• Nem Talált Eredményt

Birth, life and death of the Pannonian Lake

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Birth, life and death of the Pannonian Lake"

Copied!
18
0
0

Teljes szövegt

(1)

Palaeogeography, Palaeoclimatology, Palaeoecology, 79 ( 1990): 171 - 188 171 Elsevier Science Publishers B.V., Amsterdam - - Printed in The Netherlands

Birth, life and death of the Pannonian Lake

M i k l 6 s K f i z m 6 r

Department qf Palaeontology. EdtviJs UniversiO', Kun Bbla tbr 2, H-1083 Budapest. Hungary (Received January 30, 1989: revised and accepted January 25, 1990)

ABSTRACT

Kfizm6r, M.. 1990. Birth. life and death of the Pannonian Lake. Palaeogeogr., Palaeoclimatol., Palaeoecol., 79:171 188.

The Miocene-Pliocene Pannonian Lake formed in an extensional basin system behind the compressional arc of the Carpathians. Its size and depth were comparable to those of the Caspian Sea. Subsidence began in Middle Miocene times, forming deep, pelagic basins, separated by reef-bearing ridges. Clastic influx filled the marginal basins during Middle Miocene time. Prograding deltas dissected the lake and completed the infilling of the basin system by the end of the Pliocene. Basin plain, prodelta, delta front, delta plain, beach, fluviatile, and marsh environments can be recognized.

Terminal Miocene uplift of the Carpathians isolated the Pannonian region from the rest of Paratethys. The subsequent decrease of salinity resulted in the evolution of an endemic, freshwater mollusc fauna. Rich nutrient influx from rivers supported high organic productivity (dinoflagellates, diatoms, nannoplankton, foraminifers, ostracods, etc.), yielding organic-rich sediments. Preservation of organic matter was helped by a stratified water column and oxygen deficient bottom conditions.

Deep burial, continuing subsidence, and high geothermal flux due to an extremely thin crust, led to the formation of commercially exploitable oil and gas accumulations.

Shallow lacustrine zones of basin margins provided suitable environments for a rich Congeria-Melanopsis mollusc fauna.

Wave action on beaches produced commercially exploitable pure quartz sand deposits. Taxodium and Alnus forests flourished around the lake producing enormous lignite deposits. Besides a rich land snail and mammal fauna, prehominids lived in the forests. There was a warm, temperate climate, with probably frostfree winters. Basaltic volcanoes overlooked the landscape, and maars hosted minor lakes with rich algal flora forming oil shale.

The catchment area included most of the Carpathians and parts of the Alps and Dinarides. The positive water balance resulted in a supposed overflow in the southern margin, supplying exotic fauna to the South Carpathian and Dacian basins of the Eastern Paratethys. The Pannonian Lake was completely filled by the end of Pliocene. Recent lakes in the Carpathian Basin are not descendants of it.

Introduction

A series o f s m a l l e r o r g r e a t e r d e p r e s s i o n s are a s s o c i a t e d with the A l p i n e c h a i n s a l o n g the s o u t h e r n m a r g i n o f the E u r o p e a n plate. T h e largest o f t h e m is the P a n n o n i a n Basin, s u r r o u n d e d b y the C a r p a t h i a n s , A l p s , a n d D i n a r i d e s (Fig. 1). It h o s t e d the P a n n o n i a n L a k e for a p e r i o d o f ca 10 m i l l i o n years, d u r i n g L a t e M i o c e n e a n d Pliocene times.

T h e c o m p l e t e life-time o f the P a n n o n i a n L a k e lasted f r o m a b o u t 12 M a , w h e n it b e c a m e s e p a r - a t e d f r o m the h u g e b r a c k i s h w a t e r b o d y a l o n g the n o r t h e r n m a r g i n o f the A l p i n e chains, k n o w n as the P a r a t e t h y s , until 2.4 M a (the P l i o c e n e - P l e i s t o - cene b o u n d a r y ) , by which t i m e it was c o m p l e t e l y 0031-0182/90/$03.50 fC 1990 Elsevier Science Publishers B.V.

filled in b y sediments. T o d a y the s e d i m e n t s o f the f o r m e r l a k e c o v e r an a r e a o f a b o u t 250,000 k m 2, c o m p a r a b l e in size to the p r e s e n t C a s p i a n Sea (370,000 k m / ) .

O u r s t o r y begins w h e n the l i t h o s p h e r i c p l a t e s o f the C a r p a t h i a n - P a n n o n i a n r e g i o n a s s e m b l e d to f o r m their p r e s e n t p a t t e r n (Balla, 1987), c a u s i n g the uplift o f the C a r p a t h i a n arc a n d the i s o l a t i o n o f the P a n n o n i a n L a k e ( S t e i n i n g e r a n d R6gl, 1985).

C o m p r e s s i o n a n d t h r u s t i n g in the C a r p a t h i a n s lasted until the L a t e M i o c e n e o r Pliocene in different p a r t s o f the a r c (Jifi6ek, 1979), o v e r r i d i n g the s u b d u c t i n g E u r o p e a n plate. Differences in c o m p r e s s i o n a l o n g the m o u n t a i n r a n g e p r o d u c e d a s s o c i a t e d b a c k - a r c basins, as in o t h e r regions

(2)

172 M. KAZM~R

p J

European Platform

TO

0 200 KM

i ) m If,,, ,,,,~,

ADRIATIC EXPLANATION SEA , ~ THRUST FAULT WITH 1 SAW TEETH ON

UPTHROWN SIDE 2 ~ DIRECTION OF THRUSTING

. % ~

Ponnonion Basin

~ , GP

Car pothions Moesion Platform

~olkon Mountains I

RhocJopion Massif

AEGEAN SEA

SEA

Fig. 1. The Pannonian Basin system is seated among the Alps, Carpathians, and Dinarides. The largest, central basin is the Great Plain (GP), while the Vienna Basin (II), Danube-Rfiba Lowland (DRL), SW-Transdanubian Basin (TD), Transylvanian Basin (TS), and Transcarpathian Basin (TC) are adjoining minor basins. These are separated by mountains, like Transdanubian Central Range (TDCR), Apuseni Mountains (A), or Biikk (Ba) (after Mattick et al,, 1985).

of the Alpine chain (Horvfith and Berckhemer, 1982).

The basement of the Neogene-Quaternary Pan- nonian Basin is made up mostly of Mesozoic and Palaeozoic rocks; both the lithology and the tectonic style can be correlated with the Mesozoic nappe systems in the internal zones of the adjacent mountains (K~zm6r, 1986).

The name of the basin, and of the lake, is derived from the Pannonian province, part of the ancient Roman Empire from 11 A.D. until the 4th century.

When World War I terminated a millennium of Hungarian domination, the region became divided among six countries, where geological literature is published in ten languages (Hungarian, German, Czech and Slovakian, Ukrainian and Russian, Romanian, Serbian, Croatian, and Slovenian).

This linguistical caleidoscope hinders mutual understanding, and each other's results are fre- quently overlooked. Probably the present paper is not exempt from it.

Most of the Pannonian Basin lies in Hungary, where an ambitious hydrocarbon exploration and production programme (including several thousand boreholes) has been running for over 50 years. The present paper is based on published Hungarian data, with necessary additions from the neighbouring countries.

B a s i n e v o l u t i o n

Tectonics

The continental crust of the Pannonian Basin was about 36 km thick in Middle Miocene time.

How did it reach its actual 24-27 km thickness?

Subcrustal thinning of the lithosphere began in

the Ottnangian (for regional chronostratigraphic

units see Fig.2), providing a general but moderate

subsidence in the central region. Its effect is shown

by the area with 0 to 2 km sediment thickness in

Fig.3.

