• Nem Talált Eredményt

(1)http://jipam.vu.edu.au/ Volume 6, Issue 1, Article 19, 2005 NOTE ON DRAGOMIR-AGARWAL INEQUALITIES, THE GENERAL EULER TWO-POINT FORMULAE AND CONVEX FUNCTIONS A

N/A
N/A
Protected

Academic year: 2022

Ossza meg "(1)http://jipam.vu.edu.au/ Volume 6, Issue 1, Article 19, 2005 NOTE ON DRAGOMIR-AGARWAL INEQUALITIES, THE GENERAL EULER TWO-POINT FORMULAE AND CONVEX FUNCTIONS A"

Copied!
10
0
0

Teljes szövegt

(1)

http://jipam.vu.edu.au/

Volume 6, Issue 1, Article 19, 2005

NOTE ON DRAGOMIR-AGARWAL INEQUALITIES, THE GENERAL EULER TWO-POINT FORMULAE AND CONVEX FUNCTIONS

A. VUKELI ´C

FACULTY OFFOODTECHNOLOGY ANDBIOTECHNOLOGY

MATHEMATICSDEPARTMENT

UNIVERSITY OFZAGREB

PIEROTTIJEVA6, 10000 ZAGREB

CROATIA

avukelic@pbf.hr

Received 12 January, 2005; accepted 20 January, 2005 Communicated by R.P. Agarwal

ABSTRACT. The general Euler two-point formulae are used with functions possessing various convexity and concavity properties to derive inequalities pertinent to numerical integration.

Key words and phrases: Hadamard inequality,r-convexity, Integral inequalities, General Euler two-point formulae.

2000 Mathematics Subject Classification. 26D15, 26D20, 26D99.

1. INTRODUCTION

One of the cornerstones of nonlinear analysis is the Hadamard inequality, which states that if [a, b] (a < b)is a real interval andf : [a, b]→Ris a convex function, then

(1.1) f

a+b 2

≤ 1 b−a

Z b a

f(t)dt ≤ f(a) +f(b)

2 .

Recently, S.S. Dragomir and R.P. Agarwal [3] considered the trapezoid formula for numerical integration of functionsf such that|f0|qis a convex function for some q ≥ 1. Their approach was based on estimating the difference between the two sides of the right-hand inequality in (1.1). Improvements of their results were obtained in [5]. In particular, the following tool was established.

Supposef : I0 ⊆ R → R is differentiable onI0 and such that|f0|q is convex on [a, b]for someq ≥1,wherea, b∈I0(a < b). Then

(1.2)

f(a) +f(b)

2 − 1

b−a Z b

a

f(t)dt

≤ b−a 4

|f0(a)|q+|f0(b)|q 2

1q .

Some generalizations to higher-order convexity and applications of these results are given in [1]. Related results for Euler midpoint, Euler-Simpson, Euler two-point, dual Euler-Simpson,

ISSN (electronic): 1443-5756

c 2005 Victoria University. All rights reserved.

016-05

(2)

Euler-Simpson 3/8 and Euler-Maclaurin formulae were considered in [7] and for Euler two- point formulae in [9] (see also [2] and [8]).

In the paper [4] Dah-Yan Hwang procured some new inequalities of this type and he applied the result to obtain a better estimate of the error in the trapezoidal formula.

In this paper we consider some related results using the general Euler two-point formulae.

We will use the interval[0,1]because of simplicity and since it involves no loss in generality.

2. THEGENERALEULERTWO-POINTFORMULAE

In the recent paper [6] the following identities, named the general Euler two-point formulae, have been proved. Letf ∈Cn([0,1],R)for somen≥3and letx∈[0,1/2]. Ifn= 2r−1, r≥ 2, then

(2.1) Z 1

0

f(t)dt = 1

2[f(x) +f(1−x)]−Tr−1(f) + 1 2(2r−1)!

Z 1 0

f(2r−1)(t)F2r−1x (t)dt, while forn= 2r, r≥2we have

(2.2)

Z 1 0

f(t)dt = 1

2[f(x) +f(1−x)]−Tr−1(f) + 1 2(2r)!

