• Nem Talált Eredményt

FELHSZNÁLT IRODALOM

1) Abrankó L., Nagy Á., Hegedűs A. (2011): Genistein izoflavon: egy ismeretlen ismerős a meggyben (Prunus cerasus L.). In: Adányiné Kisbocskói N., Wölfling J. (szerk.):

MKE 1. Nemzeti Konferencia. p 50. Magyar Kémikusok Egyesülete, Sopron.

2) Agius, F., Gonzalez-Lamothe, R., Caballero, J.L., Munoz-Blanco, J., Botella, M.A., Valpuesta, V. (2003): Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase. Nat. Biotech., 21: 177–181.

3) Aharoni, A., De Vos, C.H.R., Wein, M., Sun, Z., Greco, R., Kroon, A., Mol, J.N.M., O'Connell, A.P. (2001): The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco. Plant J., 28: 319–332.

4) Ahkang, S., Jang, Y.J., Park, H. (1998): In vivo dual effects of vitamin C on paraquat-induced lung damage: dependence on released metals from the damaged tissue. Free Radical Res., 28: 93–107.

5) Akin, E.B., Karabulut, I., Topcu, A. (2008): Some compositional properties of main Malatya apricot (Prunus armeniaca L.) varieties. Food Chem., 107: 939–948.

6) Alcaraz, M.J., Ferrandiz, M.L. (1987): Modification of arachidonic metabolism by flavonoids. J. Ethnopharmacol., 21: 209–229.

7) Alothman, M., Bhat, R., Karim, A.A. (2009): UV radiation-induced changes of antioxidant capacity of fresh-cut tropical fruits. Innov. Food Sci. Emerg., 10: 512–516.

8) Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J. (1990): Basic local alignment search tool. J. Mol. Biol., 215: 403–410.

9) Analytic Jena (2008): Photochem application notes. 2008. január 30., Analytic Jena, Jéna,

Inhibitory activity of minor polyphenolic and nonpolyphenolic constituents of olive oil against in vitro low-density lipoprotein oxidation J. Med. Food, 5: 1–7.

12) Apak, R., Güclü, K., Demirata, B., Özyürek, M., Celik, S., Bektasoglu, B., Berker, K., Özyurt, D. (2007): Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules, 12: 1496–1547.

13) Apostol J. (2003): Cseresznye- és meggynemesítés, a fontosabb fajták leírása. In: Hrotkó K.

(szerk.): Cseresznye és meggy. Mezőgazda, Budapest.

14) Arts, I.C.W., Jacobs, D.R., Gross, M., Harnack, L.J., Folsom, A.R. (2002): Dietary catechins and cancer incidence among postmenopausal women: the Iowa Women's Health Study (United States). Cancer Cause. Control, 13: 373–382.

15) Arulsekar, S., Parfitt, D.E., Kester, D.E. (1986): Comparison of isozyme variability in peach and almond cultivars. J. Hered., 77: 272–274.

16) Awad, M.A., de Jager, A., van Westing, L.M. (2000): Flavonoid and chlorogenic acid levels in apple fruit: characterisation of variation. Sci. Hortic.-Amsterdam, 83: 249–263.

17) Azuma, A., Kobayashi, S., Yakushiji, H., Yamada, M., Mitani, N., Sato, A. (2007):

VvmybA1 genotype determines grape skin color. Vitis, 46: 154–155.

18) Balogh E. (2011): Antioxidáns kapacitás meghatározása és ennek kialakításában szerepet játszó vegyületek vizsgálata bogyósgyümölcsök esetében (PhD értekezés). Budapesti Corvinus Egyetem, Budapest.

19) Bazzano, L.A., He, J., Ogden, L.G., Loria, C.M., Vupputuri, S., Myers, L., Whelton, P.K.

(2002): Fruit and vegetable intake and risk of cardiovascular disease in US adults: the first National Health and Nutrition Examination Survey Epidemiologic Follow-up Study. Am. J. Clin. Nutr., 76: 93–99.

20) Békefi, Z. (2008): Cherries. In: Nyéki, J., Soltész, M., Szabó, Z. (szerk.): Morphology, biology and fertility of flowers in temperate zone fruits. Akadémiai Kiadó, Budapest.

21) Béliveau, R., Gingras, D. (2007): Role of nutrition in preventing cancer. Can. Fam.

Physician, 53: 1905–1911.

22) Benzie, I.F.F., Strain, J.J. (1996): The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": The FRAP assay. Anal. Biochem., 239: 70–76.

23) Blanchflower, D., Oswald, A., Stewart-Brown, S. (2013): Is psychological well-being linked to the consumption of fruit and vegetables? Soc. Indic. Res.: in press.

