• Nem Talált Eredményt

h2/-convex functions

N/A
N/A
Protected

Academic year: 2022

Ossza meg "h2/-convex functions"

Copied!
18
0
0

Teljes szövegt

(1)

Miskolc Mathematical Notes HU e-ISSN 1787-2413 Vol. 19 (2018), No. 1, pp. 77–94 DOI: 10.18514/MMN.2018.2179

SOME NEW CLASSES OF CONVEX FUNCTIONS AND INEQUALITIES

MUHAMMAD UZAIR AWAN, MUHAMMAD ASLAM NOOR, KHALIDA INAYAT NOOR, AND AWAIS GUL KHAN

Received 13 December, 2016

Abstract. In this article, we introduce some new class of convex functions involving two arbitrary auxiliary functionsh1; h2WI!R;which are called.h1; h2/-convex functions. We derive some new integral inequalities for these classes of convex functions. We also discuss some special cases which can be deduced from our main results. Results obtained in this paper may be viewed as a significant refinement and improvement of the previously known results. The ideas and techniques of this work may be a starting point for future research.

2000Mathematics Subject Classification: 26D15; 26A51 Keywords: convex function, Hermite-Hadamard inequalities

1. INTRODUCTION

A setCRis said to be a convex set, if

txC.1 t /y2C; 8x; y2C; t2Œ0; 1:

A functionf WC!Ris said to be a convex function in the classical sense, if f .txC.1 t /y/tf .x/C.1 t /f .y/; 8x; y2C; t2Œ0; 1:

In recent years several new generalizations of classical convexity have been given, for example see [1–3,8,17,18]. Varosanec [18] introduced the notion ofh-convexity which along with classical convex functions generalizes several other class of convex functions. The formal definition ofh-convex functions is given as:

Definition 1([18]). LethW.0; 1/J !Rbe a non-negative function,h60. We say thatf WC!Ris anh-convex function, iff is non-negative and for allx; y2C, t2.0; 1/, we have

f .txC.1 t /y/h.t /f .x/Ch.1 t /f .y/:

Corresponding author: Muhammad Uzair Awan.

c 2018 Miskolc University Press

(2)

For the different choices of the auxiliary function h.:/, we have different other classes of convex functions such as: Breckner type ofs-convex functions [1], Godu- nova-Levin-Dragomir type ofs-convex functions [4], Godunova-Levin type of func- tions [8] andP-functions [7]. Since the appearance of this definition many research- ers shown their special interest in studying this class of convex functions. Sarikaya et al. [15] has improved the Hermite-Hadamard’s inequality for this class of convex functions. Recent trend of the research in this field has shown that theory of con- vexity and theory of inequalities have a close relationship. Many inequalities can be obtained via convex functions and naturally they can be extended for generalizations of convex functions, see [5,6,10–12,14,16].

Motivated by the research going on in this field, we introduce the notion of so- called.h1; h2/-convex functions, which is the main motivation of this paper. These classes involves two auxiliary functions namelyh1; h2WJ !R. We show that these classes include several new and known classes of convex functions as special cases.

We also derive some new estimates for Hermite-Hadamard type of inequalities and for the integral

b

R

a

.u a/˛.b u/ˇf .u/duvia.h1; h2/-convex functions. Some new and known special cases which can be deduced from our main results, are also dis- cussed.

2. PRELIMINARIES

We now define the new classes of convex functions involving two arbitrary func- tions.

Definition 2. Leth1; h2W.0; 1/J !Rbe two real functions, h1; h260. We say thatf WC!Ris an.h1; h2/-convex function, if

f .txC.1 t /y/h1.t /h2.1 t /f .x/Ch1.1 t /h2.t /f .y/; 8x; y2C; t2.0; 1/:

We now discuss several special cases.

I.Ifh2.t /D1, then Definition2reduces to the definition forh-convex functions [18].

II.Ifh1.t /D1Dh2.t /, then Definition2reduces to the definition forP-functions [7].

III.Ifh1.t /Dtsandh2.t /Dtsin Definition2, then we have the class ofs-convex functions of third kind.

Definition 3. Lets2Œ0; 1be a real number. We say thatf WC !Ris ans-tgs- convex functions, if

f .txC.1 t /y/ts.1 t /sŒf .x/Cf .y/; 8x; y2C; t2Œ0; 1:

(3)

Note that if we takesD1in Definition3, then we have the definition oftgs-convex functions [17].

