e l .

T h e v e h i c l e d e s i g n e r w i s h e s to know the a v e r a g e o r m e a n effect of the m e t e o r o i d e n v i r o n m e n t on his v e h i c l e , as w e l l as to have s o m e m e a s u r e of the d i s p e r s i o n f r o m this m e a n - - i . e . , that e f f e c t which w i l l not be e x c e e d e d at s o m e high p r o b a b i l i t y . Both e f f e c t s a r e p r e s e n t e d h e r e . T h e a n a l y s i s is a p p l i e d to two s p e c i f i c c a s e s : 1) A fuel tank t r a n s p o r t e d to the M o o n to be used f o r E a r t h - r e t u r n , and 2) a fuel s t o r a g e tank in an E a r t h - p a r k i n g o r b i t . F u e l l o s s e s a r e studied as a function of t a n k - s k i n thickness for aluminum and s t e e l s k i n s .

M E T E O R O I D E N V I R O N M E N T

C u r r e n t k n o w l e d g e of the m e t e o r o i d e n v i r o n m e n t is v e r y l i m i t e d . Its p r o p e r t i e s of i n t e r e s t in r e l a t i o n to the p r e s e n t p r o b l e m include m e t e o r o i d d e n s i t y , m a s s - f l u x , m a s s - v e l o c i t y and s p a t i a l d i s t r i b u t i o n s . I d e a l l y , it would be d e s i r a b l e to know the e n v i r o n m e n t a l p a r a m e t e r s as a function of t i m e and p o s i t i o n in s p a c e . T h i s is v i r t u a l l y i m p o s s i b l e , because of the e x i s t e n c e of m e t e o r o i d s h o w e r s ( 7 ) , as w e l l as m e t e o r s h o w e r s ( 8 ) - - i n addition to the s p o r a d i c b a c k g r o u n d . T h e s e have been known to e x c e e d the s p o r a d i c background^by s e v e r a l o r d e r s of m a g n i t u d e . O n l y the s p o r a d i c m e t e o r o i d flux can be c o n s i d e r e d h e r e .

W h i p p l e ( 9 ) r e p o r t s that m o r e than 90% of a l l photographic 3

m e t e o r s have d e n s i t i e s as l o w as 0.05 g m / c m . R a d i o - r a d a r m e t e o r s m a y have s i m i l a r d e n s i t i e s . T h i s a p p l i e s to m e t e o r s

-4

of m a s s r o u g h l y g r e a t e r than 10 g m , c o m m o n l y r e f e r r e d to as dust b a l l s . ' T h e s e dust b a l l s m a y b r e a k up, h o w e v e r , p r o - ducing s m a l l e r p a r t i c l e s with m o r e c o n v e n t i o n a l d e n s i t i e s ,

414

(3)

p e r h a p s m o r e l i k e those of s i l i c a t e r o c k s .

The a s t e r o i d s m a y be the s o u r c e of a l a r g e f r a c t i o n of the -4

m e t e o r o i d s p e c t r u m of s m a l l e r m a s s e s ( < 1 0 g m ) . B r o w n (10, 11) c o r r e l a t e s the m a s s - f r e q u e n c y d i s t r i b u t i o n of m e t e - o r i t e s with that of the a s t e r o i d s . T h e c o r r e l a t i o n is g o o d .

3

M e t e o r i t e s r a n g e in d e n s i t y f r o m 2. 7 to 7. 9 g m / c m ( s t o n e s - i r o n s ) , the r e l a t i v e abundance being about 16 t o 1, r e s p e c - t i v e l y . T h i s would p l a c e the a v e r a g e d e n s i t y of a s t e r o i d a l

3 m e t e o r o i d s at about 3 g m / c m .

In v i e w of the uncertainty that is p r e s e n t , the fact that -4

m e t e o r o i d s of m a s s l e s s than 10 g m m a y p l a y a c r u c i a l r o l e in contributing to fuel l o s s e s (as w i l l be s e e n l a t e r ) and of the d e s i r e f o r a c o n s e r v a t i v e e s t i m a t e of fuel l o s s e s , a density of 3 g m / c m w i l l be a s s u m e d for a l l m e t e o r o i d s . 3

G e o c e n t r i c v e l o c i t i e s of m e t e o r s have been m e a s u r e d . W h i p p l e ( 9 ) c a l c u l a t e s the a v e r a g e v e l o c i t y of photographic m e t e o r s to be 28 k m / s e c . A r a n g e of 11-72 k m / s e c is p o s - s i b l e , s i n c e ( 9 ) m e t e o r s a r e p e r m a n e n t m e m b e r s of the s o l a r s y s t e m . One would e x p e c t s m a l l e r m e t e o r o i d s t o have l o w e r v e l o c i t i e s . On this b a s i s , W h i p p l e ( 9 ) c o n s t r u c t e d a table of v e l o c i t y as a function of m a s s . T h i s is plotted in F i g . 1 and r e p r e s e n t s the m o s t r e a s o n a b l e v e l o c i t y d i s t r i b u t i o n which p r e s e n t l y can be deducted. A c o n s e r v a t i v e f i g u r e of 28 k m / s e c m a y be used for a l l m e t e o r o i d s .

Data as to the flux of m e t e o r o i d s have been obtained f r o m v i s u a l , photographic and r a d i o - r a d a r o b s e r v a t i o n s - - a n d of late f r o m counting d e v i c e s on r o c k e t s and s a t e l l i t e s . Data in the f i r s t c a t e g o r y ( i . e . , v i s u a l , photographic and r a d i o - r a d a r ) y i e l d m e t e o r flux as a function of m a g n i t u d e . It is then n e c - e s s a r y to r e l a t e magnitude to the m a s s of the p a r t i c l e . T o d a t e , no r e l i a b l e r e l a t i o n e x i s t s . W h i p p l e ( 9 ) a s s i g n e d a v a l u e of 25 g m to a z e r o magnitude m e t e o r , w h i l e W a t s o n (8) c h o s e the v a l u e 0. 25 g m . On t h e s e b a s e s t w o c u r v e s a r e obtained of the flux of m e t e o r o i d s of m a s s equal to and g r e a t e r than m a s s m , as a function of m a s s . T h e s e have been e x t r a - polated to p a r t i c l e s of s m a l l e r m a s s ( 8 , 9) and a r e shown in F i g . 2. T h e t w o e s t i m a t e s c a n , p e r h a p s , be taken as bounds on the s p o r a d i c m e t e o r o i d e n v i r o n m e n t in the m a s s r a n g e

-4

f r o m 10 to 1 g m .