24) Blanck, H.M., Gillespie, C., Kimmons, J.E., Seymour, J.D., Serdula, M.K. (2008): Trends in fruit and vegetable consumption among U.S. men and women, 1994–2005. Prev.

Chronic Dis., 5: A35.

25) Blando, F., Gerardi, C., Nicoletti, I. (2004): Sour cherry (Prunus cerasus L) anthocyanins as ingredients for functional foods. J. Biomed. Biotechnol., 2004: 253–258.

26) Blázovics, A., Kovács, A., Lugasi, A., Hagymási, K., Bíró, L., Fehér, J. (1999): Antioxidant defense in erythrocytes and plasma of patients with active and quiescent Crohn disease and ulcerative colitis: a chemiluminescent study. Clin. Chem., 45: 895–896.

27) Block, G., Patterson, B., Subar, A. (1992): Fruit, vegetables, and cancer prevention: A review of the epidemiological evidence. Nutr. Cancer, 18: 1–29.

28) Blois, M.S. (1958): Antioxidant determination by the use of a stable free radical. Nature, 4617: 1198–1200.

29) Bogs, J., Downey, M.O., Harvey, J.S., Ashton, A.R., Tanner, G.J., Robinson, S.P. (2005):

Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves. Plant Physiol., 139: 652–663.

30) Bogs, J., Ebadi, A., McDavid, D., Robinson, S.P. (2006): Identification of the flavonoid hydroxylases from grapevine and their regulation during fruit development. Plant Physiol., 140: 279–291.

31) Bogs, J., Jaffe, F.W., Takos, A.M., Walker, A.R., Robinson, S.P. (2007): The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development. Plant Physiol., 143: 1347–1361.

32) Bohm, B.A. (1999): Introduction to flavonoids. Harwood, Amsterdam.

33) Bonerz, D., Würth, K., Dietrich, H., Will, F. (2007): Analytical characterization and the impact of ageing on anthocyanin composition and degradation in juices from five sour cherry cultivars. Eur. Food Res. Technol., 224: 355–364.

34) Boss, P.K., Davies, C., Robinson, S.P. (1996a): Analysis of the expression of anthocyanin pathway genes in developing Vitis vinifera L. cv Shiraz grape berries and the implications for pathway regulation. Plant Physiol., 111: 1059–1066.

35) Boss, P.K., Davies, C., Robinson, S.P. (1996b): Expression of anthocyanin biosynthesis pathway genes in red and white grapes. Plant Mol. Biol., 32: 565–569.

36) Bouayed, J., Rammal, H., Dicko, A., Younos, C., Soulimani, R. (2007): Chlorogenic acid, a polyphenol from Prunus domestica (Mirabelle), with coupled anxiolytic and antioxidant effects. J. Neurol. Sci., 262: 77–84.

37) Braidot, E., Zancani, M., Petrussa, E., Peresson, C., Bertolini, A., Patui, S., Macrì, F., Vianello, A. (2008): Transport and accumulation of flavonoids in grapevine (Vitis vinifera L.). Plant Signal. Behav., 3: 626–632.

38) Brandi, F., Bar, E., Mourgues, F., Horvath, G., Turcsi, E., Giuliano, G., Liverani, A., Tartarini, S., Lewinsohn, E., Rosati, C. (2011): Study of 'Redhaven' peach and its white-fleshed mutant suggests a key role of CCD4 carotenoid dioxygenase in carotenoid and norisoprenoid volatile metabolism. BMC Plant Biol., 11: 24.

39) Burkhardt, S., Tan, D.X., Manchester, L.C., Hardeland, R., Reiter, R.J. (2001): Detection and quantification of the antioxidant melatonin in Montmorency and Balaton tart cherries (Prunus cerasus). J. Agr. Food Chem., 49: 4898–4902.

40) Butelli, E., Licciardello, C., Zhang, Y., Liu, J., Mackay, S., Bailey, P., Reforgiato-Recupero, G., Martin, C. (2012): Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. Plant Cell, 24: 1242–1255.

41) Byrne, D.H. (1989): Inbreeding, coancestry, and founding clones of Japanese-type plums of California and the southeastern United States. J. Amer. Soc. Hort. Sci., 114: 669–705.

42) Cameron, E., Pauling, L. (1976): Supplemental ascorbate in the supportive treatment of cancer: prolongation of survival times in terminal human cancer. P. Natl. Acad. Sci.

USA, 73: 3685–3689.

43) Cantín, C.M., Moreno, M.A., Gogorcena, Y. (2009): Evaluation of the antioxidant capacity, phenolic compounds, and vitamin C content of different peach and nectarine [Prunus persica (L.) Batsch] breeding progenies. J. Agr. Food Chem., 57: 4586–4592.