(3)

B I R T H , L I F E A N D D E A T H O F T H E P A N N O N t A N L A K E 1 7 3

~ .

oul

STAGESt

~ ~ W MEDITERRANEANIC. PARATETHYS 1

1 -

o CALABRIAN

2

PIACENZIAN

3 z

o

4 ZANCLEAN

5

ROMANIAN

DACIAN

6 MESSINIAN

PONTIAN 8

9 _; TORTONIAN

- 1 0 - PANNONIAN

, 1 1

• 1 2 - ,,,

• 1 3 z

SERRAVALL I AN

- 1 4 m

u ~

• 1 5 . o ~_

• 1 6 . " -

LANGH l AN

-17. "

E

--t

SARMATIAN

BADENIAN

OUR DIVISION

, 1 8 -

- 1 9 -

~RDIGALIAN

.2o.

W , 2 1 -

Q

2.4-

UPPER PANNONIAN

Pa 2

z P a ~

¢,r

~, ~ :1o- jo ~ pal:

~- - 1 1 "

P a'~

. 1 2 -

SARMATIAN M 5

1 4

BADEN I AN M4

GENERAL FACIES

tu ,G

u..

W - I

m u .J

.,e M v

KARPATTEN I K A R P A T . M 3 "17 ' "

1 Z 5 z

OTTNANG I AN OTTNANG I AN "q e~

M 2 ¢

1 9 E EGGIENBURG.

EGSENBUR81 AN M 1

, 2 2 -

" 2 3 .

A O ( . I I T ~ I ~

Fig.2. Regional chronostratigraphic units of the Mediterranean and the Central Paratethys (= Pannonian Basin). The right column displays the classical stratigraphic units applied by the Hungarian oil industry (Horvath, 1986).

In Badenian time a superposed N - S compres- sion produced a complex stress pattern (Bergerat et al., 1984), with a major, E - W tensional compo- nent. It established several minor, deep basins (Fig.3), arranged in a clear-cut extensional basin system (Fig.4). The strain pattern was dominated by SW NE, mostly left-lateral strike-slip faults,

and associated normal faults, bordering the deep basins. Seismic profiling reveals listric normal faults, represented as synthetic and antithetic growth faults rotating the enclosed blocks (Fig.5).

Extension along the Kadarkt~t profile (locality A

on Fig.4), for example, was about 50% for the

fault-affected basins, almost zero for the neigh-

(4)

174 M. K,~ZMI~R

[ ~ t Late Cenozoic volcanic rocks

":;i-" L

- - -

# , : , ' ~ ! I ~ D

"iQ I

G ~ " ~"' {'"'; ~ .... : , ~ :,', :~-], ",<:; ( ...:..'.:"::..~

., ,

\

Krakow

< ~ ~ - ' ~ - ~ - - "~'~'~ Przemysl ISOPACH__ INTERVAL

1-2kin

~ . : ~ , 0 5 . 3 ~ ' ~ . [ ] 2-3 km

\

/

q

1,"

"-',i

'

0 400 km

', ,, , -,

". '.'.

.'; I ' I ' ' ~ l

Fig.3. Thickness m a p o f Miocene to Q u a t e r n a r y sediments shows depocenters o f the P a n n o n i a n Basin system. A p p r o x i m a t e ages ol contemporary intermediate to acidic igneous rocks are also shown (Pbka, 1982). Fold axis symbols show location and trend of some of the Sava folds affecting Pliocene sediments. Basins: V= Vienna, D = Danube, G = Graz, Z = Zala, S = Sava, D r = Drava, P = P a n n o n i a n (s.str.), T c = Transcarpathian, T s = Transylvanian. Dashed lines show regions o f pre-Neogene outcrops (Royden et al., 1983).

bouring basement blocks, totalling 20% for the profile.

The basin subsidence can be explained by the combined effects of isostatic compensation for crustal thinning and the subsequent cooling and thermal contraction of the crust and upper mantle (Royden et al., 1983).

Volcanic activity

There was extensive volcanic activity along the eastern margin of the Pannonian Lake from 10 to 3 Ma (Late Miocene Pliocene) (Fig.3). The prod- ucts are andesitic to rhyolitic ignimbrites, pyroclas- tics and lesser volumes of lava. Volcanism was related to the subduction of the European plate below the Eastern Carpathians (Balla, 1981).

Basaltic volcanoes were scattered in the Panno- nian Basin. Their eruptions occurred from 11 to 1 Ma, mostly on land, more rarely below the lake (Balogh et al., 1986). Their origin is less well

known than that of the andesites, but it may have been connected with the extension of the Panno- nian Basin.

Stratigraphy (Table 1)

The classical subdivision of Pannonian sedi-

ments at lake margins is based on benthonic

bivalves and gastropods, and is supported by

lithologicai and facies studies. Their environmental

sensitivity and endemism make the correlations

inside and outside the lake somewhat questionable

(Korp~s-H6di, 1983). Since formations and eco-

zones were hardly applicable in the deep basins,

alternative lithological subdivisions, supported by

well-log data were established by the hydrocarbon

industry, later corroborated and interpreted by

seismic stratigraphy. Correlation within the Pan-

nonian Basin seems to be best attained by

extensive seismic profiling. Planktonic stratigra-

phy, based on dinoflagellates, and palaeomagnet-

(5)

w •o~°O~O~

L_.

N

I

i'M .,VVV VV

v,~vZ'; v "%

~w ~ AVv,.V--'v-- - ~ - ~ ,, ,,v,

J,V r r Ct w/ ... :::.ii :il :;::~ Fig.4. A conjugated transcurrent fault system and associated normal faults produced the Late Miocene Pliocene extensional basins of the Pannonian Lake (Compare their locations to the depocenters on the sediment thickness map of Fig.3). Legend: 1 =molasse foredeep, 2=flysch belt, 3a-other (mostly pre-Tertiary) units of the Alps, Carpathians, and Dinarides, 3b - Neogene igneous rocks on surface, 4 = strike-slip fault with known or inferred sense of displacement, 5 = normal fault, thrust, folded anticline, 6 = extensional basins (Rumpler and Horv~th, 1988, reprinted by permission). Interpretation of seismic profile A is shown on Fig.5; facies analysis of profile B is shown on Fig.7.

r-- > 7~ -r © z > 2, 7~ 7~ r'v ta~

(6)

SSW NNE

t/d "S" l--- ._J l.l.l I""

<>

! 0 I-.-

0

/ / /

~20% EXTENSION Fig.5. Early stages of basin evolution; Middle Miocene listric faulting resulted in subsidence and extension of continental crust. Location A on Fig.4. Top: interpretation of the Kadarkfit high-resolution seismic profile; bottom: restoration of the blocks before extension. Symbols: P= Pannonian, M4 = Sarmatian, g 3 = Badenian, Pz = Palaeozoic, A-F mark Palaeozoic blocks (Horv~th and Rumpler, 1984). N

(7)

BIRTH. LIFE AND DEATH OF THE PANNONIAN LAKE

TABLE 1

Selected papers on the stratigraphy o f the Pannonian Basin

Lithostratigraphy

margins

basins: Transdanubia Great Plain

Biostratigraphy

dinoflagellates spores and pollen foraminifers

molluscs (ecostratigr.) vertebrates

Chronostratigraphy Magnetostratigraphy Seismic stratigraphy

JS.mbor (1980) Bardrcz et al. (1987) Brrczi et al. (1987)

Sfitr-Szentai (1982) Planderovfi (1972) Korecz-Laky (1987) Bartha (1971), Korpfis-H6di (1983)

Kretzoi (1985, 1987), Kordos (1987)

Vass et al. (1987) Elston et al. (1985), P6csi et al. (1985) Pog~ics~s (1985, 1987)

ism associated with seismic stratigraphy are prom- ising new methods to overcome the difficulties.