A r a t h e r c o m p l e t e l i s t of in situ r o c k e t and s a t e l l i t e m e a s - u r e m e n t s has been c o m p i l e d "By the author (5) and is

(4)

t h o r o u g h l y r e f e r e n c e d . T h e m o s t s i g n i f i c a n t m e a s u r e m e n t s a r e p r e s e n t e d in F i g . 2. T h e y a r e l i s t e d in o r d e r of d e c r e a s - ing s i g n i f i c a n c e , the s o l i d s y m b o l s r e p r e s e n t i n g the m o s t s i g n i f i c a n t m e a s u r e m e n t s . T h e points plotted a r e based on an a s s u m e d v e l o c i t y of 15 k m / s e c , s i n c e s a t e l l i t e s e n s o r s

4

r e s p o n d to m o m e n t u m . T h e data have not been c o r r e c t e d for E a r t h - s h i e l d i n g , as is s o m e t i m e s the c u s t o m ( 1 2 ) , s i n c e , w h i l e in E a r t h1 s v i c i n i t y , a v e h i c l e w i l l s e e the s h i e l d e d flux and t h e r e a r e t h e o r e t i c a l indications ( 1 3 - 1 5 ) that flux d e c r e a s e s with i n c r e a s i n g a l t i t u d e .

The m o s t s i g n i f i c a n t m e a s u r e m e n t s have r e p o r t e d l y (12) been taken on the E x p l o r e r V I I I s a t e l l i t e , w h e r e m e a s u r e m e n t s w e r e made in t h r e e m o m e n t u m r a n g e s . T h e t h r e e E x p l o r e r V I I I points fall on a good s t r a i g h t l i n e , m a r k e d " D i r e c t " in F i g . 2 , which a l s o fits the o t h e r s a t e l l i t e data r a t h e r w e l l . T h i s line m a y be t a k e n , at p r e s e n t , as the best r e p r e s e n t a - tion of the s p o r a d i c m e t e o r o i d e n v i r o n m e n t in the m a s s r a n g e

-9 -6

f r o m 10 to 10 g m . A c l o s e r i n s p e c t i o n of the s a t e l l i t e data ( 5 , 12) i n d i c a t e s that no altitude dependence of the flux is d i s c e r n i b l e . Î h e mean altitudes of the s a t e l l i t e orbits vary, at m o s t , by 800 k m ( 5 ) - - a n d the rocket data cannot be c o n s i d e r e d significant.

A t the present t i m e , then, no altitude dependence can be deduced e x p e r i m e n t a l l y and, t h e r e f o r e , it w i l l be assumed that m e t e o r o i d flux is Earth-distance independent in cislunar s p a c e .

It can be seen that no m e a s u r e m e n t s of m e t e o r o i d flux a r e -6 -4 -3 available in the m a s s range f r o m 10 to 10 o r 10 g m . T h i s , as w i l l be seen, is unfortunately the most important m a s s r e g i m e as far as fuel l o s s e s due to puncture a r e con- cerned. Sensor surfaces have been v e r y s m a l l in the past, because of the weight limitation. Hence, they have had to be of high sensitivity to r e c o r d a significant number of hits.

Consequently, a c o n s e r v a t i v e m a s s - f l u x r e l a t i o n has to be estimated. It is bel i e v e d that W h i p p l e ' s c u r v e ( F i g . 2) r e p r e s e n t s such a relation. M e t e o r o i d flux, t h e r e f o r e , w i l l be assumed to follow the law

ι m i n - 1 2 . 2 - 1 . 0 r η

Φ * 10 m [ l j w h e r e m is the m e t e o r o i d m a s s in g r a m s and φ is the number

3

R u s s i a n s e n s o r s r e p o r t e d l y r e s p o n d to the k i n e t i c e n e r g y of the i m p a c t i n g p a r t i c l e .

416

(5)

of p a r t i c l e s of m a s s g r e a t e r than and equal to m p e r m - s e c . A m o r e c o m p l e t e d i s c u s s i o n of m e t e o r o i d flux is g i v e n in R e f s . 5 and 3.

H O L E A R E A D U E T O M E T E O R O I D P U N C T U R E

M e t e o r o i d puncture of a v e h i c l e tank skin i n v o l v e s a h y p e r - v e l o c i t y i m p a c t p r o c e s s which of late has r e c e i v e d c o n s i d e r - able attention. A n e x c e l l e n t c o m p i l a t i o n and a n a l y s i s of e x - p e r i m e n t a l and t h e o r e t i c a l w o r k is p r e s e n t e d by H e r r m a n n and Jones ( 1 6 ) . U n t i l r e c e n t l y , v e l o c i t i e s attained in the l a b - o r a t o r y have not e x c e e d e d 6 k m / s e c . S o m e shots at v e l o c i t i e s up to 12 k m / s e c have been obtained ( 1 7 ) . A s can be s e e n , m e t e o r o i d v e l o c i t i e s have b a r e l y been a p p r o a c h e d in the l a b - o r a t o r y . E x t r a p o l a t i o n of t h e s e e x p e r i m e n t a l data taken at low v e l o c i t i e s to the much h i g h e r m e t e o r o i d v e l o c i t i e s is s t r i c t l y i n v a l i d ( 5 , 1 6 ) , s i n c e the p h y s i c a l p r o c e s s i n v o l v e d is d i f f e r - ent. A t h y p e r v e l o c i t i e s , s t r e n g t h e f f e c t s a r e n e g l i g i b l e ( 1 6 , 18) during p a r t of the i m p a c t p r o c e s s , b e c a u s e the p r e s s u r e s i n v o l v e d far e x c e e d the m a t e r i a l s t r e n g t h .