44) Capocasa, F., Diamanti, J., Mezzetti, B., Tulipani, S., Battino, M. (2008): Breeding strawberry (Fragaria x ananassa Duch) to increase fruit nutritional quality.

BioFactors, 34: 67–72.

45) Carbonaro, M., Mattera, M., Nicoli, S., Bergamo, P., Cappelloni, M. (2002): Modulation of antioxidant compounds in organic vs conventional fruit (peach, Prunus persica L., and pear, Pyrus communis L.). J. Agr. Food Chem., 50: 5458–5462.

46) Carlisle, R. (2004): Scientific American inventions and discoveries. Wiley, Hoboken, USA.

47) Cassidy, A., Mukamal, K.J., Liu, L., Franz, M., Eliassen, A.H., Rimm, E.B. (2013): High anthocyanin intake is associated with a reduced risk of myocardial infarction in young and middle-aged women. Circulation, 127: 188–196.

48) Castellarin, S.D., Matthews, M.A., Di Gaspero, G., Gambetta, G.A. (2007b): Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Planta, 227: 101–112.

49) Castellarin, S.D., Pfeiffer, A., Sivilotti, P., Degan, M., Peterlunger, E., Di Gaspero, G.

(2007a): Transcriptional regulation of anthocyanin biosynthesis in ripening fruits of grapevine under seasonal water deficit. Plant Cell Environ., 30: 1381–1399.

50) Cevallos-Casals, B.A., Byrne, D., Okie, W.R., Cisneros-Zevallos, L. (2006): Selecting new peach and plum genotypes rich in phenolic compounds and enhanced functional properties. Food Chem., 96: 273–280.

51) Cha, J., Roomi, M.W., Ivanov, V., Kalinovsky, T., Niedzwiecki, A., Rath, M. (2013):

Ascorbate supplementation inhibits growth and metastasis of B16FO melanoma and 4T1 breast cancer cells in vitamin C-deficient mice. Int. J. Oncol., 42: 55–64.

52) Challem, J.J., Taylor, E.W. (1998): Retroviruses, ascorbate, and mutations, in the evolution of Homo sapiens. Free Radical Bio. Med., 25: 130–132.

53) Chan, J.K., Bruce, V.M., McDonald, B.E. (1991): Dietary alpha-linolenic acid is as effective as oleic acid and linoleic acid in lowering blood cholesterol in normolipidemic men.

Am. J. Clin. Nutr., 53: 1230–1234.

54) Chaovanalikit, A., Wrolstad, R.E. (2004a): Total anthocyanins and total phenolics of fresh and processed cherries and their antioxidant properties. J. Food Sci., 69: FCT67–

FCT72.

55) Chaovanalikit, A., Wrolstad, R.E. (2004b): Anthocyanin and polyphenolic composition of fresh and processed cherries. J. Food Sci., 69: FCT73–FCT83.

56) Chapman, M.S. (2012): Vitamin A: history, current uses, and controversies. Semin. Cutan.

Med. Surg., 31: 11–16.

57) Chen, C., Kong, A.-N.T. (2005): Dietary cancer-chemopreventive compounds: from signaling and gene expression to pharmacological effects. Trends Pharmacol. Sci., 26:

318–326.

58) Chen, K., Suh, J., Carr, A.C., Morrow, J.D., Zeind, J., Frei, B. (2000): Vitamin C suppresses oxidative lipid damage in vivo, even in the presence of iron overload. Am. J. Physiol.-Endoc. M., 279: E1406–E1412.

Brit. J. Sport. Med., 40: 679–683.

61) Connor, A.M., Luby, J.J., Tong, C.B.S., Finn, C.E., Hancock, J.F. (2002): Genotypic and environmental variation in antioxidant activity, total phenolic content, and anthocyanin content among blueberry cultivars. J. Am. Soc. Hortic. Sci., 127: 89–97.

62) Connor, A.M., Stephens, M.J., Hall, H.K., Alspach, P.A. (2005): Variation and heritabilities of antioxidant activity and total phenolic content estimated from a red raspberry factorial experiment. J. Am. Soc. Hortic. Sci., 130: 403–411.

63) Cornelli, U. (2009): Antioxidant use in nutraceuticals. Clin. Dermatol., 27: 175–194.

64) Crisosto, C.H., Crisosto, G.M., Metheney, P. (2003): Consumer acceptance of 'Brooks' and 'Bing' cherries is mainly dependent on fruit SSC and visual skin color. Postharvest Biol. Tec., 28: 159–167.

