• Nem Talált Eredményt

Erőgépek összefoglaló jellemzői

In document Energetika I. (Pldal 113-117)

A. Fogalomtár

2. Hőerőgépek

2.1. Erőgépek összefoglaló jellemzői

A gépek hajtását, berendezések működtetését biztosító erőgépek köre nagyon széles. A 2.2.1.1.táblázatból látható módon az energiaátalakításnak sok útja járható mechanikai munka előállítására. Ezek alapján az erőgépek széles skálájából lehet az adott feladat megoldásához legjobban illeszkedő, gazdasági és műszaki szempontból optimális hajtást kiválasztani. A 2.2.1.2.táblázat a leghasználatosabb erőgéptípusok átlagos energetikai hatásfokát mutatja. Látható, hogy az erőgépek saját hatásfoka nagyon eltérő, és egyes géptípusoknál magas érték. Atáblázatból viszont az a sajnálatos helyzet is kitűnik, hogy a hajtásoknak a primer energiahordozóra vetített eredő hatásfoka általában kicsi, ami alól csak a vízturbina és a vízerőműben fejlesztett villamos energiával működtetett villamos motor jelent kivételt. A kis eredő energetikai hatásfoknak a legtöbb esetben az oka az, hogy a hőt nagyon rossz hatásfokkal tudjuk mechanikai energiává alakítani.

Energetikai szempontból is nagy kihatású fejlemény volt, hogy általánossá vált a gépek egyedi hajtása a csoporthajtás helyett. Ez nemcsak rugalmasabb szabályozásra adott módot, hanem energiamegtakarításra is, mert elmarad a közlőművek vesztesége, és az erőgépeket nem kell tartósan rossz hatásfokú részterhelésen üzemeltetni. Az erőgépek hatásfoka függ a szolgáltatott teljesítményük nagyságától, rendszerint a névleges (teljes) teljesítménynél a legnagyobb, részterhelésnél a hatásfok kisebb. Veszteségűk állandó és változó komponensre bontható, az állandó veszteség a terhelésmentes állapotban fellépő üresjárási veszteség, a változó veszteség értéke a terheléstől függ. A mechanikai elven működő erőgépek teljesítménye a működési sebességgel arányos, a változó veszteségek legnagyobb részét a súrlódás teszi ki, ami szintén a sebességgel arányos, így a változó veszteség és a teljesítmény kapcsolata közel lineáris.

2.2.1.1. ábra

2.2.1.2. ábra

A villamos gépek teljesítménye a felvett árammal arányos, a változó veszteség fő forrása, a Joule-veszteség viszont négyzetesen függ az áramtól, ezért a villamos gépek változó vesztesége jó közelítéssel a terhelés négyzetével arányos. A legtöbb fluidközeggel működő gépben a változó veszteség az áramló közeg sebességének köbével arányos, hasonló kapcsolat jellemzi függését a terheléstől is, mivel a teljesítmény az áramlási sebességgel arányos. E körülmények szabják meg a hatásfok-teljesítmény jelleggörbéinek alakulását, ezek legtipikusabb lefolyására a 2.2.1.3.ábra mutat példákat. A mechanikai berendezések hatásfoka általában monotonon nő, a másik két erőgéptípus hatásfokának szélsőértéke van. A maximum helyén az üresjárási veszteség villamos gépeknél egyenlő a változó veszteséggel, fluidközegű gépeknél pedig annak felével.

Természetesen az erőgépek konstrukciós kialakításával a jelleggörbék alakját számottevően módosítani lehet.