Stages of the Central Paratethys and their correlation with Mediterranean chronostratigra- phic units are shown in Fig.2. However, to understand the terminology of classical studies and present usage in hydrocarbon industry, an alterna- tive column illustrates the notions "Lower" and

"Upper" Pannonian.

Sedimen tology

Formation of the Pannonian Basin began in the Middle Miocene (Badenian). Marine environments prevailed at this time, with neritic carbonate deposition (Leithakalk) on submarine highs and bathyal pelitic sedimentation in the depressions.

Sedimentation did not keep pace with rapid subsidence, hence locally deep water conditions (up to thousand meters) persisted. Clastic supply derived from the uplifting Alps and mostly from the Carpathians was trapped in the marginal Vienna and Transcarpathian Basins. After their filling up by the end of Middle Miocene, the central and later the southern sub-basins began to receive sediments (Figs.3 and 6). The direction of sediment supply was from the north, west, and east towards the centre of the basin (Pogficsfis and Rrvrsz, 1987).

177

Facies

The Mak6 trough (locality B on Fig.4) hosts the thickest Neogene-Quaternary infill (more than 7 km) in the Pannonian Basin. Borehole profiles across the trough (Fig.7) clearly indicate that infiiling followed subsidence in time (B~rczi and Phillips, 1985). The Middle Miocene (Badenian) thin basal sediments (1) are redeposited conglom- erates alternating with marl beds, indicating depo- sition in a rapidly subsiding basin. The deep basin facies (2) consists of dark, laminated silty marls, without coarse clastic intercalations, deposited in a deep, oxygen-deficient basin. The prodelta facies (3) begins with distal turbidites, the number and thickness of marl intercalations decreasing up- wards. The top of this facies contains abundant slump structures, predominantly in sandstones. No bioturbation has been observed in facies 1-3.

The delta front-delta slope facies (4) is made up of inclined sandstone strata with dips up to 20 °, and abundant soft sediment deformation struc- tures. In the upper two thirds of the facies there are abundant traces of bioturbation. Facies 4 is the first to occur not only in the deep basin, but also on the neighbouring highs. It indicates that the prograding delta covered both former basins and highs, filling the Pannonian Lake almost com- pletely. Large scale foresets, recognized on high- resolution seismic profiles, indicate that lake depth had reached 700-900 m at the time of the delta progradation (Pog~ics~is and Rrvrsz, 1987).

The delta plain facies above consists of horizon- tal bedded sandstone and marl, with occasional lignite intercalations.

The facies model of Brrczi and Phillips (1985) (Fig.8) displays dissected bottom topography, with bathyal sedimentation between the highs, and a prograding delta hiding all topographic features while completely filling the basin.

The composite diagram of lake depth changes (based on seismic stratigraphy and interpretation of depositional environments) (Fig.9) shows that an initially starved basin, reaching 1 km in depth was later filled by sediments.

While the deep basins were characterized by a

relatively simple facies assemblage, a wide variety

of environments were established at the margins

(8)

178 M. KAZMER

"T

20 10 0

~V[ENNA BASIN ~

E G E O K B S P PL Q

_21:)_ I0 0

'"OUO"

\ \

EGE-O K B S P I PL Q

Ea,i~j JM,~leJLote

I

m i 0 C er~ e

i m e j m 9

20 I0 0

EG E O K B 5 P PL O

:!!!,N \

, \

EG E O K B S P PL O

b p

o 2o

_

~o

2 - , + .

3

i I'RAN 5CA,RI:~I'HIAN

0

4 DEpIRESS[0N

EG E O K B 5 P PL Q

0 20 10 0

, ,

5 ^

EG E O K B 5 P PL Q

Fig.6. Infilling of the Middle Miocene extensional basins proceeded from external to internal depressions. The main filling event occurred between 15 and 10 Ma in the Vienna, Transcarpathian, and partly Transylvanian Basins. Most of the internal basins (Danube, Drava, Great 'Plain) have been filled up subsequently. Sedimentation versus time diagrams (stacked triangles indicate the time of calc-alkaline volcanism) (Horvfith and Berckhemer, 1982).

(Jfimbor, 1987). Besides the c o m m o n shallow lacustrine, m a r s h , : a n d fluviatile facies of sand, clay, and coal measures, variegated clay, etc., lagoons and p o n d s hosted special environments with deposition of freshwater limestone, pure white sand, cemented b y silica, or diatomite and oil shale.

Palaeolimnology Salinity

Pannonian Lake waters experienced two signifi- cant changes. The first occurred at about 14 Ma ago, at the Badenian/Sarmatian boundary, when normal marine conditions changed to brackish, more or less simultaneously throughout the whole Paratethys. It was caused by the final separation of Paratethys from the Mediterranean, and from the Indopacific region. The uplift of the Carpathians 12 Ma ago established the Pannonian Lake, separ-

ating it from the rest of Paratethys (R6gl and Steininger, 1984). While continuous sedimentary columns do not show any lithological change in this interval, the species diversity o f the fauna abruptly decreased (Dank and Jfimbor, 1987).

During the Sarmatian, ostracod faunas indicate minor changes of salinity within a range of 15-25°./0o. Then the lowermost Pannonian indicates a sudden decrease to 8-15%o, followed by a more or less freshwater environment. The upper part o f the Pannonian in this sequence indicates a brackish water environment with 8-15%o salinity. Percent- age values are provided by comparisons with modern ostracod assemblages in the Caspian and Black Seas (Korecz, 1985).

Chemical analysis of connate water from arte-

sian wells in the Pannonian Basin display a general

decrease of salinity with time (Fig.10). Waters

from 1-3 km depth yielded saline water o f sodium-

chloridic composition (5-15 g/l NaC1), while sedi-

ments from minor depths yielded freshwater

(9)

MI 4'1 (TD 3190m) Delta plain facies Delta front facies Sub facies B Prodelta ~ -v,e facies X sUbtacies A

Mak6-H6Omez6vasarhely trough H6d 4,1 (TD 5842m) oo,,~ r.la,o ,.,o. 5 Do.a ,,o°, ,~'°" 4 subtac,e~ B O/¢J ~-~ p~odelta lacleS

3

jq

Bes 1 (TD 2866m) Dee. b.,o ,ac,e~ 2 B.sa, fat,.1 Fig.7. Extensional depressions were filled by deep lacustrine mud intercalated with distal, then proximal turbidites. Intra-basin highs received only a minor amount of sediment. A prograding sandy delta concealed differences in bottom topography. Boreholes Maroslele-1, H6dmez6vfis~irhely-1, and B6k6ssfimson-1 are in the Mak6 trough, just to the east of Szeged on fig.4 (B6rczi and Phillips, 1985).

(10)

1 8 0 M. K A Z M I ~ R

Fig.8. Facies model of the Upper Miocene-Pliocene basin fill of the Mak6 trough in the Pannonian Basin (B6rczi and Phillips, 1985).

Progradation of the delta resulted in the vertical assemblage of facies observed in the boreholes on Fig.6.

O v

E

t -

T i m e ( M a) basins, the older sediments yield more saline waters

20 15 10 5 0 than the younger ones from the same depth

I l t interval. (Fig. 10).

P a l ~ 2

M i o c e n e Plio¢.