T h e m o s t a p p l i c a b l e t h e o r e t i c a l w o r k a p p e a r s to be that of Β j o r k ( 1 8 ) , who s o l v e d the equations for a h y d r o d y n a m i c i m - pact of i r o n on i r o n and aluminum on aluminum n u m e r i c a l l y in the i n v i s c i d , adiabatic a p p r o x i m a t i o n . He obtained the r e - lations

A l on A l : ρ * 1. 09 ( m v )1 f 3 [2]

1 /3 F e on F e : ρ « 0. 606 ( m v ) 7

w h e r e ρ is the depth of p e n e t r a t i o n in a s e m i - i n f i n i t e t a r g e t in c m , m is the m e t e o r o i d m a s s in g m , and ν is the m e t e o r o i d v e l o c i t y in k m / s e c .

B j o r k (19) r e c e n t l y s u g g e s t e d that the p e n e t r a t i o n in a g i v e n t a r g e t m a t e r i a l by p r o j e c t i l e s of d i f f e r e n t m a t e r i a l s having the s a m e m a s s and v e l o c i t y is p r o p o r t i o n a l to the i n i - t i a l i n t e r f a c e v e l o c i t y on i m p a c t . H e r r m a n n and Jones (16) show that i n i t i a l i n t e r f a c e v e l o c i t i e s v * for i m p a c t s of d i s - s i m i l a r m a t e r i a l s a r e g i v e n with a m a x i m u m e r r o r of about 20% for m o s t m a t e r i a l s by

v * - ( pp/ pt)1 / 3 v / 2 [ 3 ]

for p r o j e c t i l e v e l o c i t i e s ν a b o v e 3 k m / s e c , w h e r e ρ and p.

(6)

a r e p r o j e c t i l e and t a r g e t d e n s i t i e s , r e s p e c t i v e l y .

Equation 2 , t h e r e f o r e , can be m o d i f i e d f o r d i f f e r e n t p r o - j e c t i l e m a t e r i a l s to y i e l d

ρ « 1.09 ( Pp/ PA 1)1/ 3 ( m v )1 / 3 [ 4 ]

for i m p a c t s on aluminum t a r g e t s , and

ρ * 0.606 ( pp/ pF e)1 / 3 ( m v )1 / 3 [ δ ]

for i m p a c t s on i r o n t a r g e t s .

It has been o b s e r v e d (16) that, if a p r o j e c t i l e w i l l p e n e t r a t e a s e m i - i n f i n i t e t a r g e t to a depth of p , it w i l l puncture a thin plate of t h i c k n e s s 1,5 p . T h e r e f o r e , in t e r m s of plate t h i c k - n e s s , Eqs,4 and 5 b e c o m e

tA 1 « 1.64 ( Pp/ PA1)1/ 3 ( m v )1 / 3 [ 6 ]

tF e « 0 . 9 0 8 ( pp/ pF e)1 / 3( m v )1 /3. [ ? ]

T h e s e r e l a t i o n s w i l l be used in further a n a l y s i s .

Equations 6 and 7 m a y be c o m b i n e d with E q . 1 to y i e l d the flux of m e t e o r o i d s which w i l l puncture a thin v e h i c l e skin of t h i c k n e s s t. T h i s w i l l be c a l l e d , a f t e r B j o r k ( 2 ) , the p e n e - t r a t i n g flux ψ. G i v e n a skin t h i c k n e s s t , and taking v e l o c i t i e s f r o m F i g . 1, o r a s s u m i n g a m e t e o r o i d v e l o c i t y of 28 k m / s e c , E q s . 6 and 7 y i e l d the s m a l l e s t m a s s m e t e o r o i d s which w i l l puncture the s k i n . T h i s w i l l be c a l l e d the t h r e s h o l d m a s s m^.

A l l m e t e o r o i d s of m a s s g r e a t e r than m^ w i l l l i k e w i s e punc- t u r e the skin. U s i n g v e l o c i t i e s f r o m F i g . 1 and m e t e o r o i d

3

d e n s i t y = * 3 g m / c m , was c a l c u l a t e d as a function of skin t h i c k n e s s f o r both s t e e l and aluminum skins and a p p e a r s

— 6 in F i g . 3. It i s seen that m e t e o r o i d s of m a s s as l o w as 10 g m m a y be i m p o r t a n t in contributing to fuel l o s s e s .

It w i l l be a s s u m e d that the h o l e p r o d u c e d by a m e t e o r o i d i m p a c t i s of constant d i a m e t e r throughout i t s depth, the d i a m - e t e r b e i n g equal to the e n t r a n c e d i a m e t e r p r o d u c e d by the m e t e o r o i d . T h e depth of p e n e t r a t i o n p, g i v e n in E q s . 4 and 5, i s a l s o the r a d i u s of the h o l e . T h e r e f o r e , the a r e a of a h o l e p r o d u c e d by a m e t e o r o i d of m a s s m i s g i v e n by

418

(7)

a ( m ) = π ρ2 « π C2 < Pm/ pA 1 Q r F e> 2 / 3 [mv(m32 / 3

^

w h e r e C * 1.09 f o r aluminum t a r g e t s , C * 0.606 f o r s t e e l t a r g e t s , and p m is the m e t e o r o i d d e n s i t y . F o r * 3, E q . 8 is quite a c c u r a t e f o r m e t e o r o i d s of m a s s n e a r the t h r e s h o l d m a s s , s i n c e the r a t i o of skin t h i c k n e s s to d i a m e t e r of t h r e s - hold m e t e o r o i d ( a s s u m i n g a s p h e r i c a l m e t e o r o i d ) i s 6 and 2. 33 f o r aluminum and s t e e l t a r g e t s , r e s p e c t i v e l y .