IV. If h1.t /Dt s and h2.t /Dt s in Definition 2, then we have the class of s- Godunova-Levin-Dragomirtgs-convex functions.

Definition 4. Lets2.0; 1 be a real number. We say that f WC !Ris an s- Godunova-Levin-Dragomirtgs-convex function, if

f .txC.1 t /y/ 1 ts

1

.1 t /sŒf .x/Cf .y/; 8x; y2C; t 2Œ0; 1:

Note that if we takesD1in Definition4, then we have the definition of Godunova- Levin type oftgs-convex functions, which appears to be a new definition.

V.Ifh1.t /Dts1 andh2.t /Dts2 in Definition2, then we have a new class of convex functions which is called as Breckner type of.s1; s2/-convex functions.

Definition 5. Lets1; s22.0; 1be two real numbers. We say thatf WC!Ris an .s1; s2/-convex function, if

f .txC.1 t /y/ts1.1 t /s2f .x/C.1 t /s1ts2f .y/; 8x; y2C; t2Œ0; 1:

VI. If h1.t /Dt s1 and h2.t /Dt s2 in Definition 2, then we have a new class of convex functions which is called as Godunova-Levin-Dragomir type of.s1; s2/- convex functions.

Definition 6. Lets1; s22.0; 1be two real numbers. We say thatf WC!Ris an .s1; s2/-convex function, if

f .txC.1 t /y/ 1

ts1.1 t /s2f .x/C 1

.1 t /s1ts2f .y/; 8x; y2C; t 2Œ0; 1:

It is clear that these new classes of convex functions are quite general and include several new and previously known classes of convex functions as special cases.

The following results will be helpful in deriving our main results in this paper.

Lemma 1([13]). Letf WIDŒa; bR!Rbe a continuous function such that f 2LŒa; b, then

b

Z

a

.u a/˛.b u/ˇf .u/duD.b a/˛CˇC1

1

Z

0

t˛.1 t /ˇf ..1 t /aCt b/dt:

Lemma 2([9]). LetIıR!R,a; b2Iıwitha < bwhereIıis the interior of Iı. Iff.n/exists onIıandf.n/2LŒa; b, then forn1, we have

f .a/Cf .b/

2

1

b a

b

Z

a

f .x/dx

n 1

X

kD2

.k 1/.b a/k

2.kC1/Š f.k/.a/

(4)

D.b a/n 2nŠ

1

Z

0

tn 1.n 2t /f.n/.t aC.1 t /b/dt:

3. MAIN RESULTS

In this section we derive our main results.

Theorem 1. Let f WIDŒa; bR!Rbe a .h1; h2/-convex function. If f 2 LŒa; b, then forh1 1

2

h2 1 2

¤0, we have 1

2h1 1 2

h2 1 2

f

aCb 2

1

b a

b

Z

a

f .x/dxŒf .a/Cf .b/

1

Z

0

h1.t /h2.1 t /dt:

Proof. Since f is an .h1; h2/-convex function, for x D t aC.1 t /b, y D .1 t /aCt bandtD12, we have

f

aCb 2

h1

1 2

h2

1 2

Œf .t aC.1 t /b/Cf ..1 t /aCt b/:

Integrating both sides of the above inequality with respect tot onŒ0; 1, we have 1

2h1 1 2

h2 1 2

f

aCb 2

1

b a

b

Z

a

f .x/dx: (3.1)

Also

f .t aC.1 t /b/h1.t /h2.1 t /f .x/Ch1.1 t /h2.t /f .y/:

Integrating both sides of the above inequality with respect tot onŒ0; 1, we have 1

b a

b

Z

a

f .x/dxŒf .a/Cf .b/

1

Z

0

h1.t /h2.1 t /dt: (3.2) On summation of inequalities (3.1) and (3.2) the proof is complete.

We now discuss a new special case of Theorem1.

Ifh1.t /Dts1 andh2Dts2 in Theorem1, then we have a result for Brecker type of.s1; s2/-convex functions.

Corollary 1. Let f WI DŒa; bR!R be a Brecker type of .s1; s2/-convex function. Iff 2LŒa; b, then fors1; s22Œ0; 1we have

1 21 s1 s2f

aCb 2

1

b a

b

Z

a

f .x/dxŒf .a/Cf .b/B.s1C1; s2C1/:

(5)

Ifh1.t /Dt s1 andh2Dt s2 in Theorem1, then we have a result for Godunova- Levin-Dragomir type of.s1; s2/-convex functions.