Fig.9. Depth changes of the Pannonian Lake within the central extensional basins in time. After 10 Ma subsidence continued (see Fig.5), while increased clastic supply filled the basins. Uplift and erosion was negligible (Horvfith et al., 1988, reprinted by permission).

of sodium-bicarbonate composition (0.02 g/1 NaC1) (Korim, 1966; Kleb, 1971). While verti- cal change reflects the commonly observed increase in salinity with depth typical of many sedimentary

Stratification

Deep basin and prodelta facies lack bioturba-

tion, while delta front and slope facies bear

abundant traces of infaunal activity (B+rczi and

Phillips, 1985). This absence, together with associ-

ated framboidal pyrite in basin facies (H~mor,

1988) is taken as evidence for a stratified water

column. Stratification might have been produced

by abundant, year-long freshwater supply (indicat-

ing large rivers), or the absence of seasonal

overturn of the water body in the more than 700 m

deep lake. The Pannonian Lake contained several

local, closed basins. These were thermally and

chemically stratified (meromictic). Seasonal or

continuous high organic productivity by phyto-

plankton and bacteria in the epilimnion resulted in

the accumulation of organic-rich calcareous sedi-

ment below an anoxic hypolimnion.

(11)

B I R T H , L I F E A N D D E A T H O F T H E P A N N O N I A N L A K E 181

dissolved CI- and Na + (mg/1)- -salinity coefficient 2 ;~ s,o 20 so ,oo .~oo soo4op:2ooo sooo,oooo olt o?, ~ I ~ ~ 1o ~o3oso ,~

'° lllli!!JfriOrllirll]llllll IIfl Ifllllllllllllllllllll!tlll 1111111 i1111

3o I I

flilJll

~o

~,.,o'l IIIIIIIJ IlrJll Ifll I Iit111[ III

"" " [[I

J,.~,-, lll~Jllll II11 II

7o JIlI~ILLIlIIILIJII ÷I,-~JNIII I~ 1111111

e O - - IIIIIIlU IIIIIIll Illl T I h";]lll I IIIIlll

,o L i[ii

to0 I Iii

t-

~00

300- 4

;~

t~llN",

700

. . . . , ,,, , . .

800 J

- - II11 k F/I

,000 ~~

'~gg bBsin [i i /I 1t1111 iillli [ ' iil Illl[ ;I L~"~l!i!)l

ooo I I Illlll lllllll l

o.ol ~oso,1 ~$1~ 5102or~

~ , Na CI [g/IJ

Fig. 10. Increase of salinity with depth in the connate waters of the Pannonian basin fill indicate a shift from Late Miocene brackish to Late Pliocene freshwater composition. The right curve indicates changes in the salinity coefficient of Stadnikoff (1958): equivalent Na divided by equivalent Ca (Kleb, 1971).

Water balance

The sudden decrease of salinity at the Sarmati- an/Pannonian boundary indicates high fresh-water input and positive water balance. The rivers carried their sediment load (identified by micro- mineralogy) mostly from the Carpathians in N - S direction (Elek, 1987). Inflow was greater than evaporation, therefore an (intermittent) outflow existed through the Southern Carpathians (the Iron Gate) (Kojumdgieva, 1983) until ca.7 Ma,

supplying characteristic Pannonian Congeria- Melanopsis mollusc fauna to the Dacian Basin (Steininger and R6gl, 1985; Papaianopol and Olteanu, 1979). The outflow may have ceased from 4-5 Ma onwards (Lubenescu, 1981).

The lake biota (Table 2)

A l l

faunal associations in the Pannonian Lake

were different from and show significant decrease

in diversity compared to the Sarmatian ones.

(12)

182 TABLE 2

Selected papers on the fossil biota of the Pannonian Lake and its surroundings

diatoms Haj6s (1985)

nannoplankton B6na and Gill (1985) dinoflagellates Sfit6-Szentai (1985) spores and pollen Nagy (1985), Nagy and

Planderovfi (1985)

plants Knobloch (1985), Givulescu (1986)

foraminifers Korecz-Laky (1985) thecamoebans Schreiber et al. (1985) gastropods and bivalves Bartha (1971), Papp (1985) land snails Lueger (1985)

ostracods Jifi6ek (1985), Krsti6 (1985) annelids Jfimbor and Rad6cz (1970) fishes Koch (1904), Brzobohat~ and

Panfi (1985)

mammals Rabeder (1985)

prehominids Kordos (1987) ichnofossils Jfimbor (1980, 1987)

Diatoms (Hajrs, 1985) lived near the margins of the Pannonian Lake, and are found in marl, diatomite, clay, tuffite, and sand beds. Deep basin sequences are barren of diatoms, probably due to diagenetic dissolution of the tests. Most of the 117 species are planktonic and epiphytic, besides a few benthonic ones. Nearshore, warm water species predominated. Most species preferred brackish or freshwater, there were only a few euryhaline species. There was also a large amount of variable, large-size, heavily ornamented, endemic species.

Other siliceous fossils are: silicoflagellates, ebri- dians, unicellular flagellates, Chrysomonadales cysts, and Phytolitharia.

Calcareous nannoplankton (B6na and G~.I, 1985) is represented by 17 species, five of them being endemic. These occur in clay and silt, in borehole profiles near the lake margins. Most of them are tiny specimens, not yet systematically described.

Although these occur abundantly in a few layers, probably do not make significant contribution to the sediment.

Dinoflagellates (Siit6-Szentai, 1985) are suitable for the correlation of margin and basin sequences.

The 28 species help to define 6 biozones, based on occurrences determined by water temperature and

M. K,A, ZM [~R

composition. Other chitinous organisms are: scole- codonts, foraminifers, and freshwater green algae.

Two species of the siliceous rhizopod genus Silicoplacentina (Thecamoeba) (Schreiber et al., 1985) occur in Lower Pannonian sediments of Hungary and Austria. These are probably indica- tors of deep (lacustrine) environments.

Besides the rich, redeposited Sarmatianforamin- ifer faunas, 5-7 species of endemic, agglutinated foraminifers occur in lowest Pannonian sediments (Korecz-Laky, 1985).

The Pannonian Lake is best known for its bivalves and gastropods (Bartha, 1971; Papp, 1985). The bivalve Congeria (Fig.l 1), the gastro- podsTheodoxus and Melanopsis are remnants of a more diverse Sarmatian fauna. The isolation of the lake produced a wide variety of endemic forms, like the bivalves Limnocardium, Dreissena, peculiar gastropods: the extremely evolute Valenciennesia and the straight Orygoceras. Marginal environ- ments are characterized by Congeria and Melanop- sis, while basin sediments are rich in Limnocar- dium. The gastropod Viviparus is abundant in fluviatile and shallow lacustrine environments.

More than 90 species of ostracods (Jifirek, 1985, Krstir, 1984) are known from lakeshore and deep basin environments of the Pannonian Basin. While poor for correlation purposes, they are highly suitable for environmental analysis (Korecz, 1985).

The fishes are rarely whole specimens (Koch, 1904), but mostly otoliths and teeth of teleostei (Brzobohat~ and PanS., 1985). The fauna is poorly described. Mostly brackish water species are known, freshwater ones being subordinate (prob- ably due to greater chance of preservation in earlier, deep lacustrine environments). Both ben- thonic and nektonic, carnivorous and herbivorous types occur among the 41 species known. The fauna seems to be marine, surviving the "salinity crisis" at the Sarmatian/Pannonian boundary, associated with some endemic Pannonian species.

Climate and environments of adjacent land areas

A mixed mesophytic forest containing about

hundred species dominated the landscape (Then-

ius, 1982). Algae and other aquatic plants

abounded in ponds. Galleries of marsh and swamp

(13)

B I R T H , L I F E A N D D E A T H OF T H E P A N N O N I A N L A K E 183

Fig. l I.