F o r m e t e o r o i d s of m a s s g r e a t e r than the t h r e s h o l d m a s s , Eq.8 w i l l o v e r e s t i m a t e the actual a r e a - - t h e o v e r e s t i m a t e i n - c r e a s i n g as m a s s i n c r e a s e s . T h i s i s b e c a u s e (16) the radius of a c r a t e r p r o d u c e d by a g i v e n p r o j e c t i l e in a s e m i - i n f i n i t e t a r g e t is g r e a t e r than the r a d i u s of a h o l e p r o d u c e d by the s a m e p r o j e c t i l e in a thin p l a t e . Since the s i g n i f i c a n c e ( i . e . , n u m b e r ) of m e t e o r o i d s d e c r e a s e s with i n c r e a s i n g m a s s , a b o v e the t h r e s h o l d m a s s , the e r r o r introduced by using E q . 8 f o r a l l m e t e o r o i d s w i l l not be substantial. A t any r a t e , E q . 8 g i v e s a c o n s e r v a t i v e e s t i m a t e of a r e a .

H o l e a r e a v e r s u s m e t e o r o i d m a s s f o r both aluminum and s t e e l is g i v e n in F i g . 4.

F U E L F L O W

F l u i d flow out of s m a l l o r i f i c e s is c u r r e n t l y not w e l l u n d e r - s t o o d . B e r n o u l l i flow f r o m a r e s e r v o i r at z e r o - g into a v a c - ι uum w i l l be u s e d . T h e exhaust v e l o c i t y is t h e r e f o r e g i v e n by

ve = ( 2 P / pf)1 / 2 [ 9 ]

w h e r e Ρ is the tank p r e s s u r e and p^ the fuel d e n s i t y . T h e flow r a t e is t h e r e f o r e

Q « r a ( 2 P / pf)1 / 2 [ίο]

w h e r e r is an o r i f i c e c o e f f i c i e n t and a the a r e a . T h e m a s s flow r a t e i s

Qm « r a ( 2 P pf)1 / 2. [ l l ]

W h e n d e a l i n g with c r y o g e n i c l i q u i d s , the question m a y be r a i s e d w h e t h e r the liquid m i g h t not f r e e z e w h i l e expanding through the h o l e , thus t e m p o r a r i l y p l u g g i n g the hole and d e - c r e a s i n g the e f f e c t i v e flow r a t e . E a c h situation must be

(8)

e x a m i n e d independently f o r this e f f e c t . M E A N F U E L LOSSES

A v e h i c l e with tank a r e a A , e x p o s e d to a p e n e t r a t i n g flux ψ for a t i m e / w i l l suffer an a v e r a g e n u m b e r of punctures λ * ψ Α τ , T h e p r o b a b i l i t y that a m e t e o r o i d in the m a s s r a n g e

dm w i l l puncture the tank skin is

-αφ/ψ [12]

w h e r e -d<\> is the n u m b e r of m e t e o r o i d s in d m . N o w f r o m E q . l

-d<\> * ( K / m2) dm [13]

-12 2

w h e r e Κ * 10 . T h e r e f o r e ,

-αΦ/ψ ^ mt/ m2j d m Q4J

Of c o u r s e , the t o t a l p r o b a b i l i t y is 0

J -αΦ/ψ * J ( mt/ m2) d m * 1 Qo]

ψ mt

T h e a r e a of the a v e r a g e puncture is s i m p l y

Ae * ^ ( a ( m ) mt/ m2) d m « π C2 mt (p^/pAi or 23 /

( [ m v ( m ) ]2 / 3/ m2) dm [ΐβ]

mt

with the aid of E q . 8. Κ the m e t e o r o i d v e l o c i t y is a c o m p l i - c a t e d function of m a s s , the i n t e g r a l in E q . 16 is r a t h e r d i f f i - c u l t . A s s u m i n g a constant v e l o c i t y , v ( m ) « V q (28 k m / s e c ) , E q . 16 is e a s i l y i n t e g r a t e d

« ^ 2/3 2/3 Α * 3 τ τ Γ fp / ρΛ1 _Λ Γ ι η , ν Ί

e r m KA 1 o r F e ) [_ t oj

3 at [17]

w h e r e a^ is the a r e a p r o d u c e d by the m e t e o r o i d of t h r e s h o l d m a s s .

420

(9)

In the a v e r a g e s i t u a t i o n , t h e n , the t o t a l h o l e a r e a p r o d u c e d a f t e r t i m e τ is Α λ * Α Ψ AT , and the fuel l o s s e s at the end

e e of the m i s s i o n a r e

LA V *( Q^a ) J A e ψ Α T d r « ( Q / a ) Ae ψ A =

( Q / a ) Ae λ ττ/ 2 [18]

Equation 18 w i l l be used subsequently in c a l c u l a t i n g a v e r a g e o r m e a n fuel l o s s e s . T h e a v e r a g e a r e a has been used in the past by the author ( 3 , 4 ) in c a l c u l a t i n g the a p p r o x i m a t e fuel l o s s e s at h i g h e r p r o b a b i l i t i e s .

M e t e o r o i d s i m p a c t i n g a s p a c e v e h i c l e constitute a r a n d o m p r o c e s s d e v e l o p i n g in t i m e ( a s s u m i n g that m e t e o r o i d flux is i t s e l f r a n d o m ) and, t h e r e f o r e , one would e x p e c t it to o b e y a P o i s s o n d i s t r i b u t i o n in the p a r a m e t e r λ . L a m b d a is a l s o the m e a n of the P o i s s o n d i s t r i b u t i o n . Since the d i s t r i b u t i o n is an a s y m m e t r i c o n e , m e a n fuel l o s s e s a r e not the m o s t p r o b a b l e losses*, n e i t h e r a r e they l o s s e s which w i l l not be e x c e e d e d half the t i m e - - a s is the c a s e on a n o r m a l d i s t r i b u t i o n . T h e P o i s s o n d i s t r i b u t i o n a p p r o x i m a t e s a n o r m a l d i s t r i b u t i o n for l a r g e λ ( 2 0 ) , h o w e v e r , w h i l e d e p a r t i n g f r o m it r a d i c a l l y f o r s m a l l λ .