65) Cruz-Rus, E., Amaya, I., Valpuesta, V. (2012): The challenge of increasing vitamin C content in plant foods. Biotechnol. J., 7: 1110–1121.

66) Cultrone, A., Cotroneo, P., Reforgiato Recupero, G. (2009): Cloning and molecular characterization of R2R3-MYB and bHLH-MYC transcription factors from Citrus sinensis. Tree Genet. Genomes, 6: 101–112.

67) Dalla Valle, A., Mignani, I., Spinardi, A., Galvano, F., Ciappellano, S. (2007): The antioxidant profile of three different peaches cultivars (Prunus persica) and their short-term effect on antioxidant status in human. Eur. Food Res. Technol., 225: 167–172.

68) Dalmady Z. (1914): Védekezés a betegségek ellen. In: Alexander B., Lenhossék M. (szerk.):

Az ember testi és lelki élete, egyéni és faji sajátságai. Athenaeum, Budapest.

69) Dam, H., Granados, H. (1945): Peroxidation of body fat in vitamin E deflciency. Acta Physiol. Scand., 10: 162–171.

70) Dardick, C., Callahan, A., Chiozzotto, R., Schaffer, R., Piagnani, M.C., Scorza, R. (2010):

Stone formation in peach fruit exhibits spatial coordination of the lignin and flavonoid pathways and similarity to Arabidopsis dehiscence. BMC Biol., 8: 13.

71) Dauchet, L., Dallongeville, J. (2008): Fruit and vegetables and cardiovascular disease:

epidemiological evidence from the non-Western world. Brit. J. Nutr., 99: 219–220.

72) Dave, B., Eason, R.R., Till, S.R., Geng, Y., Velarde, M.C., Badger, T.M., Simmen, R.C.M.

(2005): The soy isoflavone genistein promotes apoptosis in mammary epithelial cells by inducing the tumor suppressor PTEN. Carcinogenesis, 26: 1793–1803.

73) Davey, M.W., Montagu, M.V., Inzé, D., Sanmartin, M., Kanellis, A., Smirnoff, N., Benzie, I.J., Strain, J.J., Favell, D., Fletcher, J. (2000): Plant L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. J. Sci. Food Agr., 80:

825–860.

74) Davies, K.M. (1993): A cDNA clone for flavanone 3-hydroxylase from Malus. Plant Physiol., 103: 291.

75) Day, A.J., Gee, J.M., DuPont, M.S., Johnson, I.T., Williamson, G. (2003): Absorption of quercetin-3-glucoside and quercetin-4'-glucoside in the rat small intestine: the role of lactase phlorizin hydrolase and the sodium-dependent glucose transporter. Biochem.

Pharmacol., 65: 1199–1206.

76) DellaPenna, D., Pogson, B.J. (2006): Vitamin synthesis in plants: tocopherols and carotenoids. Annu. Rev. Plant Biol., 57: 711–738.

77) Deng, X.-S., Tuo, J., Poulsen, H.E., Loft, S. (1998): Prevention of oxidative DNA damage in rats by brussels sprouts. Free Radical Res., 28: 323–333.

78) Díaz-Mula, H.M., Zapata, P.J., Guillén, F., Castillo, S., Martínez-Romero, D., Valero, D., Serrano, M. (2008): Changes in physicochemical and nutritive parameters and bioactive compounds during development and on-tree ripening of eight plum cultivars:

a comparative study. J. Sci. Food Agr., 88: 2499–2507.

79) Díaz-Mula, H.M., Zapata, P.J., Guillen, F., Martinez-Romero, D., Castillo, S., Serrano, M., Valero, D. (2009): Changes in hydrophilic and lipophilic antioxidant activity and related bioactive compounds during postharvest storage of yellow and purple plum cultivars. Postharvest Biol. Tec., 51: 354–363.

80) DiNardo, J.C., Lewis, J.A., Neudecker, B.A., Maibach, H.I. (2004): Antioxidants compared in a new protocol to measure protective capacity against oxidative stress-part II. J. Am.

Acad. Dermatol., 50: P30–P30.

81) Dirlewanger, E., Claverie, J., Iezzoni, A.F., Wunsch, A. (2009): Sweet and sour cherries:

linkage maps, QTL detection and marker assisted selection. In: Folta, K.M., Gardiner, S.E. (eds.): Genetics and genomics of Rosaceae. Pp. 291–313. Springer, New York.

82) Dixon, R.A., Paiva, N.L. (1995): Stress-induced phenylpropanoid metabolism. Plant Cell, 7:

1085–1097.