Congeria

bivalves are the most frequent fossils of the Pannonian Lake (collection of the Department of Palaeontology, E6tv6s University. Budapest; photo: ,/~goston Nagy).

forests

(Taxodium~ Alnus)

s t r e t c h e d a l o n g the lake s h o r e a n d a l o n g w a t e r c o u r s e s . Besides closed forests, o p e n w o o d l a n d s with m i x e d d e c i d u o u s

trees a n d grasses o c c u r r e d , too. C o n i f e r o u s forests f o r m e d a significant p a r t o f the flora, n o t o n l y at h i g h e r elevations, b u t also at the l a k e s h o r e

(14)

184 M. KAZM~R (Magyar, 1988). Subtropical elements were pre-

sent, but no palms.

Characteristic forms of the mammal fauna (Rabeder, 1985) were rhinos, chalicotheriums, tapirs, forest antelopes, dinotheriums, mastodons, and frequent hipparions, and last but not least, ancestral prehominids (Rudapithecus) (Kordos,

1987)).

The mixed mesophytic forests indicate a warm, temperate climate with mild, probably frostfree winters. Mean annual temperature was above 13°C, while 22°C was the average temperature of the warmest month. Mean precipitation was above 1000mm/yr, without a markedly dry season.

Regions with comparable modern vegetation and climate are found in China (25-35°N lat., 200-750 m above sea level) and Japan (30-32°N lat., 0-500 m a.s.1.). Climatic differences have been recognized between northern and southern parts of the Pannonian region, subtropical elements occur- ring in the latter only. Part of the plains in the middle part of the Pannonian Basin may have had different vegetation with more open woodlands, where numerous animals of today's African savan- nas lived (Kretzoi et al., 1976; Thenius, 1982; Nagy and Planderov~i, 1985; Givulescu, 1986).

Palaeogeography (Figs.12 and 13)

About 14 Ma ago (Badenian) seaways existed from the Carpathian-Pannonian region through Anatolia to the Indopacific realm. Orogenic move- ments from the Badenian onwards disconnected the Paratethys basins from the world ocean and from each other, too. Rivers reduced the salinity of the water, followed by decreased diversity and increasing endemism of the fauna. From 12 Ma onwards only three major basins remained: the Pannonian, the Black Sea, and the Caspian Basins, without significant connections between them.

While the Black Sea and Caspian Basins have maintained the enormous water body in them (because marginal depressions trapped the sediment load of the rivers), the Pannonian Lake was filled by the end of Pliocene, despite continuing subsid- ence (R6gl and Steininger, 1984; Kojumdgieva,

1983). The Recent shallow lakes (Balaton, Fert6, Neusiedler See) - - being younger than 20,000 years - - bear no connections to the Pannonian Lake.

Resources (Table 3)

The most important mineral resources of the Pannonian Basin are water, hydrocarbons and

pARAT T"YS

M E D I T E R R A N E T E T H Y S

Fig.12. Marine bioprovinces in the (Middle) Miocene of Europe (R6gl and Steininger, 1983). The inland sea among the Alps,

Carpathians, and Dinarides is the site of extensional basin formation.

(15)

BIRTH, LIFE AND DEATH OF THE PANNONIAN LAKE 185 - s 0

P

Fig.13. Latest Miocene palaeogeography. The Pannonian Lake (P) is the westernmost lake of the disintegrated Paratethys (dotted).

Meanwhile the Mediterranean was hit by the Messinian salinity crisis (dashed lines) (after Steininger and R6gl, 1985, modified).

TABLE II1 Natural resources excluded)

of the Pannonian Basin (ore deposits

hydrocarbons Dank (1985)

thermal water, freshwater Erd61yi (1978), Rdnai (1978)

mineral waters Dobos (1985)

lignite Rad6cz (1985)

oil shale Solti (1985a)

diatomite Jfimbor (1971)

bentonite Solti (1985b)

quartz sand Tham6-Bozs6 (1985),

Bihari (1987) feldspar sand

clay, sand, gravel, flagstone

lignite.

Thermal waters,

from 20 to 100°C in temperature are tapped by more than 20,000 artesian wells for communal water supply, bal- neotherapy and heating.

Oil

fields are located around the deep basins in the Vienna, Zala, Drfiva Basins, in the Great Plain and the Transylvanian Basin. Organic geochemis- try of hydrocarbons (distribution of n-alkanes in capillary gas chromatographic spectra) (Sajg6, 1980; Sajg6 et al., 1988) indicates that crude oil is derived mostly from organic matter of planktonic algae (n = 17, 18, 19), with minor additions from coniferous trees (n=27, 31, 33). The source rocks are mostly Lower Pannonian marls, deposited in oxygen deficient environments; the traps are mostly in the interbedded and overlying sand-

stones. The passive upwelling of hot asthenosphere during extension of the crust produced elevated thermal gradients (D6v6nyi et al., 1983), which helped the sediments of the Pannonian Lake to reach the oil-generation window between

1800-2500 m (Jfimbor et al., 1987).

Oil shale

occurs mostly in the craters of basaltic volcanoes (maars); it accumulated in strongly eutrophic small lakes. It is quarried as a natural fertilizer.

Bentonite

is a weathering product of rhyolite tuff and basalt tuff.

Pure quartz sand

and siliceous sandstone were formed in embayments of the lake, under joint influence of wave activity (sorting) and aggressive groundwater (dissolution of non-silica minerals).

These are quarried for glass factories.

Acknowledgements

The author has greatly benefited from the comments of B. G6czy, F. Horv~th, M. Monostori (E6tv6s University, Budapest), C. Sajg6 (Geo- chemical Research Laboratory, Budapest), and M.

R. Talbot (University of Bergen). Their help is sincerely acknowledged herein.

References

Balla, Z., 1981. Neogene volcanism of the Carpatho-Pannonian region. Earth Evol. Sci., 1:240 248.

Balla, Z., 1987. Tertiary palaeomagnetic data for the Carpatho- Pannonian region in the light of Miocene rotation kinema- tics. Tectonophysics, 139: 67-98.

(16)

186 M. KAZMER Balogh, K., Arva-S6s, E., P~cskay, Z., Ravasz-Baranyai, L.,

1986. K/Ar dating of post-Sarmatian alkali basaltic rocks in Hungary. Acta Mineral. Petrogr., 28: 75-93.

Bard6cz, B., Bir6, E., Dank, V., M~sz~ros, L., N6meth, G. and Tormfissy, I., 1987. Pannonien s. str.-Bildungen der Trans- danubische Beckengebiete. Ann. Inst. Geol. Publ. Hung., 69:

149-177.

Bartha, F., 1971. A magyarorszS.gi pannon biosztratrigr~ifiai vizsg~.lata. In: F. Bartha, B. Kleb, L. K6rOssy, 1~. Szab6n~

Kil~nyi, P. Szatmfiri, M. Sz61es, G. Sz6nfis and K. TOth, (Editors), A magyarorsz~.gi pannonkori k6pzOdm6nyek kuta- tfisai. Akad~miai Kiad6, Budapest, pp. 9-172.

B6rczi, I. and Phillips, R. L., 1985. Processes and depositional environments within Neogene deltaic-lacustrine sediments, Pannonian basin, Southeast Hungary. Geophys. Trans., 31:

55-74.

B~rczi, I., Dank, V., Gajdos, I., Pap, S., R~v~sz, I., SzentgyOr- gyi, K. and V61gyi, L., 1987. Ablagerungen der Kuns~.g-Stufe (Pannonien s. str.) auf der Grossen Ungarischen Tiefebene.