F U E L LOSSES A T H I G H E R P R O B A B I L I T I E S

In t h e o r y , an infinite n u m b e r of e v e n t s m a y o c c u r w h e r e b y the t o t a l a r e a due to m e t e o r o i d punctures w i l l not e x c e e d a^

(as a,p-> oo). T h e r e m a y be no p u n c t u r e s . T h e r e m a y be one puncture w h o s e a r e a d o e s not e x c e e d a ^ . In g e n e r a l , t h e r e m a y be k punctures w h o s e c o m b i n e d a r e a does not e x c e e d a,p, p r o v i d e d k is l e s s than o r equal t o the i n t e g r a l p a r t of a ^ / a ^ . If P^ is the p r o b a b i l i t y of obtaining k p u n c t u r e s , and p'k is the c o n d i t i o n a l p r o b a b i l i t y that, g i v e n k p u n c t u r e s , t h e i r c o m b i n e d a r e a w i l l not e x c e e d aT, then the p r o b a b i l i t y that the t o t a l hole a r e a due t o m e t e o r o i d punctures w i l l not e x c e e d

_N

p ( aT > "

1

Pk

A ^

w h e r e Ν is the i n t e g r a l p a r t of a^/a^.

a T i s

(10)

A s discussed p r e v i o u s l y , it is reasonable to assume that the m e t e o r o i d flux obeys a P o i s s o n distribution, i . e . ,

Pk « e _ X ( Xk/ k « ) [20]

O b v i o u s l y ,

m ( aT) aT

p'j « J

( r nt/ m2) d m *

( 3 / 2 ) a

t 3 / 2

J

a " 5 1 2 da [2l]

with the aid of E q . 8, assuming v ( m ) * V q * constant, and

• . ^ - ( k - l ) a ^ Ρ aT ~at ~a3 ~β ' ' "ak

P k " ) f ( ak) d ak ' - - J f ( a2) d a2

at at

aT ~a2_' ' ' _ ak

f i a j i d a j [22]

I

at

3/2 -5 /2

w h e r e f(a) * ( 3 / 2 ) a^ ,a . T h e s e integrals b e c o m e p r o - g r e s s i v e l y m o r e difficult as k i n c r e a s e s .

Equation 22 has been d e r i v e d by Edmiston ( 6 ) . Although his penetration m o d e l was different, the functional dependence of a r e a on m a s s was the s a m e . In addition, he assumed a s i m i l a r flux-mass relationship. His e x p r e s s i o n for p£ is t h e r e f o r e exactly the s a m e as E q . 22, although a^ is obtained differently.

Equation 21 can be integrated r e a d i l y , yielding

p\ * 1 - ( at/ aT)3 / 2 [23]

Edmiston (6) d e r i v e d a l o w e r bound formula for p£ ( a ^ / a ^ ) which results in a c o n s e r v a t i v e estimate of a^ at any p r o b - ability. This formula is

Pk ( aT/ at) - [ ρ Ϊ ( aT / k at} , aT/ at > k [24]

422

(11)

W i t h the aid of this e x p r e s s i o n , E q . 19 m a y be w r i t t e n , f o r aT - n at

P( n a J *e~X

n-1 J 1 + y ( ^k/ k ! ) [l - ( k / n )3 / 2J ) , η - 1. 2 , . . .

- J [25]

F o r any v a l u e of Ρ (na^), E q . 25 m a y be s o l v e d f o r a^ * na^ as a function of X. T h i s has been done f o r Ρ (na^) * 0. 9986 ( 3 σ ) and f o r Ρ (nat> * 0. 9772 ( 2 σ ) and a p p e a r s in F i g . 5. T h e s e c u r v e s m a y be fitted by p o l y n o m i a l s in X , y i e l d i n g

aT - at f(X) » at ί ( ψ Α τ ) [26]

The fuel l o s s e s , then, at the g i v e n p r o b a b i l i t y Ρ (na^) a r e g i v e n by

TT

LP( n at) " (Q at /a) JT ^ A r ) d T [27]

Ο

w h e r e the l o w e r l i m i t T q is the t i m e c o r r e s p o n d i n g t o the λ v a l u e at which a^ b e g i n s t o a s s u m e p o s i t i v e v a l u e s as g i v e n in F i g . 5.

E A R T H " M O O N T R A N S F E R O F A F U E L T A N K 2

A c y l i n d r i c a l fuel tank with 25 m c y l i n d r i c a l e x p o s e d a r e a m i g h t be used to t r a n s p o r t l i q u i d h y d r o g e n to the m o o n to be used f o r E a r t h - r e t u r n . Such a tank might hold a p p r o x i -

5

m a t e l y 2500 lb of fuel under p r e s s u r e of 23 psia. T h e den- s i t y of l i q u i d h y d r o g e n i s = 4. 1 l b / f t . A n o r i f i c e c o e f f i - cient of 0. 6 i s a p p r o p r i a t e in t h i s c a s e . T r a n s f e r t i m e w i l l be taken t o be 66 h o u r s .

5 H i g h e r tank p r e s s u r e s might be used to p r e v e n t boiloff.

(12)

T h e question of w h e t h e r p l u g g i n g m a y o c c u r under t h e s e conditions m i g h t be a s k e d . T h e author b e l i e v e s that p l u g g i n g w i l l not o c c u r . T h e l i q u i d w i l l be out of the h o l e b e f o r e it has a chance t o f r e e z e , in v i e w of the v e r y high exhaust v e -

4

l o c i t i e s i n v o l v e d (~10 c m / s e c ) . Some pertinent e x p e r i m e n t s 7

a r e now b e i n g conducted , including the m e a s u r e m e n t of o r i - f i c e c o e f f i c i e n t s .