Corollary 2. Letf WIDŒa; bR!Rbe a Godunova-Levin-Dragomir type of .s1; s2/-convex function. Iff 2LŒa; b, then fors1; s22Œ0; 1, we have

1 21Cs1Cs2f

aCb 2

1

b a

b

Z

a

f .x/dxŒf .a/Cf .b/B.1 s1; 1 s2/:

Our next result is a lower bound for Hermite-Hadamard’s inequality via product of two.h1; h2/-convex functions.

Theorem 2. Letf; gWIDŒa; bR!Rbe two.h1; h2/-convex functions such thath21 12

h22 12

¤0. Iffg2LŒa; b, then, we have 1

2h21 12

h22 12f

aCb 2

g

aCb 2

"

M.a; b/

1

Z

0

Œh1.t /h2.t /h1.1 t /h2.1 t /dtCN.a; b/

1

Z

0

h21.t /h22.1 t /dt

#

1

b a

1

Z

0

f .x/g.x/dx:

where

M.a; b/Df .a/g.a/Cf .b/g.b/; (3.3)

and

N.a; b/Df .a/g.b/Cf .b/g.a/; (3.4)

respectively.

Proof. Sincef andgare.h1; h2/-convex functions, so f

aCb 2

g

aCb 2

h1

1 2

h2

1 2

Œf .t aC.1 t /b/Cf ..1 t /aCt b/

h1

1 2

h2

1 2

Œg.t aC.1 t /b/Cg..1 t /aCt b/

Dh211 2

h221 2

Œf .t aC.1 t /b/g.t aC.1 t /b/

f ..1 t /aCt b/g..1 t /aCt b/Cf .t aC.1 t /b/g..1 t /aCt b/

Cf ..1 t /aCt b/g.t aC.1 t /b/

(6)

h211 2

h221 2

Œf .t aC.1 t /b/g.t aC.1 t /b/

Cf ..1 t /aCt b/g..1 t /aCt b/

CŒ2h1.t /h2.t /h1.1 t /h2.1 t /Œf .a/g.a/Cf .b/g.b/

CŒh21.1 t /h22.t /Ch21.t /h22.1 t /Œf .a/g.b/Cf .b/g.a/

: Integrating the above inequality with respect tot onŒ0; 1, we have

f

aCb 2

g

aCb 2

2h211 2

h221 2

2 4

1

b a

1

Z

0

f .x/g.x/dx

CM.a; b/

1

Z

0

Œh1.t /h2.t /h1.1 t /h2.1 t /dtCN.a; b/

1

Z

0

h21.t /h22.1 t /dt 3 5: This implies

1 2h21 12

h22 12f

aCb 2

g

aCb 2

1

b a

1

Z

0

f .x/g.x/dx

CM.a; b/

1

Z

0

Œh1.t /h2.t /h1.1 t /h2.1 t /dtCN.a; b/

1

Z

0

h21.t /h22.1 t /dt:

This completes the proof.

Next we discuss a new special case of Theorem2.

Ifh1.t /Dts1andh2Dts2 in Theorem2, then we have a result for Breckner type of.s1; s2/-convex functions.

Corollary 3. Letf; gWIDŒa; bR!Rbe two.s1; s2/-convex functions such thats1; s22Œ0; 1. Iffg2LŒa; b, then we have

1 21 2s1 2s2f

aCb 2

g

aCb 2

"

M.a; b/B.s1Cs2C1; s1Cs2C1/CN.a; b/B.2s1C1; 2s2C1/

#

(7)

1

b a

1

Z

0

f .x/g.x/dx

whereM.a; b/andN.a; b/are given in (3.3) and (3.4) respectively.

Ifh1.t /Dt s1 andh2Dt s2 in Theorem2, then we have a result for Godunova- Levin-Dragomir type of.s1; s2/-convex functions.

Corollary 4. Letf; gWIDŒa; bR!Rbe two Godunova-Levin-Dragomir type of.s1; s2/-convex functions such thats1; s22Œ0; 1. Iffg2LŒa; b, then we have

1 21C2s1C2s2f

aCb 2

g

aCb 2

"

M.a; b/B.1 s1 s2; 1 s1 s2/CN.a; b/B.1 2s1; 1 2s2/

#

1

b a

1

Z

0

f .x/g.x/dx

whereM.a; b/andN.a; b/are given in (3.3) and (3.4) respectively.

Our next result is the extension of the upper bound of Hermite-Hadamard type inequality via product of two.h1; h2/-convex functions.