Ann. Inst. Geol. Publ. Hung., 69: 179-211.

Bergerat, F., Geyssant, J. and Lepvrier, C., 1984. Etude de la fracturation dans le bassin Pannonien: M~chanismes et 6tapes de sa cr6ation. Ann. Soc. G6ol. Nord, 103: 265-272.

Bihari, G., 1987. Palaeogeogrpahy of the formation of industrial sand deposits in Hungary. Ann. Inst. Geol. Publ.

Hung., 70: 531-535.

Bdna, J. G/d, M., 1985. Kalkiges nannoplankton im Pannonien Ungarns. In: A. Papp, A. Jfimbor, F. F. Steininger, (Editors), Chronostratigraphie und Neostratotypen, Mioz/in der Zen- tralen Paratethys VII, M6 Pannonien (Slavonien und Ser- bien). Akad6miai Kiad6, Budapest, pp. 482-515.

Brzobohat~,, R. and Pang, I., 1985. Die Fischfauna des Pannonien. In: A. Papp, A. Jfimbor, and F. F. Steininger, (Editors), Chronostratigraphie und Neostratotypen, Miozfin der Zentralen Paratethys VII, M 6 Pannonien (Slavonien und Serbien). Akad6miai Kiad6, Budapest, pp. 426-439.

Dank, V., 1985. Hydrocarbon exploration in Hungary. In: 3.

Hfila (Editor), Neogene Mineral Resources in the Carpathian Basin. Historical Studies on Their Utilization. Hung. Geol.

Surv., Budapest, pp. 107-213.

Dank, V. and Jfimbor, A., 1987. Allgemeine geologische Merkmale der Ablagerungen des Pannonien s. str. (Kunsfig- Stufe) in Ungarn. Ann. Inst. Geol. Publ. Hung. 69: 9-25.

Dobos, I., 1985. Exploration of subsurface waters in the Neogene basins. In: J. H/da (Editor), Neogene Mineral Resources in the Carpathian Basin. Historical Studies on Their Utilization. Hung. Geol. Surv., Budapest, pp. 531-555.

D6v6nyi, P., Horv~ith, F., Liebe, P., Gfilfi, J. and Erki, I., 1983.

Geothermal conditions of Hungary. Geophys. Trans., 29:

3-114.

Elek, I., 1987. Alf61di kutat6ffirfisok mikromineral6giai feldol- gozfisfib61 levonhat6 kOvetkeztet~sek. Annu. Rep. Hung.

Geol. Inst., 1985:127-135 (in Hungarian, with English abstract).

Elston, D. P., Hfimor, G., Jfimbor, A., Lantos, M. and R6nai, P., 1985. Magnetostratigraphy of Neogene strata penetrated in two deep core holes in the Pannonian basin: preliminary results. Geophys. Trans., 31: 75-88.

Erd~lyi, M., 1978. Hydrodynamics of the Hungarian Basin. In:

A. R6nai (Editor), Hydrogeology of Great Sedimentary Basins. Ann. Inst. Geol. Publ. Hung., 59: 146-162.

Givulescu, R., 1986. Bref aperqu sur les fossiles du bassin N6og6ne de Borod, com. Bihor, Roumanie. Rev. Pal6obiol., 5:249 251.

Haj6s, M., 1985. Diatomeen des Pannonien in Ungarn. In: A.

Papp, A. Jfimbor and F. F. Steininger (Editors), Chronostra- tigraphie und Neostratotypen, Miozfin der Zentralen Para- tethys VII, M 6 Pannonien (Slavonien und Serbien). Akad6- miai Kiad6, Budapest, pp. 534-585.

Hfimor, T., 1988. Genetics and facies analysis of sedimentary pyrites in Upper Pannonian deposits intersected by borehole Tiszapalkonya I. Annu. Rep. Hung. Geol. lnst. 1986:

413-464 (In Hungarian, with English abstract).

Horvfith, F., 1986. A Pannon-medence kialakul~.sfinak geofizi- kai modellje. Geophysical model of the formation of the Pannonian Basin. Thesis. Dep. Geophys., E6tv6s Univ., Budapest, 148 pp. (unpublished).

Horvfith, F. and Berckhemer, H., 1982. Mediterranean backarc basins. In: H. Berckhemer and K. Hsii (Editors), Alpine- Mediterranean Geodynamics (Geodynamics Series, 7). Am.

Geophys. Union, Washington, D.C., pp. 141-173.

Horvfith, F. and Rumpler, J., 1984. The Pannonian basement:

extension and subsidence of an Alpine orogene. Acta Geol.

Hung., 27: 229-235.

Horvfith, F., D6v6nyi, P., Szalay, A. and Royden, L., 1988.

Subsidence, thermal and maturation history of the Great Hungarian Plain. Am. Assoc. Pet. Geol. Mem., 45: 355-373.

Jfimbor, A., 1980. Pannonian in the Transdanubian Central Mountains. Ann. Inst. Geol. Publ. Hung., 62, 259 pp.

Jfimbor, A., 1987. Die Lebensspurenfauna der pannonischen (s.1.) Bildungen in Ungarn. Ann. Inst. Geol. Publ. Hung., 69:

423-433.

Jfimbor, A. and Radbcz, G., 1970. Pectinarien aus dem oberen Neogen von Ungarn. FOldt. K6zl., 100:360 371.

Jfimbor, A., Balfizs, E., Balogh, K., B6rczi, I., B6na, J., Horvfith, F., Gajdos, I., Geiger, J., Haj6s, M., Kordos, L., Korecz, A., Korecz-Laky, I., Korpfis-H6di, M., K6vfiry, J., M~sz~ros, L., Nagy, E., N6meth, G., Nusszer, A., Pap, S., Pogficsas, G., R6v6sz, I., Rumpler, J., Sfit6-Szentai, A., Szalay, A., Szentgy6rgyi, K., Sz61es, M. and V61gyi, L., 1987.

General characteristics of Pannonian s.1. deposits in Hun- gary. Ann. Inst. Geol. Publ. Hung., 70: 155-167.

Jifi6ek, R., 1979. Tektogenetick~¢ ?¢voj karpatsk6ho oblouku b6hem oligoc~nu a neog~nu. In: M. Mahel (Editor), Tektonickb profily Zfipadn~ch Karp~t. Geologick~ Ustav Dion~za ~tfira, Bratistava, pp. 203-214 (in Slovakian, with English abstract).

Jifi6ek, R., 1985. die Ostracoden des Pannonien. In: A. Papp, A. Jfimbor and F. F. Steininger, (Editors), Chronostratogra- phie und Neostratotypen, Miozfin der Zentralen Paratethys VII, M 6 Pannonien (Slavonien und Serbien). Akad6miai Kiad6, Budapest, pp. 378-425.

Kfizm6r, M., 1986. Tectonic units of Hungary: Their bounda- ries and stratigraphy (A bibliographic guide). Ann. Univ. Sci.

Budapest., Sect. Geol., 26: 45-120.

Kleb, B., 1971. A pannon emeletbeli ki6desed6s filed6kfSldtani 6s geok6miai vizsg~lata. In: F. Bartha, B. Kleb, L. K6r6ssy, 1~. Szab6n6 Kilbnyi, P. Szatmfiri, M. Sz61es, G. Sz6nfis and K.

(17)

BIRTH, LIFE AND DEATH OF THE PANNONIAN LAKE 187 Y6th (Editors), A magyarorszfigi pannonkori k6p2odm6nyek

k utatfisai. Akad6miai Kiad6, Budapest, pp. 173-197.