83) Dondini, L., Pierantoni, L., Ancarani, V., D' Angelo, M., Cho, K.H., Shin, I.S., Musacchi, S., Kang, S.J., Sansavini, S. (2008): The inheritance of the red colour character in European pear (Pyrus communis) and its map position in the mutated cultivar 'Max Red Bartlett'. Plant Breeding, 127: 524–526.

84) Dragovic-Uzelac, V., Levaj, B., Bursac, D., Pedisic, S., Radojcic, I., Bisko, A. (2007b):

Total phenolics and antioxidant capacity assays of selected fruits. Agric. Conspec. Sci., 4: 279–284.

85) Dragovic-Uzelac, V., Levaj, B., Mrkic, V., Bursac, D., Boras, M. (2007a): The content of polyphenols and carotenoids in three apricot cultivars depending on stage of maturity and geographical region. Food Chem, 102: 966–975.

86) Drewnowski, A., Gomez-Carneros, C. (2000): Bitter taste, phytonutrients, and the consumer:

a review. Am. J. Clin. Nutr., 72: 1424–1435.

87) Drogoudi, P.D., Vemmos, S., Pantelidis, G., Petri, E., Tzoutzoukou, C., Karayiannis, I.

(2008): Physical characters and antioxidant, sugar, and mineral nutrient contents in fruit from 29 apricot (Prunus armeniaca L.) cultivars and hybrids. J. Agr. Food Chem., 56: 10754–10760.

88) Eberhardt, M.V., Lee, C.Y., Liu, R.H. (2000): Nutrition: antioxidant activity of fresh apples.

Nature, 405: 903–904.

89) Egea, I., Sanchez-Bel, P., Romojaro, F., Pretel, M. (2010): Six edible wild fruits as potential antioxidant additives or nutritional supplements. Plant Foods Hum. Nutr., 65: 121–129.

90) El Ghaouth, A., Wilson, C.L., Callahan, A.M. (2003): Induction of chitinase, β-1,3-glucanase, and phenylalanine ammonia lyase in peach fruit by UV-C treatment.

Phytopathol., 93: 349–355.

91) Engel, R., Abrankó, L., Stefanovits-Bányai, É., Fodor, P. (2010): Simultaneous determination of water soluble vitamins in fortified food products. Acta Aliment.

Hung., 39: 48–58.

92) Entz, F. (1882): A gyümölcséletrendi fontossága. Gyümölcsészeti és Konyhakertészeti Füzetek, 3: 264–267.

93) Ercisli, S. (2004): A short review of the fruit germplasm resources of Turkey. Genet. Resour.

Crop Ev., 51: 419–435.

94) Ercisli, S., Akbulut, M., Ozdemir, O., Sengul, M., Orhan, E. (2008): Phenolic and antioxidant diversity among persimmon (Diospyrus kaki L.) genotypes in Turkey. Int.

J. Food Sci. Nutr., 59: 477–482.

95) Ercisli, S., Gozlekci, S., Sengul, M., Hegedűs, A., Tepe, S. (2012a): Some physicochemical characteristics, bioactive content and antioxidant capacity of loquat (Eriobotrya japonica (Thunb.) Lindl.) fruits from Turkey. Sci. Hortic.-Amsterdam, 148: 185–189.

96) Ercisli, S., Tosun, M., Karlidag, H., Dzubur, A., Hadziabulic, S., Aliman, Y. (2012b): Color and antioxidant characteristics of some fresh fig (Ficus carica L.) genotypes from Northeastern Turkey. Plant Foods Hum. Nutr., 67: 271–276.

97) Erkan, M., Wang, S.Y., Wang, C.Y. (2008): Effect of UV treatment on antioxidant capacity, antioxidant enzyme activity and decay in strawberry fruit. Postharvest Biol. Tec., 48:

163–171.

98) Erlejman, A.G., Jaggers, G., Fraga, C.G., Oteiza, P.I. (2008): TNFα-induced NF-κB activation and cell oxidant production are modulated by hexameric procyanidins in Caco-2 cells. Arch. Biochem. Biophys., 476: 186–195.

99) Eryomine, G.V. (1991): New data on origin of Prunus domestica L. Acta Hort. (ISHS), 283:

27–29.

100) Espley, R.V., Brendolise, C., Chagne, D., Kutty-Amma, S., Green, S., Volz, R., Putterill, J., Schouten, H.J., Gardiner, S.E., Hellens, R.P., Allan, A.C. (2009): Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples. Plant Cell, 21: 168–183.

101) Espley, R.V., Hellens, R.P., Putterill, J., Stevenson, D.E., Kutty-Amma, S., Allan, A.C.

(2007): Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J., 49: 414–427.