M e a n , 2σ9 and 3σ fuel l o s s e s w e r e c a l c u l a t e d as a function of skin thickness f o r both s t e e l and aluminum s k i n s . T h e y a p p e a r in F i g s . 6 and 7. It was a s s u m e d that the tank is an infinite r e s e r v o i r f o r f u e l ; thus, l o s s e s a r e s e e n to e x c e e d its c a p a c i t y , which is a p p r o x i m a t e l y i n d i c a t e d .

A n i n s p e c t i o n of t h e s e f i g u r e s r e v e a l s that 2σ and 3σ fuel l o s s e s b e c o m e l e s s than the m e a n l o s s e s f o r s u f f i c i e n t l y thick skin. A t f i r s t , this m a y be s u r p r i s i n g . It m e a n s , h o w e v e r , that punctures b e c o m e r a r e indeed and can o c c u r only late in the m i s s i o n , at a g i v e n p r o b a b i l i t y . When t h e y do o c c u r , the hole a r e a must be l a r g e - - b e c a u s e the skin is t h i c k . T h e r e - f o r e , they m a k e a l a r g e c o n t r i b u t i o n to m e a n l o s s e s , w h e r e - - on the a v e r a g e - - p u n c t u r e s m a y be thought of as o c c u r r i n g in the m i d d l e of the m i s s i o n .

M o r e o v e r , 2σ and 3σ l o s s e s g o t o z e r o w h i l e m e a n l o s s e s r e m a i n f i n i t e . T h i s is b e c a u s e , at the g i v e n p r o b a b i l i t y , t h e r e a r e no p u n c t u r e s , w h i l e s o m e s t i l l c o n t r i b u t e to the m e a n . T h e rarjid d e c r e a s e of 2σ and 3σ l o s s e s is a s s o c i a t e d with the "jump 1 in a r e a f r o m z e r o to a^ o b s e r v e d in F i g . 5.

T h e r e can be no hole unless its a r e a is at l e a s t as l a r g e as that p r o d u c e d by a m e t e o r o i d of t h r e s h o l d m a s s .

Β j o r k ( 2 ) c o n c l u d e d that, weight f o r w e i g h t , aluminum skins a r e s u p e r i o r to s t e e l skins b e c a u s e the p e n e t r a t i n g flux, ψ , is l o w e r . F i g u r e s 6 and 7 (as w e l l as 8 and 9) exhibit t h i s , in that the l o s s e s g o to z e r o in a g r e e m e n t with

Note added in p r o o f : P r e l i m i n a r y v i s u a l o b s e r v a t i o n s at the G e n e r a l D y n a m i c s / A s t r o n a u t i c s A e r o p h y s i c s L a b o r a - t o r y s e e m to indicate that no p l u g g i n g o c c u r s under the c o n - ditions d e s c r i b e d . High s p e e d m o t i o n p i c t u r e s r e v e a l e d that i n t e r m i t t e n t p l u g g i n g a c t u a l l y does take p l a c e . It is so r a p i d , h o w e v e r , that the o r i f i c e c o e f f i c i e n t is not a p p r e c i a b l y d e - c r e a s e d unless the hole is e x t r e m e l y s m a l l . T h e value of 0.6, used h e r e , a p p e a r s to be r e a s o n a b l y good f o r the s i z e h o l e s under c o n s i d e r a t i o n . T h e r e a r e s o m e indications that the o r i f i c e c o e f f i c i e n t m a y be as high as 0.8 f o r the l a r g e r h o l e s .

7G e n e r a l D y n a m i c s / A s t r o n a u t i c s A e r o p h y s i c s L a b o r a t o r y . 424

(13)

such a r e l a t i o n . When h o l e s a r e a l l o w e d , h o w e v e r , the i n - v e r s e is t r u e . T h i s is b e c a u s e , w h i l e w e i g h t f o r w e i g h t , the p e n e t r a t i n g flux in aluminum skins is l o w e r than in s t e e l s k i n s , the h o l e s p r o d u c e d in aluminum a r e l a r g e r - - t h e o v e r a l l r e s u l t being h i g h e r l o s s e s f r o m an aluminum tank.

S T O R A G E T A N K I N A N E A R T H P A R K I N G O R B I T

A liquid h y d r o g e n fuel tank m i g h t be p l a c e d in an e a r t h - p a r k i n g o r b i t for l a t e r r e n d e z v o u s . F o r the p u r p o s e of a n u m e r i c a l e x a m p l e , it w i l l be a s s u m e d that the tank has an

2

e x p o s e d c y l i n d r i c a l a r e a of 50 m , c a p a b l e of holding a p p r o x - i m a t e l y 7000 lb of fuel. It is r e q u i r e d that the tank r e m a i n in o r b i t f o r 30 days b e f o r e r e n d e z v o u s . P r e s s u r e , d e n s i t y and o r i f i c e c o e f f i c i e n t w i l l be taken to be the s a m e as in the p r e v i o u s e x a m p l e . M e a n , 2σ and 3σ fuel l o s s e s a r e g i v e n in F i g s . 8 and 9 as a function o f skin t h i c k n e s s f o r both s t e e l and aluminum s k i n s . A g a i n , an infinite r e s e r v o i r of fuel is a s s u m e d . H e r e , fuel l o s s e s a r e s u b s t a n t i a l l y h i g h e r than in the p r e v i o u s e x a m p l e , b e c a u s e m i s s i o n t i m e is c o n s i d e r a b l y l o n g e r . R e m a r k s s i m i l a r t o t h o s e in the p r e v i o u s e x a m p l e apply h e r e .