Knobloch, E., 1985. Die Floren des Pannonien im Wiener Bekcen ond in der Donauebene. In: A. Papp, A. Jfimbor and F. F. Steininger (Editors), Chronostratographie und Neostra- totypen, Mioz/in der Zentralen Paratethys VII, M 6 Pannon- ien (Slavonien und Serbien). Akad~miai Kiad6. Budapest.

pp. 616-631.

Koch, A., 1904. Die fossilen Fische des Beocsiner Cementmer- gels, Ann. Mus. Nat. Hung., 2: 1-72.

Kojumdgieva, E., 1983. Palaeogeographic environment during the desiccation of the Black Sea. Palaeogeogr., Palaeo- climatol., Palaeoecol., 43: 195-204.

Kordos, L., 1987a. Neogene vertebrate biostratigraphy in Hungary. Ann. Inst. Geol. Publ. Hung., 70: 393-396.

Kordos, L., 1987b. Description and reconstruction of the skull of Rudapithecus hungaricus Kretzoi (Mammalia). Ann. Hist.

Nat. Mus. Natl. Hung., 79: 77-88.

Korecz, A., 1985. Die Ostracodenfauna des Zsambt~ker Beck- ens. In: A. Papp, ~k. Jfimbor and F. F. Steininger (Editors), Chronostratigraphie und Neostratotypen, Mioz/in der Zen- tralen Paratethys VII, M6 Pannonien (Slavonien und Ser- bien). Akademiai Kiad6, Budapest, pp. 173-177.

Korecz-Laky, 1., 1985. Foraminiferen im Pannonien Ungarns.

In: A. Papp, A. J'fimbor and F. F, Steininger (Editors), Chronostratigraphie und Neostratotypen, Mioz'/in der Zen- tralen Paratethys VII, M6 Pannonien (Slavonien und Ser- bien). Akad6miai Kiad6, Budapest, pp. 265-269.

Korecz-Laky, I., 1987. Studies on Foraminifera from the Miocene of Hungary. Ann. Rep. Hung. Geol. Inst., 1985:

467 480.

Korim, K., 1966. The connate waters of the Hungarian Neogene. Acta Geol. Acad. Sci. Hung., I0: 407-426.

Korpfis-Hodi, M., 1983. Palaeoecology and biostratigraphy of the Pannonian Mollusca fauna in the northern foreland of the Transdanubian Central Range. Ann. Inst. Geol. Publ.

Hung., 66, 163 pp.

Kretzoi, M., 1985. Sketch of the biochronology of the Late Cenozoic in Central Europe. In: M. Kretzoi and M. P6csi (Editors), Problems of the Neogene and Quaternary. Aka- dbmiai Kiad6, Budapest, pp. 3-20.

Kretzoi, M., 1987. Terrestrische Biochronologie/Stratigraphie des Karpatenbeckens in Pannonien (s.1.). Ann. Inst. Geol.

Publ. Hung,, 69: 393-422.

Kretzoi, M., Krolopp, E., L6rincz, H. and Pfilfalvy, I., 1976.

Flora, Fauna und stratigraphische Lage der unterpannonis- chen Prehominiden-Fundstelle von Rudabfinya (NO-Un- garn). Annu. Rep. Hung. Geol. Inst., 1974: 365-394.

Krsti,5. N., 1985. Ostracoden im Pannonien der Umgebung von Belgrad. In: A. Papp, ,~. Jfimbor and F. F. Steininger (Editors), Chronostratigraphie und Neostratotypen, Mioz~n der Zentralen Paratethys VII, M 6 Pannonien (Slavonien und Serbien). Akad6miai Kiad6, Budapest, pp. 103--143.

Lubenescu. V., 1981. Quelques considerations concernant les formes a viviparides dans le Bassin Dacique. R6v. Roum.

G6ol. G+ophys. Gdogr. G6ol., 25: 155-157.

Lueger, J. P., 1985. Die Landschnecken des Pannonien. In: A.

Papp, A. Jfimbor and F. F. Steininger (Editors), Chronostra- tigraphie und Neostratotypen, Mioz~n der Zentralen Para-

tethys VII, M6 Pannonien (Slavonien und Serbien). Akad~- miai Kiad6, Budapest, pp. 340-377.

Magyar, I., 1988. Mollusc fauna and flora of the Pannonian quartz sandstone at Mindszentkfilla, Hungary. Ann. Univ.

Sci. Budapest., Sect. Geol., 28: 209-222.

Mattick, R. E., Rumpler, J. and Phillips, R, L., 1985. Seismic stratigraphy of the Pannonian Basin in Southeastern Hun- gary. Geol. Trans., 31: 13-54.

Nagy, E., 1985. Sporomorphs of the Neogene in Hungary, Geol. Hung., ser. Palaeontol., 47: 1-471.

Nagy, E. and Planderovfi, 1~., 1985. Palynologische Auswertung der Floren des Pannonien. In: A. Papp, A. Jfimbor and F. F.

Steininger (Editors), Chronostratigraphie und Neostrato- typen, Mioz/in der Zentralen Paratethys VII, M6 Pannonien (Slavonien und Serbien). Akadbmiai Kiad6, Budapest, pp. 586-615.

Papaianopol, 1. and Olteanu, R., 1979. Contributions ft. l'~tude du Pontien sup6rieur (Bosphorien) dans la pattie oriental du Bassin Dacique. Rev. Roum. G6ol. G6ophys. Gdogr. G6ol., 23: 231-247.

Papp, A., 1985. Paratethys. Gastropoda (Neritidae, Vivipari- dae, Valvatidae, Hydrobiidae, Stenothyridae, Truncatellidae, Bulimidae, Micromelaniidae, Thiaridae) und Bivalvia (Dreis- senidae, Limnocardiidae, Unionidae) des Pannonien. In: A, Papp, ~,. Jambor and F. F. Steininger (Editors), Chronostra- tigraphie und Neostratotypen, Mioz/in der Zentralen Para- tethys VII, M 6 Pannonien (Slavonien und Serbien). Akadb- miai Kiad6, Budapest, pp. 276-339.

Papp, A., Jambor ,A. and Steininger, F. F. (Editors), 1985.

Chronostratigraphie und Neostratotypen, Mioz/in der Zen- tralen Paratethys VII, M6 Pannonien (Slavonien und Ser- bien). Akad6miai Kiadd, Budapest, 636 pp.

Pdcsi, M., Marton, P., Schweitzer, F. and Hahn, G., 1985. The absolute chronology of the Plio-Pleistocene alluvial sequence overlying the pediment of the Mfitra Mountains. In: M.

Kretzoi and M. P6csi (Editors), Problems of Neogene and Quaternary. Akad~miai Kiad6, Budapest, pp. 109-114.

Planderovfi, E., 1972. Pliocene sporomorphs from the West Carpathian mountains and their stratigraphic interpretation.

Geol. Pr. Spr~ivy, 59: 209-283.

Pogacsfis, G., 1985. Seismic stratigraphic features of Neogene sediments in the Pannonian basin. Geophys. Trans., 30:

373 410.

Pog~csfis, G., 1987. Seismic stratigraphy as a tool for chronostratigraphy: Pannonian basin. Ann. Inst. Geol. Publ.

Hung., 70: 55-63.

Pogficsas, G. and R6v6sz, 1., 1987. Seismic stratigraphy and sedimentological analysis of Neogene delta features in the Pannonian basin. Ann. Inst. Geol. Publ. Hung., 70: 267-273.

Pdka, T., 1982. Chemical evolution of the Inner Carpathian Neogene and Quaternary magmatism and the structural formation of the Carpathian basins. In: Evolution of Extensional Basins within Regions of Compression, with Emphasis on the Intra-Carpathians. Workshop/Discussion Meet.. Veszpr~m, 1982. E6tv6s Univ., Budapest. pp. 46-48.