Theorem 3. Leftf; gWIDŒa; b!Rbe two.h1; h2/-convex functions. Iffg2 LŒa; b, then, we have

1

b a

b

Z

a

f .x/g.x/dx

M.a; b/

1

Z

0

h21.t /h22.1 t /dtCN.a; b/

1

Z

0

h1.t /h2.1 t /h1.1 t /h2.t /dt;

whereM.a; b/andN.a; b/are given by (3.3) and (3.4) respectively.

Proof. Sincef andgare.h1; h2/-convex functions, then

f .t aC.1 t /b/h1.t /h2.1 t /f .a/Ch1.1 t /h2.t /f .b/;

and

g.t aC.1 t /b/h1.t /h2.1 t /g.a/Ch1.1 t /h2.t /g.b/:

(8)

Multiplying both sides of the above inequality and then integrating it with respect to t onŒ0; 1, we have

1

Z

0

f .t aC.1 t /b/g.t aC.1 t /b/dt

Œf .a/g.a/Cf .b/g.b/

1

Z

0

h21.t /h22.1 t /dt

CŒf .a/g.b/Cf .b/g.a/

1

Z

0

h1.t /h2.1 t /h1.1 t /h2.t /dt:

This implies 1

b a

b

Z

a

f .x/g.x/dx

M.a; b/

1

Z

0

h21.t /h22.1 t /dtCN.a; b/

1

Z

0

h1.t /h2.1 t /h1.1 t /h2.t /dt:

This completes the proof.

The next result is a special case of Theorem3.

Ifh1.t /Dts1andh2Dts2 in Theorem3, then we have a result for Breckner type of.s1; s2/-convex functions.

Corollary 5. Let f; gWI DŒa; b!R be two Breckner type of .s1; s2/-convex functions wheres1; s22Œ0; 1. Iffg2LŒa; b, then we have

1

b a

b

Z

a

f .x/g.x/dx

M.a; b/B.2s1C1; 2s2C1/CN.a; b/B.s1Cs2C1; s1Cs2C1/;

whereM.a; b/andN.a; b/are given by (3.3) and (3.4) respectively.

Ifh1.t /Dt s1 andh2Dt s2 in Theorem3, then we have a result for Godunova- Levin-Dragomir type of.s1; s2/-convex functions.

(9)

Corollary 6. Letf; gWIDŒa; b!Rbe two Godunova-Levin-Dragomir type of .s1; s2/-convex functions wheres1; s22Œ0; 1. Iffg2LŒa; b, then we have

1

b a

b

Z

a

f .x/g.x/dx

M.a; b/B.1 2s1; 1 2s2/CN.a; b/B.1 s1 s2; 1 s1 s2/;

whereM.a; b/andN.a; b/are given by (3.3) and (3.4) respectively.

Theorem 4. Letf WIDŒa; bR!Rbe a continuous function such thatf 2 LŒa; b. Iff is an.h1; h2/-convex function, then we have

b

Z

a

.u a/˛.b u/ˇf .u/du.b a/˛CˇC1Œ 1.t /f .a/C 2.t /f .b/ ; where

1.t /WD

1

Z

0

t˛.1 t /ˇh1.1 t /h2.t /dt; (3.5) and

2.t /WD

1

Z

0

t˛.1 t /ˇh1.t /h2.1 t /dt; (3.6) respectively.

Proof. Using Lemma1and the fact thatf is an.h1; h2/-convex function, we have

b

Z

a

.u a/˛.b u/ˇf .u/du

D.b a/˛CˇC1

1

Z

0

t˛.1 t /ˇf ..1 t /aCt b/dt

.b a/˛CˇC1

1

Z

0

t˛.1 t /ˇŒh1.1 t /h2.t /f .a/Ch1.t /h2.1 t /f .b/dt

D.b a/˛CˇC1Œ 1.t /f .a/C 2.t /f .b/ :

This completes the proof.

Ifh1.t /Dts1 andh2.t /Dts2in Theorem4, then we have

(10)

Corollary 7. Letf WIDŒa; bR!Rbe a continuous function such thatf 2 LŒa; b. Iff is a Breckner type of.s1; s2/-convex function, wheres1; s22Œ0; 1, then we have

b

Z

a

.u a/˛.b u/ˇf .u/du.b a/˛CˇC1 0

1.t /f .a/C 20.t /f .b/

;

where

10.t /WDB.˛Cs2C; ˇCs1C1/; (3.7) and

20.t /WDB.˛Cs1C1; ˇCs2C1/; (3.8) respectively.