C O N C L U S I O N S

A r e a s o n a b l y c o n s e r v a t i v e e s t i m a t e of the m e t e o r o i d e n v i r o n m e n t was m a d e and m e t h o d s p r e s e n t e d f o r the

e v a l u a t i o n of fuel l o s s e s due to puncture of v e h i c l e fuel t a n k s , r e s u l t i n g in c o n s e r v a t i v e e s t i m a t e s of fuel l o s s e s . F u e l l o s s e s w e r e studied as a function of tank skin thickness f o r s t e e l and aluminum skins for t w o s p a c e m i s s i o n s . It was found that, w e i g h t f o r w e i g h t , a s t e e l skin is s u p e r i o r t o an aluminum skin f o r such t h i c k n e s s e s as a l l o w punctures at a g i v e n p r o b a b i l i t y . If such t h i c k n e s s e s a r e used as to e x - clude a l l punctures at a g i v e n p r o b a b i l i t y , the i n v e r s e is t r u e . S t e e l skins a r e a l w a y s s u p e r i o r in t e r m s of m e a n l o s s e s . The s i g n i f i c a n c e of m e a n l o s s e s is l i m i t e d , h o w e v e r , when the a v e r a g e number of punctures is v e r y s m a l l .

In g e n e r a l , fuel l o s s e s due to m e t e o r o i d puncture w e r e found to be s i g n i f i c a n t for s i n g l e - s k i n t a n k s . M e t e o r o i d s h i e l d s should be c o n s i d e r e d as a m e a n s of r e d u c i n g p o s s i b l e fuel l o s s e s . W e i g h t f o r w e i g h t , t h i n , s p a c e d skins have been found to be s u p e r i o r to s i n g l e skins in r e d u c i n g p e n e t r a t i o n by p r o j e c t i l e s ( 1 6 ) . I f s h i e l d s a r e u s e d , the t h i c k n e s s e s d i s c u s s e d h e r e m a y be thought of as " e f f e c t i v e " skin t h i c k - n e s s e s .

(14)

A c o m p a r i s o n of fuel l o s s e s on the r e l a t i v e l y s h o r t t r a n s - f e r m i s s i o n ( F i g s . 6 and 7) with those in the r e l a t i v e l y long parking o r b i t ( F i g s . 8 and 9) r e v e a l s that, although a t r a d e - off m a y e x i s t b e t w e e n fuel lost and added w e i g h t of s h i e l d i n g for s h o r t m i s s i o n s , in g e n e r a l no such t r a d e o f f e x i s t s f o r long o n e s . A puncture t o w a r d the beginning of a long m i s s i o n m a y c a u s e the l o s s of a l l fuel. T h e r e f o r e , any m e t e o r o i d puncture during a long m i s s i o n must be c o n s i d e r e d a " k i l l ,1 1 and the v e h i c l e must be s h i e l d e d t o e l i m i n a t e a l l punctures at the d e s i r e d p r o b a b i l i t y .

T h e fuel l o s s e s p r e s e n t e d h e r e a r e c o n s e r v a t i v e in another s e n s e . A s fuel is l o s t , the r e m a i n i n g fuel w i l l a s s u m e a z e r o - g r a v i t y c o n f i g u r a t i o n . S o m e of the tank a r e a w i l l then be a d - jacent t o e m p t y s p a c e o r , in the c a s e of liquid h y d r o g e n , t o a g a s u l l a g e . T h e flow r a t e f o r h y d r o g e n g a s , under the c o n - ditions d i s c u s s e d , is about one-tenth of that f o r liquid h y d r o g e n . R E F E R E N C E S

1 K o r n h a u s e r , Μ . , " S a t e l l i t e p r e s s u r e l o s s e s caused by m e t e o r o i d i m p a c t s , " A R S J. 30, 475-479 ( 1 9 6 0 ) .

2 B j o r k , R . L . , " M e t e o r o i d s v e r s u s .space v e h i c l e s , "

A R S J. 3 1 , 803-807 ( 1 9 6 1 ) .

3 J a z w i n s k i , Α . Η . , " F u e l l o s s e s on a t y p i c a l 6. 2 hour Centaur m i s s i o n due to m e t e o r o i d p u n c t u r e , G e n e r a l D y n a m i c s / A s t r o n a u t i c s R e p t . A E 6 1 - 1 0 4 2 , A u g u s t 1961.

4 J a z w i n s k i , Α . Η . , " F u e l l o s s e s on a t y p i c a l 6. 2 hour centaur m i s s i o n due to m e t e o r o i d p u n c t u r e , A d d e n d u m :

" V a r i a b l e F l i g h t T i m e , " G e n e r a l D y n a m i c s / A s t r o n a u t i c s R e p t . A E 6 1 - 1 0 4 2 A d d e n d u m , D e c e m b e r 12, 1961.

5 J a z w i n s k i , Α . Η . , " M e t e o r o i d puncture of s p a c e v e - h i c l e s with a p p l i c a t i o n to fuel l o s s e s on the c e n t a u r , G e n e r a l D y n a m i c s / A s t r o n a u t i c s R e p t . A E 6 2 - 0 4 5 3 , M a y 29, 1962.

6 E d m i s t o n , R . Μ . , " T h e p r o d u c t i o n of a m e t e o r o i d hole a r e a in a s p a c e v e h i c l e n e a r the E a r t h , " Inst. A e r o - s p a c e S c i e n c e s P a p e r N o . 6 2 - 2 9 , January 1962.

7 Dubin, Μ . , A l e x a n d e r , W . Μ . , and B e r g , Ο . Ε . ,

" C o s m i c dust s h o w e r s by d i r e c t m e a s u r e m e n t s , " S y m p o s i u m on the A s t r o n o m y and P h y s i c s of M e t e o r s ( 1 9 6 1 ) .

426

(15)

8 W a t s o n , F . G . , B e t w e e n the P l a n e t s , ( H a r v a r d U n i v e r - s i t y P r e s s , C a m b r i d g e , M a s s . ) ( 1 9 5 6 ) , Chap. 7,

9 W h i p p l e , F . L . , " T h e m e t e o r i t i c r i s k t o s p a c e v e h i c l e s , "

V i s t a s in A s t r o n a u t i c s , ( 1 9 5 8 ) .