Rabeder, G., 1985. Die S/iugetiere des Pannonien. In: A. Papp, A. Jfimbor and F. F. Steininger (Editors}, Chronostra~!gra- phie und Neostratotypen, Miozfin der Zentralen Paratethys VII, M 6 Pannonien (Slavonien und Serbien). Akad6miai Kiadd, Budapest, pp. 440-463.

(18)

188 M. KAZMI~R Rad6cz, G., 1985. The history of the discovery and mining of

Neogene coal deposits in Hungary. In: J. H~ila (Editor), Neogene Mineral Resources in the Carpathian Basin.

Historical Studies on Their Utilization. Hung. Geol. Surv., Budapest, pp. 215-257.

Rrnai, A., 1978. Caract~re hydrog~ologique essentiel de la Grande Plaine hongroise. In: A. Rrnai (Editor), Hydrogeo- logy of Great Sedimentary Basins. Ann. Inst. Geol. Publ.

Hung., 59: 462-482.

Royden, L. and Horv/tth, F. (Editors), 1988. The Pannonian Basin: A Study in Basin Evolution. Am. Assoc. Pet. Geol.

Mem., 45, 394 pp.

Royden, L., Horv~th, F and Rumpler, J., 1983. Evolution of the Pannonian Basin system. I. Tectonics. Tectonics, 2: 63-90.

Rrgl, F. and Steininger, F. F., 1983. Vom Zerfall der Tethys zu Mediterran und Paratethys. Die neogene Paliiogeographie und Palinspastik des zirkum-mediterranen Raumes. Ann.

Naturhist. Mus. Wien, 1981, 85 A: 135-163.

Rrgl, F. and Steininger, F. F., 1984. Neogene Paratethys, Mediterranean and Indo-Pacific Seaways. In: P. J. Brenchley (Editor), Fossils and Climate. Wiley, Chichester, 11:

171-200.

Rumpler, J. and Horv~tth, F., 1988. Some representative seismic reflection lines from the Pannonian Basin and their structural interpretation. In: L. Royden and F. Horv~tth (Editors), The Pannonian Basin: A Study in Basin Evolution. Am. Assoc.

Pet. Geol. Mem., 45: 153-169.

Sajgr, C., 1980. Hydrocarbon generation in a super-thick Neogene sequence in South-east Hungary. A study of the extractable organic matter. In: A. G. Douglas and J. R.

Maxwell (Editors), Advances in Organic Geochemistry.

Pergamon, Oxford, pp. I03-I 13.

Sajg6, C., Horv~th, Z. A. and Lefler, J., 1988. An organic maturation study of the Hrd-I borehole (Pannonian basin).

In: L. Royden and F. Horv/tth (Editors), The Pannonian Basin: A Study in Basin Evolution. Am. Assoc. Pet. Geol.

Mem., 45: 297-309.

Schreiber, O. S., Fuchs, R. and Krvfiry, J., 1985. Die Silicoplacentinen-Fauna des Unteren Pannonien im Mitt- leren Donaubecken Osterreichs und Ungarns. In: A. Papp, ,k.

J~.mbor and F. F. Steininger (Editors), Chronostratigraphie

und Neostratotypen, Mioziin der Zentralen Paratethys VII, M6 Pannonien (Slavonien und Serbien). Akadrmiai Kiadr, Budapest, pp. 464-481.

Solti, G., 1985a. Prospection and utilization of alginite and oil shale in Hungary. In: J. H~la (Editor), Neogene Mineral Resources in the Carpathian Basin. Historical Studies on Their Utilization. Hung. Geol. Surv., Budapest, pp. 503-517.

Solti, G., 1985b. Agricultural utilization of Neogene mineral raw materials in Hungary. In: J. H~la (Editor), Neogene Mineral Resources in the Carpathian Basin. Historical Studies on Their Utilization. Hung. Geol. Surv., Budapest, pp. 519-530.

Stadnikoff, G., 1958. Ein chemisches Verfahren zur Feststellung der Ablagerungsbedingungen von Tonen und toniger Ges- teinen. Gliickauf, 94: 59-62.

Steininger, F. F. and R6gl, F., 1985. Die Pal~ogeographie der Zentralen Paratethys in Pannonien. In: A. Papp, A. J~,mbor and F. F. Steininger (Editors), Chronostratigraphie und Neostratotypen, Mioziin der Zentralen Paratethys VII, M#

Pannonien (Slavonien und Serbien). Akadrmiai Kiadr, Budapest, pp. 46-50.

Sii[o-Szentai, M., 1982. Szerves vhzfl mikroplankton-biozrn/tk a Krz~p-Dun~.tfil pann6niai r~tegrsszlet~ben. Annu. Rep.

Hung. Geol. Inst., 1980:309-344 (in Hungarian, with English abstract).

S/i[o-Szentai, M., 1985. Die Verbreitung organischer Mikro- plankton-Vergesellschaftungen in den pannonischen Schi- chten Ungarns. In: A. Papp, A. J~tmbor and F. F. Steininger (Editors), Chronostratigraphie und Neostratotypen, Mioz/in der Zentralen Paratethys VII, M 6 Pannonien (Slavonien und Serbien). Akadrmiai Kiad6, Budapest, pp. 516-533.

Tham6-Bozsr, E., 1985. A fehrrv~rcsurgri kvarchomok telep fisv~.ny-krzettani vizsg~lat/mak eredmrnyei. Ann. Rep.

Hung. Geol. Inst., 1983:75-80 (in Hungarian, with English abstract).

Thenius, E., 1982. Zur Pal/ioklimatologie des Pannon (Jung- mioz/in) in Niederrsterreich. Neues Jahrb. Geol. Paliiontol.

Monatsh., 1982: 692-704.

Vass, D., Rep~ok, I., Balogh, K. and Halmai, J., 1987. Revised radiometric time-scale for the Central Paratethyan Neogene.

Ann. Inst. Geol. Publ. Hung., 70: 423-434.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Da bei Anwendung der einfachen HücKELschen Näherung im allgemeinen dies der Fall ist, haben LADIK und ApPEL [6] für eine der Nukleotidbasen, und zwar für Uracil, die

Die Entwicklung der prinzipiellen und mcthodologischen Grundlagen der industrieökonomischen wissenschaftlichen Arbeit in Polen sowie die planmäßige und koordinierte

- Optische und optoelektronische Geräte: Konstruktion optischer und optoelek- tronischer Geräte, Anwendung der interferometrischen und akustooptischen Methoden in

Folglich kam in den Fachkommentaren eine neue Erklärung durch, nämlich dass das Recht der Autonomie aus dem Selbstbestimmungsrecht abgeleitet werden kann: Es gibt

Die Soziometrie untersucht das Beziehungsumfeld einer Person und dadurch auch die Struktur der Gruppe und deren zeitliche Entwicklung anhand von quantitativen Daten (Falus, 2000).

Das Kennen der Analysemethoden der Textsyntax, der Textsemantik und der Textpragmatik kann in die eigene Textrezeption und Textproduktion der Studierenden umgesetzt werden, wenn

Nagy, der spätere Ordinarius für Strafrecht und Leiter des Lehrstuhls an der Staats- und Rechtswissenschaftlichen Fakultät und jetzt verdienstvolle Jubilar war in den

Az Intézet által a fonto- sabb árucsoportokra nézve kiszámított szezonérzé- kenységi kitevők segélyével már most az nyert megállapítást, hogy a készáruk az idényszerű