Z 1 0

f(2r)(t)F2rx(t)dt and

(2.3)

Z 1 0

f(t)dt= 1

2[f(x) +f(1−x)]−Tr(f) + 1 2(2r)!

Z 1 0

f(2r)(t)Gx2r(t)dt.

Here we defineT0(f) = 0and for1≤m≤ bn/2c Tm(f) =

m

X

k=1

B2k(x) (2k)!

f(2k−1)(1)−f(2k−1)(0) , Gxn(t) =Bn(x−t) +Bn(1−x−t) and

Fnx(t) = Bn(x−t) +Bn(1−x−t)−Bn(x)−Bn(1−x),

where Bk(·), k ≥ 0, is the k-th Bernoulli polynomial and Bk = Bk(0) = Bk(1)(k ≥ 0) the k-th Bernoulli number. By Bk(·)(k ≥ 0)we denote the function of period one such that Bk(x) = Bk(x)for0≤x≤1.

It was proved in [6] thatFnx(1−t) = (−1)nFnx(t), (−1)r−1F2r−1x (t) ≥ 0, (−1)rF2rx(t) ≥ 0 for x ∈ h

0,121

2 3

and t ∈ [0,1/2], and(−1)rF2r−1x (t) ≥ 0, (−1)r−1F2rx(t) ≥ 0for x ∈ 1

2 3,12i

andt∈[0,1/2]. Also Z 1

0

F2r−1x (t)

dt= 2 r

B2r

1 2−x

−B2r(x) , Z 1

0

|F2rx(t)|dt= 2|B2r(x)|

and

Z 1 0

|Gx2r(t)|dt≤4|B2r(x)|.

With integration by parts, we have that the following identities hold:

(1) C1(x) = Z 1

0

F2r−1x y 2

dy=− Z 1

0

F2r−1x 1−y

2

dy= 2 r

B2r(x)−B2r 1

2−x

,

(3)

(2) C2(x) = Z 1

0

yF2r−1x y 2

dy=− Z 1

0

yF2r−1x 1−y

2

dy=−2 rB2r

1 2−x

,

(3) C3(x) = Z 1

0

(1−y)F2r−1x y 2

dy=− Z 1

0

(1−y)F2r−1x 1− y

2

dy= 2

rB2r(x),

(4) C4(x) =

Z 1 0

F2rx y 2

dy=

Z 1 0

F2rx 1− y

2

dy =−2B2r(x),

C5(x) = Z 1

0

yF2rx y 2

dy (5)

= Z 1

0

yF2rx 1− y

2

dy

= 8

(2r+ 1)(2r+ 2)

B2r+2(x)−B2r+2 1

2 −x

−B2r(x),

C6(x) = Z 1

0

(1−y)F2rx y 2

dy (6)

= Z 1

0

(1−y)F2rx 1− y

2

dy

= 8

(2r+ 1)(2r+ 2)

B2r+2 1

2 −x

−B2r+2(x)

−B2r(x),

(7) C7(x) =

Z 1 0

Gx2r y

2

dy= Z 1

0

Gx2r

1− y 2

dy= 0,

C8(x) = Z 1

0

yGx2ry 2

(8) dy

= Z 1

0

yGx2r

1− y 2

dy

=− Z 1

0

(1−y)Gx2ry 2

dy

= Z 1

0

(1−y)Gx2r 1− y

2

dy

= 8

(2r+ 1)(2r+ 2)

B2r+2(x)−B2r+2 1

2−x

, Theorem 2.1. Suppose f : [0,1] → R is n-times differentiable and x ∈ h

0,121

2 3

1

2 3,12i

.

(4)

(a) Iff is convex for someq ≥1,then forn= 2r−1, r≥2, we have (2.4)

Z 1 0

f(t)dt− 1

2[f(x) +f(1−x)] +Tr−1(f)

≤ 2 (2r)!