10 B r o w n , H a r r i s o n , " T h e d e n s i t y of m a s s d i s t r i b u t i o n of m e t e o r i t i c b o d i e s in the n e i g h b o r h o o d o f the e a r t h1 s o r b i t , "

J. G e o p h y s . R e s e a r c h 65, 1679 (June 1960).

11 B r o w n , H a r r i s o n , " A d d e n d u m : T h e d e n s i t y and m a s s d i s t r i b u t i o n o f m e t e o r i t i c b o d i e s in the neighborhood of the e a r t h ' s o r b i t , " J. G e o p h y s . R e s e a r c h 66, 1316 ( 1 9 6 1 ) .

12 M c C r a c k e n , C . W . , and A l e x a n d e r , W . Μ . , " T h e d i s t r i b u t i o n of s m a l l i n t e r p l a n e t a r y dust p a r t i c l e s in the v i c i n i t y of e a r t h , " S y m p o s i u m on the A s t r o n o m y and P h y s i c s of M e t e o r s ( 1 9 6 1 ) .

13 B e a r d , D . Β . , " i n t e r p l a n e t a r y dust d i s t r i b u t i o n , "

A s t r o p h y s . J o u r n a l , 192, 496-506 (1959).

14 S i n g e r , S. F . , " i n t e r p l a n e t a r y dust n e a r the e a r t h , "

N a t u r e 192, 321-323 ( 1 9 6 1 ) .

15 W h i p p l e , F . L . , " P a r t i c u l a t e contents of s p a c e , "

M e d i c a l and B i o l o g i c a l A s p e c t s of the E n e r g i e s of S p a c e , C o l u m b i a U n i v e r s i t y P r e s s , N e w Y o r k ( 1 9 6 1 ) , Chap. 3.

16 H e r r m a n n , W . , and J o n e s , Α . Η . , " S u r v e y of h y p e r - v e l o c i t y i m p a c t i n f o r m a t i o n , " M a s s . Inst. T e c h . , A S R L R e p t . N o . 9 9 - 1 , S e p t e m b e r 1961.

17 E i c h e l b e r g e r , R . L . , and G e h r i n g , J. W . , " E f f e c t s of m e t e o r o i d i m p a c t on s p a c e v e h i c l e s , " B R L R e p t . N o . 1155, D e c e m b e r 1961.

18 B j o r k , R . L . , " E f f e c t s o f a m e t e o r o i d i m p a c t on

s t e e l and a l u m i n u m in s p a c e , " X t h I n t e r n a t i o n a l A s t r o n a u t i c a l C o n g r e s s , London (1959),

19 F i f t h H y p e r v e l o c i t y I m p a c t S y m p o s i u m , D e n v e r (1961).

20 F e l l e r , W . , P r o b a b i l i t y T h e o r y and Its A p p l i c a t i o n s , John W i l e y & S o n s , I n c . , L o n d o n ( 1 9 5 0 ) , Chap. 7.

(16)

30 h

M A S S ( G M )

F i g . 1 M a s s - v e l o c i t y d i s t r i b u t i o n of m e t e o r o i d s a f t e r Whipple (9)

M A S S M ( G M )

F i g . 2 M e t e o r o i d flux 428

(17)

i o "7 i o "6 i o "3 i o "4 i o "3 i o "2 i o "1

MASS (GM)

. 3 Skin t h i c k n e s s v e r s u s t h r e s h o l d m e t e o r o i d m a s s

MASS

F i g . 4 H o l e a r e a v e r s u s m e t e o r o i d m a s s

(18)

4 3 0

/ 3 σ ( Ρ = 0 . 9 9 8 6 ) 1 0 - /

co" /

~~Τ— - /

5 - /

- / ^ Ί?σ(Ρ -- 0. 977?)

Ou ι J I • • . . I • ι ι ι I ι ι ι 0 0 . 0 5 G.1 0 . 1 5

λ

F i g . 5 H o l e a r e a as a function of t i m e

ία",

ι !

oo - \ _ V E H I C L E

£ - C A P A C I T Y

cd : 2 σ \

ID \ ζ \ LU \ Ο \ O - \

Q 2 \ \

^ 10 f M E A N^ - ^ 1

- \ ^ ^ ^ ^

— - I ^ ^ ^ ^

10 L I I tl I I I I I I 1 1 1 L i o '2 i o '1

STEEL S K I N T H I C K N E S S ( I N . )

F i g . 6 E a r t h - m o o n t r a n s f e r of s t e e l fuel tank

1 5 - /

(19)

A L U M I N U M S K I N T H I C K N E S S ( I N . )

F i g . 7 E a r t h - m o o n t r a n s f e r of a l u m i n u m fuel tank

10

10 10 -1

1 0w

F i g . 8

STEEL S K I N T H I C K N E S S ( I N . )

S t e e l fuel s t o r a g e tank in e a r t h p a r k i n g o r b i t

(20)

A L U M I N U M S K I N T H I C K N E S S ( I N . )

F i g . 9 A l u m i n u m fuel s t o r a g e tank in E a r t h p a r k i n g o r b i t

432

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

This explains, parenthetically, why u.v.-induced zero point and delayed mutations in bacteria and extra- chromosomal mutations are qualitatively similar, if it is assumed that

We have, more- over, measured colour changes that occur with stimulus exposures that last only for a few milliseconds both when the stimuli are exposed different adapting and

For example, the long wave response (photoconduction) of the ß-carotene cell disappeared on removing the applied potential but the short wave response (photovoltaic

The intermittent far-red irradiation for 26 h partially satisfies the high-energy reaction, and the terminal exposure to red light then allows P f r action, giving a

Flowering of plants growing in short days can be produced by either the phytochrome system—a night break of red or white light in the middle of the dark period, or the

It appears that all of the chlorophyll molecules in the plant are not actually sites at which the quantum conversion occurs, but the excitation of one chlorophyll molecule allows

He emphasized that it was possible to have P700 in the oxidized state following the addition of P M A (phenyl mercuric acetate) but that the fluorescent yield of H720 was

In reply to the former question Z i r k l e stated that the site of irradiation was routinely selected to be as close as possible to the spindle fibres without actually