2.2.1.3. ábra

Energetikai szempontból a hatásfokgörbék egyrészt arra hívják fel a figyelmet, milyen jelentősége van a hajtások, közlőművek megválasztásánál a munkapont kijelölésének. A várható terhelés helytelen felmérése vagy a rosszul illesztett erőátvitel miatt a berendezések indokolatlanul, tartósan rossz hatásfokkal üzemelnek, ami jelentős energetikai veszteségek forrása. A másik figyelmet érdemlő körülmény az indításnál és leállásnál érvényesülő rossz hatásfok, ami jelentős többletveszteséggel jár. Gyakori leállásnál előfordulhat, hogy az üresjárási veszteség kisebb, mint e többletveszteségek eredője, és energetikai szempontból nem a gyakori leállás az optimális üzemvitel. Változó terhelésű üzemmódnál az energetikus számára az eredő hatásfoknak van jelentősége, ami a terhelésnek és a felvett teljesítménynek a vizsgált időszakra számított integráljaiból képzett hányados. Ilyenkor a munkapontok célszerű megválasztása bonyolultabb optimálást igénylő feladat.

Az indítás és gyorsítás időszakában az erőgépnek fedezni kell azt az energiát, ami a teljes fordulatszámon, illetve sebességnél a hajtott rendszerben mozgási és helyzeti energia formájában felhalmozódik. Az ehhez szükséges teljesítmény a gyorsítás időtartamától függ. Egyes erőgépek nyomaték-fordulatszám, illetve erő-sebesség jelleggörbéjének kezdeti szakasza csupán kis teljesítményt tesz lehetővé, az ilyen erőgépeket nem lehet terhelve indítani, hanem üresjáratban kell a szükséges fordulatszámra hozni, és csak ezt követően kapcsolhatók össze a hajtott rendszerrel (pl. a belsőégésű motorok). A felhalmozódott mechanikai energia a lassulás során felszabadul. Ha a lassítást a súrlódás valamilyen formája idézi elő, az energia hővé alakulva elvész. Ez nem szükségszerű, a fékezésnél felszabaduló energiát más rendszereknek is át lehet származtatni – esetleg nem is mechanikai energia formájában, pl. villamos rekuperációval –, és azt hasznosítani vagy tárolni lehet. Erősen változó üzemű gépeknél ez jelentős energiamegtakarítást eredményezhet.

Míg az indítási és gyorsítási időszakban elsősorban a gyorsítási munka szabja meg az energia- és teljesítményviszonyokat, addig állandósult állapotban az egyenletes mozgás a súrlódástól és a közegellenállástól függ. A súrlódás teljesítménye jó közelítéssel a sebességgel arányos, ez az ellenállás a mozgás minden formájánál számottevő. A közegellenállás teljesítménye a sebesség köbével arányos, kis sebességnél értéke nem jelentős, de nagy sebességnél – elsősorban járműveknél – ez az ellenállás a legnagyobb hatású.

Súrlódás nemcsak a szilárd gépelemek elmozdulását, folyadékok és gázok áramlását kíséri, hanem a közegek deformációjakor kialakuló belső elmozdulásokat is. Szilárd felületek között a súrlódó erő egyrészt a felületek anyagi minőségétől, másrészt a felületeket összeszorító erőtől függ – ami legtöbbször a súly. A súrlódási munka csökkentésében nagy szerepe volt a megmunkálási technológia fejlődése révén elérhető nagyobb felületi simaságnak és az üzemi körülmények (pl. hőmérséklet) teljes tartományában tökéletesebb kenést biztosító jobb kenőanyagok kifejlesztésének. A leghatásosabb lépést a csúszó súrlódás helyettesítése jelentette gördülő súrlódással (kerekek, görgök, gördülő csapágyak használata). Az utóbbi években az összeszorító erő csökkentése is előtérbe került, pl. légpárnás vagy mágneses lebegtetéssel, aerodinamikus hatások kiaknázásával, azonban ez többletenergia-befektetést igényel. Közegek áramlásánál a határfelületek minősége és a nyomás befolyásolja a súrlódó erőt.

A súrlódási veszteségek leszorításában a gépszerkesztés jelentős eredményeket ért el, e téren olyan nagy horderejű minőségi változást, ami az energiafelhasználást számottevően befolyásolná, nem lehet remélni. Az energetikusok érdeke a korszerű módszerek széles körű alkalmazása az új konstrukciók kialakításánál, pl. a csúszó súrlódás kiküszöbölése, a kenéstechnika újabb eredményeinek hasznosítása stb. Annál több viszont az energiamegtakarítási lehetőség a berendezések üzemeltetésénél és karbantartásánál. A legjobb konstrukciójú gép vesztesége is többszörösére nő, ha elmarad a kenés, ha berágódnak a csapágyak, a csővezetékek áramlási ellenállását megsokszorozza a felületek elváltozása szennyeződés, korrózió vagy lerakódások következtében.