102) Faluba Z. (1982): A fajtahasználat és várható alakulása. In: Pór J., Faluba Z. (szerk.):

Cseresznye és meggy. Mezőgazdasági Kiadó, Budapest.

103) Faostat (2011): Crops data. 2013. január 20, Food and Agriculture Organization of the United Nations: <http://faostat.fao.org/site/567/default.aspx>.

104) Faust, M., Surányi, D. (1999): Origin and dissemination of plums. In: Hort. Rev. Pp. 179–

231. John Wiley & Sons, Inc.

105) Faust, M., Surányi, D., Nyujtó, F. (1998): Origin and dissemination of apricot. In: Hort. Rev.

Pp. 225–266. John Wiley & Sons, Inc.

106) Faust, M., Timon, B. (1995): Origin and dissemination of peach. In: Hort. Rev. Pp. 331–379.

John Wiley & Sons, Inc.

107) Ferretti, G., Bacchetti, T., Belleggia, A., Neri, D. (2010): Cherry antioxidants: from farm to table. Molecules, 15: 6993–7005.

108) Firmin, J.L., Wilson, K.E., Rossen, L., Johnston, A.W.B. (1986): Flavonoid activation of nodulation genes in Rhizobium reversed by other compounds present in plants. Nature, 324: 90–92.

109) Fischer, T., Gosch, C., Pfeiffer, J., Halbwirth, H., Halle, C., Stich, K., Forkmann, G. (2007):

Flavonoid genes of pear (Pyrus communis). Trees, 21: 521–529.

110) Fischer, T., Halbwirth, H., Meisel, B., Stich, K., Forkmann, G. (2003): Molecular cloning, substrate specificity of the functionally expressed dihydroflavonol 4-reductases from Malus domestica and Pyrus communis cultivars and the consequences for flavonoid metabolism. Arch. Biochem. Biophys., 412: 223–230.

111) Forester, S.C., Waterhouse, A.L. (2010): Gut metabolites of anthocyanins, gallic acid, 3-O-methylgallic acid, and 2,4,6-trihydroxybenzaldehyde, inhibit cell proliferation of Caco-2 cells. J. Agr. Food Chem., 58: 53Caco-20–53Caco-27.

112) Földmívelésügyi Magyar Királyi Ministerium (1896): A földmívelésügyi Magyar Királyi Ministernek, 1894. és 1895. évi működéséről a törvényhozás elé terjesztett jelentése.

Földmívelésügyi Magyar Királyi Ministerium, Budapest.

113) Fraga, C.G., Oteiza, P.I., Litterio, M.C., Galleano, M. (2012): Phytochemicals as antioxidants: chemistry and health effects. Acta Hort. (ISHS), 939: 63–67.

114) Frankel, E.N., Meyer, A.S. (2000): The problems of using one-dimensional methods to evaluate multifunctional food and biological antioxidants. J. Sci. Food Agr., 80: 1925–

1941.

115) Frei, B., Higdon, J.V. (2003): Antioxidant activity of tea polyphenols in vivo: evidence from animal studies. J. Nutr., 133: 3275S–3284S.

116) Frei, B., Stocker, R., Ames, B.N. (1988): Antioxidant defenses and lipid peroxidation in human blood plasma. P. Natl. Acad. Sci. USA, 85: 9748–9752.

117) G. Tóth M. (1997a): Cseresznye. In: G. Tóth M. (szerk.): Gyümölcsészet. Primon Vállalkozásélénkítő Alapítvány, Nyíregyháza.

118) G. Tóth M. (1997b): Meggy. In: G. Tóth M. (szerk.): Gyümölcsészet. Primon Vállalkozásélénkítő Alapítvány, Nyíregyháza.

119) Galli, R.L., Shukitt-Hale, B., Youdim, K.A., Joseph, J.A. (2002): Fruit polyphenolics and brain aging. Ann. N. Y. Acad. Sci., 959: 128–132.

120) Gao, Z., Maurousset, L., Lemoine, R., Yoo, S.-D., van Nocker, S., Loescher, W. (2003):

Cloning, expression, and characterization of sorbitol transporters from developing sour cherry fruit and leaf sink tissues. Plant Physiol., 131: 1566–1575.

121) Garcia-Alonso, M., de Pascual-Teresa, S., Santos-Buelga, C., Rivas-Gonzalo, J.C. (2004):

Evaluation of the antioxidant properties of fruits. Food Chem., 84: 13–18.

122) Garcia-Lafuente, A., Guillamon, E., Villares, A., Rostagno, M.A., Martinez, J.A. (2009):

Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease. Inflamm. Res., 58: 537–552.