B2r

1 2 −x

−B2r(x)

1−1q "

r 2C3(x)

·

f(2r−1)(0)

q+

f(2r−1)(1)

q

2 +

r 2C2(x)

·

f(2r−1) 1

2

q1q . Ifn= 2r, r≥2, then

(2.5)

Z 1 0

f(t)dt− 1

2[f(x) +f(1−x)] +Tr−1(f)

≤ |B2r(x)|1−1q (2r)! ·

"

1 2C6(x)

f(2r)(0)

q+

f(2r)(1)

q

2 +

1 2C5(x)

f(2r) 1

2

q#1q

and we also have (2.6)

Z 1 0

f(t)dt− 1

2[f(x) +f(1−x)] +Tr(f)

≤ 2|B2r(x)|1−1q (2r)!

1 8C8(x)

f(2r)(0)

q+ 2

f(2r) 1

2

q

+

f(2r)(1)

q1q . (b) If

f(n)

qis concave, then forn= 2r−1, r≥2, we have (2.7)

Z 1 0

f(t)dt− 1

2[f(x) +f(1−x)] +Tr−1(f)

≤ 1 (2r)!

r 2C1(x)

·

"

f(2r−1)

|C2(x)|

2|C1(x)|

+

f(2r−1)

C3(x) + 12C2(x)

|C1(x)|

!

# . Ifn= 2r, r≥2, then

(2.8)

Z 1 0

f(t)dt− 1

2[f(x) +f(1−x)] +Tr−1(f)

≤ |C4(x)|

4(2r)!

"

f(2r)

|C5(x)|

2|C4(x)|

+

f(2r)

C6(x) + 12C5(x)

|C4(x)|

!

# . Proof. First, letn= 2r−1for somer ≥2. Then by Hölder’s inequality

Z 1 0

f(t)dt−1

2[f(x) +f(1−x)] +Tr−1(f)

≤ 1

2(2r−1)!

Z 1 0

F2r−1x (t) ·

f(2r−1)(t) dt

≤ 1

2(2r−1)!

Z 1 0

F2r−1x (t) dt

1−1q Z 1 0

F2r−1x (t) ·

f(2r−1)(t)

qdt 1q

= 1

2(2r−1)!

2 r

B2r 1

2−x

−B2r(x)

1−1q Z 1 0

F2r−1x (t) ·

f(2r−1)(t)

qdt 1q

.

(5)

Now, by the convexity of|f(2r−1)|q we have Z 1

0

F2r−1x (t) ·

f(2r−1)(t)

qdt

= Z 12

0

F2r−1x (t) ·

f(2r−1)(t)

qdt+ Z 1

1 2

F2r−1x (t) ·

f(2r−1)(t)

qdt

= 1 2

Z 1 0

F2r−1x

y 2

·

f(2r−1)

(1−y)·0 +y· 1 2

q

dy +1

2 Z 1

0

F2r−1x 1− y

2

·

f(2r−1)

(1−y)·1 +y· 1 2

q

dy

≤ 1 2

Z 1 0

(1−y)F2r−1x y 2

dy

·

f(2r−1)(0)

q

+

Z 1 0

yF2r−1x y 2

dy

·

f(2r−1) 1

2

q

+

Z 1 0

(1−y)F2r−1x 1− y

2

dy

·

f(2r−1)(1)

q

+

Z 1 0

yF2r−1x 1−y

2

dy

·

f(2r−1) 1

2

q . On the other hand, if

f(2r−1)

qis concave, then

Z 1 0

f(t)dt−1

2[f(x) +f(1−x)] +Tr−1(f)

≤ 1

2(2r−1)!

Z 1 0

F2r−1x (t) ·

f(2r−1)(t) dt

= 1

2(2r−1)!

"

Z 1/2 0

F2r−1x (t) ·

f(2r−1)(t) dt+

Z 1 1/2

F2r−1x (t) ·

f(2r−1)(t) dt

#

= 1

2(2r−1)!

Z 1 0

F2r−1x y 2

·

f(2r−1)

(1−y)·0 +y·1 2

dy +

Z 1 0

F2r−1x 1− y

2

·

f(2r−1)

(1−y)·1 +y·1 2

dy

≤ 1

4(2r−1)!