Energetikai szempontból is fontos a karbantartást nem igénylő pl. önkenő szerkezetek térhódítása.

A súrlódási munka hővé alakul, ami nemcsak az energiaveszteség miatt érdemel figyelmet. Alegtöbb erőgép teljesítménye hőfokfüggő, az optimálisnál magasabb hőmérsékleten a hasznos teljesítmény csökken, ami az eredő energetikai hatásfokot tovább rontja. A túlmelegedés csökkenti a szerkezeti anyagok mechanikai szilárdságát, károsan hat a tömítésekre és a kenésre, így az üzembiztonságot is veszélyezteti. Ezért a melegedést gyakran hűtéssel kell korlátozni, a hűtőközeg biztosítása és áramoltatása többletenergia-befektetéssel jár. A hűtőközeggel jelentős mennyiségű hulladékhő távozik, ami gyakran nemcsak a súrlódási munkából származik, hanem pl. belső égésű motoroknál vagy kompresszoroknál a munkafolyamatból is. E hulladékhő esetenként hasznosítható, ha elég magas a hőmérséklete, és a kinyerhető mennyisége a szükséges többletberuházást gazdaságossá teszi.

Az erőgépek és a hajtott berendezések között a közlőművek biztosítják a kapcsolatot. A teljesítmény átszármaztatása mellett ezek feladata sokszor az erők és nyomatékok, sebességek és fordulatszámok módosítására is kiterjed, sőt az erőátvitelnek gyakran oldhatónak is kell lennie. Minél sokrétűbb a közlőmű feladata, annál több veszteség forrása. A közlőmű feladatát többnyire szilárd gépelemek töltik be, egyenes és alakos tengelyek, tengelykapcsolók, fogaskerekek, dörzskerekek, szíjak, láncok, kötelek, forgattyús és bütykös mechanizmusok. Összetett funkciókat hajtóművekkel elégítenek ki, sebességváltó, nyomatékváltó, irányváltó és hasonló mechanizmusok formájában. A szilárd elemekből felépített közlőművek legnagyobb része merev kapcsolatokat jelent, rugalmas erőátvitelt csupán a súrlódással működők biztosítanak (dörzskerék, szíj- és kötélhajtás, súrlódó tengelykapcsoló), ami viszont jelentős súrlódási veszteséggel jár. Lényegesen kisebb veszteségű rugalmas kapcsolatot lehet kialakítani fluid munkaközegű közlőművekkel, legsokoldalúbban a hidraulikus megoldásokat alkalmazzák. Különösen jelentős a közlőművek vesztesége gyakran változó terhelésnél, ezért az energiatakarékosság érdekében a szerkezetek tökéletesítése a járműiparban a figyelem előterében áll.

Az erőgépek megvalósítható egységteljesítménye az idők folyamán állandóan nőtt, a legfontosabb típusokra ezt a tendenciát a 2.2.1.4.ábra mutatja. A legnagyobb egységteljesítmény 100 év alatt MW-ról GW-ra nőtt, az ábrán összehasonlításul az izomerővel elérhető 0,1−1kW-os értékeket is feltüntettük. Hosszú ideig vízerőgépekkel lehetett a legnagyobb teljesítményt elérni, a XX.században ez a szerep a hőerőgépeknek jutott.

2.2.1.4. ábra

Az erőátvitel módjának célszerű megválasztása érzékenyen befolyásolja a hajtások veszteségét. Például homlokfogaskerekekkel 96%-os, kúpkerekekkel 95%-os hatásfokot lehet elérni, viszont csavarhajtásnál már csupán 84−92%-ot; hasonlóan görgőslánc- vagy lapos szíjhajtással 95−98% biztosítható, szemben az ékszíjhajtás 85%-ával.

In document Energetika I. (Pldal 113-117)