123) Gil, M.I., Tomas-Barberan, F.A., Hess-Pierce, B., Kader, A.A. (2002): Antioxidant capacities, phenolic compounds, carotenoids, and vitamin C contents of nectarine, peach, and plum cultivars from California. J. Agr. Food Chem., 50: 4976–4982.

124) Glass, C.K., Witztum, J.L. (2001): Atherosclerosis: the road ahead. Cell 104: 503–516.

125) Gómez, E., Ledbetter, C.A. (1997): Development of volatile compounds during fruit maturation: characterization of apricot and plum×apricot hybrids. J. Sci. Food Agr., 74:

541–546.

126) Goncalves, B., Landbo, A.-K., Let, M., Silva, A.P., Rosa, E., Meyer, A.S. (2004): Storage affects the phenolic profiles and antioxidant activities of cherries (Prunus avium L) on human low-density lipoproteins. J. Sci. Food Agr., 84: 1013–1020.

127) Gonthier, M.-P., Verny, M.-A., Besson, C., Remesy, C., Scalbert, A. (2003): Chlorogenic acid bioavailability largely depends on its metabolism by the gut microflora in rats. J.

Nutr., 133: 1853–1859.

128) Goodstein, D.M., Shu, S., Howson, R., Neupane, R., Hayes, R.D., Fazo, J., Mitros, T., Dirks, W., Hellsten, U., Putnam, N., Rokhsar, D.S. (2013): Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res.: in press.

129) Griesser, M., Hoffmann, T., Bellido, M.L., Rosati, C., Fink, B., Kurtzer, R., Aharoni, A., Munoz-Blanco, J., Schwab, W. (2008): Redirection of flavonoid biosynthesis through the down-regulation of an anthocyanidin glucosyltransferase in ripening strawberry fruit. Plant Physiol., 146: 1528–1539.

130) Guo, C., Yang, J., Wei, J., Li, Y., Xu, J., Jiang, Y. (2003): Antioxidant activities of peel, pulp and seed fractions of common fruits as determined by FRAP assay. Nutr. Res., 23: 1719–1726.

131) Gurrieri, F., Audergon, J.M., Albagnac, G., Reich, M. (2001): Soluble sugars and carboxylic acids in ripe apricot fruit as parameters for distinguishing different cultivars.

Euphytica, 117: 183–189.

132) Gündüz, K., Saracoglu, O. (2012): Variation in total phenolic content and antioxidant activity of Prunus cerasifera Ehrh. selections from Mediterranean region of Turkey.

Sci. Hortic.-Amsterdam, 134: 88–92.

133) Halász, J., Hegedűs, A., Hermán, R., Stefanovits-Bányai, É., Pedryc, A. (2005): New self-incompatibility alleles in apricot (Prunus armeniaca L.) revealed by stylar ribonuclease assay and S-PCR analysis. Euphytica, 145: 57–66.

134) Halász, J., Pedryc, A., Ercisli, S., Yilmaz, K.U., Hegedűs, A. (2010): S-genotyping supports the genetic relationships between Turkish and Hungarian apricot germplasm. J. Am.

Soc. Hortic. Sci., 135: 410–417.

135) Halász, J., Pedryc, A., Hegedűs, A. (2007): Origin and dissemination of the pollen-part mutated SC haplotype which confers self-compatibility in apricot (Prunus armeniaca).

New Phytol., 176: 792–803.

136) Hall, T.A. (1999): BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser., 41: 95–98.

137) Halliwell, B. (2000): The antioxidant paradox. Lancet, 355: 1179–1180.

138) Halliwell, B., Gutteridge, J.M.C. (1992): Biologically relevant metal ion-dependent hydroxyl radical generation: An update. FEBS Lett., 307: 108–112.

139) Haminiuk, C.W.I., Maciel, G.M., Plata-Oviedo, M.S.V., Peralta, R.M. (2012): Phenolic compounds in fruits – an overview. Int. J. Food Sci. Tech., 47: 2023–2044.

140) Hampton, M.B., Orrenius, S. (1998): Redox regulation of apoptotic cell death. BioFactors, 8:

1–5.

141) Hanneken, A., Lin, F.-F., Johnson, J., Maher, P. (2006): Flavonoids protect human retinal pigment epithelial cells from oxidative-stress-induced death. Invest. Ophth. Vis. Sci., 47: 3164–3177.

142) Hannum, S.M. (2004): Potential impact of strawberries on human health: a review of the science. Crit. Rev. Food Sci. Nutr., 44: 1–17.

143) Harborne, J. (1997): Phytochemistry of fruits and vegetables: An ecological overview. In:

Thomas-Barberan, F. (ed.): Phytochemistry of fruits and vegetables. Pp. 353–367.