Z 1 0

F2r−1x y 2

dy

·

f(2r−1)

R1

0 F2r−1x y2

((1−y)·0 +y· 12)dy

R1

0 F2r−1x y2 dy

+

Z 1 0

F2r−1x 1− y

2

dy

·

f(2r−1)

R1

0 F2r−1x 1− y2

((1−y)·1 +y· 12)dy

R1

0 F2r−1x 1− y2 dy

, so the inequality (2.4) and (2.7) are completely proved.

The proofs of the inequalities (2.5), (2.8) and (2.6) are similar.

Remark 2.2. For (2.7) to be satisfied it is enough to suppose that|f(2r−1)|is a concave function.

For if|g|qis concave and[0,1]for someq≥1, then forx, y ∈[0,1]andλ∈[0,1]

|g(λx+ (1−λ)y)|q ≥λ|g(x)|q+ (1−λ)|g(y)|q ≥(λ|g(x)|+ (1−λ)|g(y)|)q,

(6)

by the power-mean inequality. Therefore|g|is also concave on[0,1].

Remark 2.3. If in Theorem 2.1 we chose x = 0,1/2,1/3, we get generalizations of the Dragomir-Agarwal inequality for Euler trapezoid (see [4]) , Euler midpoint and Euler two-point Newton-Cotes formulae respectively.

The resultant formulae in Theorem 2.1 whenr= 2are of special interest, so we isolate it as corollary.

Corollary 2.4. Suppose f : [0,1] → R is 4-times differentiable and x ∈ h

0,121

2 3

1

2 3,12

i . (a) If

f(3)

q is convex for someq≥1,then

Z 1 0

f(t)dt− 1

2[f(x) +f(1−x)] + 1

12[f0(1)−f0(0)]

≤ 1 12

2x3− 3

2x2+ 1 16

1−1q

×

"

x4−2x3+x2− 1 30

f(3)(0)

q+

f(3)(1)

q

2 +

−x4+x2 2 − 7

240

f(3) 1

2

q1q

and if f(4)

qis convex for someq ≥1,then

Z 1 0

f(t)dt− 1

2[f(x) +f(1−x)] + 1

12[f0(1)−f0(0)]

≤ 1 24

x4−2x3+x2− 1 30

1−1

q

×

"

2x5

5 −x4+x3− 3x2 8 + 1

96

f(4)(0)

q+

f(4)(1)

q

2 +

−2x5

5 +x3− 5x2 8 + 11

480

f(4) 1

2

q1q . (b) If

f(3)

is concave, then

Z 1 0

f(t)dt− 1

2[f(x) +f(1−x)] + 1

12[f0(1)−f0(0)]

≤ 1 24

2x3− 3

2x2+ 1 16

f(3)

−x4+x222407 −4x3+ 3x218

+

f(3)

x4

2 −2x3+ 5x4248023 −2x3+ 3x22161

and if f(4)

is concave, then

Z 1 0

f(t)dt− 1

2[f(x) +f(1−x)] + 1

12[f0(1)−f0(0)]

(7)

≤ 1 48

x4−2x3 +x2− 1 30

f(4)

4x55 + 2x35x42 + 24011 −4x4+ 8x3−4x2+152

+

f(4)

2x5

5 −2x4+ 3x311x82 +1607 −2x4+ 4x3−2x2+ 151

. Now, we will give some results of the same type in the case whenr = 1.

Theorem 2.5. Supposef : [0,1]→Ris2-times differentiable.

(a) If|f0|q is convex for someq ≥1, then forx∈[0,1/2]we have

Z 1 0

f(t)dt− 1

2[f(x) +f(1−x)]

≤ |8x2−4x+ 1|1−1q

4 ·

2x2−2x+2 3

|f0(0)|q+|f0(1)|q 2

+

−2x2 + 2x+1 3

f0 1

2

q1q .

If|f00|qis convex for someq≥1andx∈[0,1/4], then

Z 1 0

f(t)dt− 1

2[f(x) +f(1−x)]

−6x2+6x−1

3 + 23(1−4x)3/2

1−1q

4

−x2+x− 1 8

|f00(0)|q+|f00(1)|q 2

+

−2x2+ 2x− 5 24

f00 1

2

q1q ,

while forx∈[1/4,1/2]we have

Z 1 0

f(t)dt− 1

2[f(x) +f(1−x)]

−6x2+6x−1 3

1−1

q

4

−x2+x− 1 8

|f00(0)|q+|f00(1)|q 2

+

−2x2+ 2x− 5 24

f00 1

2

q1q . (b) If|f0|is concave for someq ≥1, then forx∈[0,1/2]we have

Z 1 0

f(t)dt− 1

2[f(x) +f(1−x)]

≤ 1 8

f0

−x2+x+ 1 6

+

f0

x2−x+5 6

.

(8)

If|f |is concave for someq≥1andx∈[0,1/2], then

Z 1 0

f(t)dt− 1

2[f(x) +f(1−x)]

≤ 1 8

−3x2+ 3x− 1 3

"

f00

−2x2+ 2x− 245 −6x2+ 6x− 23

!

+

f00

−2x2+ 2x− 1148 −3x2+ 3x− 13

!

# . Proof. It was proved in [6] that forx∈[0,1/2]

Z 1 0

|F1x(t)|dt= 8x2−4x+ 1

2 ,

forx∈[0,1/4]

Z 1 0

|F2x(t)|dt = −6x2+ 6x−1

3 +2

3(1−4x)3/2, and forx∈[1/4,1/2]

Z 1 0

|F2x(t)|dt= −6x2+ 6x−1

3 .

So, using identities (2.1) and (2.2) with calculation of C1(x), C2(x), C3(x), C4(x), C5(x)and C6(x)similar to that in Theorem 2.1 we get the inequalities in (a) and (b).

Remark 2.6. For x = 0in the above theorem we have the trapezoid formula and for |f00|q a convex function and|f00|a concave function we get the results from [4].

If|f0|qis convex for someq≥1, then

Z 1 0

f(t)dt− 1

2[f(0) +f(1)]

≤ 1 4

"

|f0(0)|q+|f0 12

|q+|f0(1)|q 3

#1q

and if|f0|is concave, then

Z 1 0

f(t)dt− 1

2[f(0) +f(1)]

≤ 1 8

f0 1

6

+

f0 5

6

.

Forx= 1/4we get two-point Maclaurin formula and then if|f0|qis convex for someq ≥1, then

Z 1 0

f(t)dt− 1 2

f

1 4

+f

3 4

≤ 1 8

"

7|f0(0)|q+ 34|f0 12

|q+ 7|f0(1)|q 24

#1q

and if|f00|qis convex for someq≥1, then

Z 1 0

f(t)dt− 1 2

f

1 4

+f

3 4

≤ 1 96

"

3|f00(0)|q+ 16|f00 12

|q+ 3|f00(1)|q 4

#1q . If|f0|is concave, then

Z 1 0

f(t)dt−1 2

f

1 4

+f

3 4

≤ 1 8

f0 17

48

+

f0 31

48

and if|f00|is concave for someq ≥1, then

Z 1 0

f(t)dt−1 2

f

1 4

+f

3 4

≤ 11 384

f00 4

11

+

f00 7

11

.

(9)

Forx = 1/3 we get two-point Newton-Cotes formula and then if |f0|q is convex for some q≥1, then

Z 1 0

f(t)dt−1 2

f

1 3

+f

2 3

≤ 5 36

"

|f0(0)|q+ 7|f0 12

|q+|f0(1)|q 5

#1q

and if|f00|qis convex for someq≥1, then

Z 1 0

f(t)dt− 1 2

f

1 3

+f

2 3

≤ 1 36

"

7|f00(0)|q+ 34|f00 12

|q+ 7|f00(1)|q 16

#1q . If|f0|is concave, then

Z 1 0

f(t)dt−1 2

f

1 3

+f

2 3

≤ 1 8

f0 7

18

+

f0 11

18

and if|f00|is concave for someq ≥1, then

Z 1 0

f(t)dt− 1 2

f

1 3

+f

2 3

≤ 1 24

f00 17

48

+

f00 31

48

. Forx= 1/2we get midpoint formula and then if|f0|qis convex for someq ≥1, then

Z 1 0

f(t)dt−f 1

2

≤ 1 4

"

|f0(0)|q+ 10|f0 12

|q+|f0(1)|q 12

#1q

and if|f00|qis convex for someq≥1, then

Z 1 0

f(t)dt−f 1

2

≤ 1 24

"