Oxford University Press, New York.

144) Hatano, T., Kagawa, H., Yasuhara, T., Okuda, T. (1988): Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavenging effects.

Chem. Pharm. Bull., 36: 2090–2097.

145) Hauck, N.R., Yamane, H., Tao, R., Iezzoni, A.F. (2006): Accumulation of nonfunctional S-haplotypes results in the breakdown of gametophytic self-incompatibility in tetraploid Prunus. Genetics, 172: 1191–1198.

146) Havasy M. (1939): A Kőrösi meggy és köztes növényeinek termesztése. Nagykőrösi Híradó, Nagykőrös.

147) Hegedűs, A. (2006): Self-(in)compatibility in sour cherry (Prunus cerasus L.). A minireview. Int. J. Hortic. Sci., 12: 117–120.

148) Hegedűs, A., Balogh, E., Engel, R., Sipos, B.Z., Papp, J., Blázovics, A., Stefanovits-Bányai, E. (2008): Comparative nutrient element and antioxidant characterization of berry fruit species and cultivars grown in Hungary. HortSci., 43: 1711–1715.

149) Hegedűs, A., Engel, R., Abrankó, L., Balogh, E., Blázovics, A., Hermán, R., Halász, J., Ercisli, S., Pedryc, A., Stefanovits-Bányai, É. (2010): Antioxidant and antiradical capacities in apricot (Prunus armeniaca L.) fruits: Variations from genotypes, years, and analytical methods. J. Food Sci., 75: C722–C730.

150) Hegedűs, A., Halász, J. (2006): Self-incompatibility in plums (Prunus salicina Lindl., Prunus cerasifera Ehrh. and Prunus domestica L.). A minireview. Int. J. Hortic. Sci., 12: 137–140.

151) Hegedűs A., Papp N., Szabó Z., Pfeiffer P., Stefanovits-Bányai É. (2012): A gyümölcsök antioxidáns kapacitásának jellemzése. In: Hegedűs A., Stefanovits-Bányai É. (szerk.):

Természetes antioxidáns-forrásunk: a gyümölcs. Debreceni Egyetem, AGTC, Kertészettudományi Intézet, Debrecen.

152) Hegedűs, A., Pfeiffer, P., Papp, N., Abrankó, L., Blázovics, A., Pedryc, A., Stefanovits-Bányai, É. (2011): Accumulation of antioxidants in apricot fruit through ripening:

characterization of a genotype with enhanced functional properties. Biol. Res., 44:

339–344.

153) Hegedűs A., Stefanovitsné Bányai É. (2012): Természetes antioxidáns-forrásunk: a gyümölcs. Debreceni Egyetem, AGTC Kutatási és Fejlesztési Intézet, Debrecen.

154) Hegedűs, A., Szabó, Z., Nyéki, J., Halász, J., Pedryc, A. (2006): Molecular analysis of S-haplotypes in peach, a self-compatible Prunus species. J. Am. Soc. Hortic. Sci., 131:

738–743.

155) Hevesi, M., Blázovics, A., Kállay, E., Végh, A., Stéger-Máté, M., Ficzek, G., Tóth, M.

(2012): Biological activity of sour cherry fruit on the bacterial flora of human saliva in vitro. Food Technol. Biotechnol., 50: 117–122.

156) Hillis, W.E., Swain, T. (1959): Phenolic constituents of Prunus domestica. III. – Identification of the major constituents in the tissues of victoria plum. J. Sci. Food Agr., 10: 533–537.

157) Hollman, P.C.H., van Trijp, J.M.P., Buysman, M.N.C.P., v.d. Gaag, M.S., Mengelers, M.J.B., de Vries, J.H.M., Katan, M.B. (1997): Relative bioavailability of the antioxidant flavonoid quercetin from various foods in man. FEBS Lett., 418: 152–156.

158) Holt, R.R., Lazarus, S.A., Sullards, M.C., Zhu, Q.Y., Schramm, D.D., Hammerstone, J.F., Fraga, C.G., Schmitz, H.H., Keen, C.L. (2002): Procyanidin dimer B2 [epicatechin-(4-8)-epicatechin] in human plasma after the consumption of a flavanol-rich cocoa. Am. J.

158) Holt, R.R., Lazarus, S.A., Sullards, M.C., Zhu, Q.Y., Schramm, D.D., Hammerstone, J.F., Fraga, C.G., Schmitz, H.H., Keen, C.L. (2002): Procyanidin dimer B2 [epicatechin-(4-8)-epicatechin] in human plasma after the consumption of a flavanol-rich cocoa. Am. J.