3|f00(0)|q+ 14|f00 12

|q+ 3|f00(1)|q 8

#1q . If|f0|is concave, then

Z 1 0

f(t)dt−f 1

2

≤ 1 8

f0 5

12

+

f0 7

12

and if|f00|is concave for someq ≥1, then

Z 1 0

f(t)dt−f 1

2

≤ 5 96

f00 7

20

+

f00 13

20

. REFERENCES

[1] Lj. DEDI ´C, C.E.M. PEARCE AND J. PE ˇCARI ´C, Hadamard and Dragomir-Agarwal inequalities, higher-order convexity and the Euler formula, J. Korean Math. Soc., 38 (2001), 1235–1243.

[2] Lj. DEDI ´C, C.E.M. PEARCEAND J. PE ˇCARI ´C, The Euler formulae and convex functions, Math.

Inequal. Appl., 3(2) (2000), 211–221.

[3] S.S. DRAGOMIRANDR.P. AGARWAL, Two inequalities for differentiable mappings and applica- tions to special means of real numbers and to trapezoidal formula, Appl. Mat. Lett., 11(5) (1998), 91–95.

[4] D.Y. HWANG, Improvements of Euler-trapezodial type inequalities with higher-order convexity and applications, J. of Inequal. in Pure and Appl. Math., 5(3) (2004), Art. 66. [ONLINE: http://

jipam.vu.edu.au/article.php?sid=412]

(10)

[5] C.E.M. PEARCE AND J. PE ˇCARI ´C, Inequalities for differentiable mappings and applications to special means and quadrature formulas, Appl. Math. Lett., 13 (2000), 51–55.

[6] J. PE ˇCARI ´C, I. PERI ´C AND A. VUKELI ´C, On general Euler two-point formulae, to appear in ANZIAM J.

[7] J. PE ˇCARI ´CANDA. VUKELI ´C, Hadamard and Dragomir-Agarwal inequalities, the Euler formulae and convex functions, Functional Equations, Inequalities and Applications, Th.M. Rassias (ed.)., Dordrecht, Kluwer Academic Publishers, 2003.

[8] J. PE ˇCARI ´C AND A. VUKELI ´C, On generalizations of Dragomir-Agarwal inequality via some Euler-type identities, Bulletin de la Société des Mathématiciens de R. Macédoine, 26 (LII) (2002), 17–42.

[9] J. PE ˇCARI ´CANDA. VUKELI ´C, Hadamard and Dragomir-Agrawal inequalities, the general Euler two-point formulae and convex function, to appear in Rad HAZU, Matematiˇcke Znanosti.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

For the different choices of the auxiliary function h.:/, we have different other classes of convex functions such as: Breckner type of s-convex functions [1], Godu-

We used the operator splitting method and the combination of the classical and simplest one-step numerical methods: explicit and implicit Euler method and the symplectic Euler method

— Én figyelmeztettem az előbb Hartwieg gróf urat, hogy Tönsberg Olga, aki jó barátnőm volt, minden valószínűség szerint öngyilkossá-1 , got követett el,

Ledoux, M.: On manifolds with non-negative Ricci curvature and Sobolev inequalities. Li, P.: Large time behavior of the heat equation on complete manifolds with nonnegative

Key words and phrases: Dragomir-Agarwal-type inequalities, k-convex functions, General 3-point, 4-point and 5-point quad- rature formulae, Corrected quadrature formulae..

We study analogues of the Miki, Matiyasevich, and Euler identities for the Apostol-Bernoulli numbers and obtain the analogues of the Miki and Euler identities for the

Az előadó saját provokatív kérdésére (ami innen nézve már-már költői volt) megadta az igenlő választ, s nyomatékkal hívta fel arra a figyelmet, hogy meg kell változnia

If the 95% confidence interval is calculated for the expected value from 100 different sample, than approximately 95 interval contains the true expected value out of the 100.