Ifh1.t /Dt s1andh2.t /Dt s2in Theorem4, then we have

Corollary 8. Letf WIDŒa; bR!Rbe a continuous function such thatf 2 LŒa; b. Iff is a Godunova-Levin-Dragomir type of.s1; s2/-convex function, where s1; s22Œ0; 1, then we have

b

Z

a

.u a/˛.b u/ˇf .u/du.b a/˛CˇC1 00

1.t /f .a/C 200.t /f .b/

;

where

100.t /WDB.˛ s2C1; ˇ s1C1/; (3.9) and

200.t /WDB.˛ s1C1; ˇ s2C1/; (3.10) respectively.

Theorem 5. Letf WIDŒa; bR!Rbe a continuous function such thatf 2 LŒa; b. Ifjfjrr1 is a.h1; h2/-convex function, then we have

b

Z

a

.u a/˛.b u/ˇf .u/du

.b a/˛CˇC1B.r˛C1; rˇC1/

2 4

njf .a/jrr1C jf .b/jrr1o

1

Z

0

h1.t /h2.1 t /dt 3 5

r 1 r

:

(11)

Proof. Using Lemma1, Holder’s inequality and the fact thatjfjrr1 is an.h1; h2/- convex function, then

b

Z

a

.u a/˛.b u/ˇf .u/du

.b a/˛CˇC1 2 4

1

Z

0

t.1 t /dt 3 5

1 r2

4

1

Z

0

jf ..1 t /aCt b/jrr1dt 3 5

r 1 r

.b a/˛CˇC1B.r˛C1; rˇC1/

2 4

1

Z

0

n

h1.1 t /h2.t /jf .a/jrr1Ch1.t /h2.1 t /jf .b/jrr1o dt

3 5

r 1 r

.b a/˛CˇC1B.r˛C1; rˇC1/

2 4 n

jf .a/jrr1C jf .b/jrr1o

1

Z

0

h1.t /h2.1 t /dt 3 5

r 1 r

:

This completes the proof.

Ifh1.t /Dts1 andh2.t /Dts2in Theorem5, then we have

Corollary 9. Letf WIDŒa; bR!Rbe a continuous function such thatf 2 LŒa; b. Ifjfjrr1 is a Breckner type of.s1; s2/-convex function, wheres1; s22Œ0; 1, then we have

b

Z

a

.u a/˛.b u/ˇf .u/du

.b a/˛CˇC1B.r˛C1; rˇC1/hn

jf .a/jrr1C jf .b/jrr1o

B.˛Cs1C1; ˇCs2C1/irr1 : Ifh1.t /Dt s1andh2.t /Dt s2in Theorem5, then we have

Corollary 10. Letf WIDŒa; bR!Rbe a continuous function such thatf 2 LŒa; b. Ifjfjrr1 is a Godunova-Levin-Dragomir type of.s1; s2/-convex function, wheres1; s22Œ0; 1, then we have

b

Z

a

.u a/˛.b u/ˇf .u/du

.b a/˛CˇC1B.1 r˛; 1 rˇ/hn

jf .a/jrr1C jf .b/jrr1o

B.1 ˛ s1; 1 ˇ s2/irr1 :

(12)

Theorem 6. Letf WIDŒa; bR!Rbe a continuous function such thatf 2 LŒa; b. Ifjfjris an.h1; h2/-convex function, then we have

b

Z

a

.u a/˛.b u/ˇf .u/du

.b a/˛CˇC1ŒB.˛C1; ˇC1/rr1

1.t /jf .a/jrC 2.t /jf .b/jr1r

; where 1.t /and 2.t /are given by (3.5) and (3.6) respectively.

Proof. Using Lemma1, Holder’s inequality and the fact thatjfjr is an.h1; h2/- convex function, then

b

Z

a

.u a/˛.b u/ˇf .u/du

.b a/˛CˇC1 2 4

1

Z

0

.1 t /˛tˇdt 3 5

r 1

r 2

4

1

Z

0

t˛.1 t /ˇjf ..1 t /aCt b/jrdt 3 5

1 r

.b a/˛CˇC1ŒB.˛C1; ˇC1/rr1

2 4

1

Z

0

t˛.1 t /ˇ

h1.1 t /h2.t /jf .a/jrCh1.t /h2.1 t /jf .b/jr dt

3 5

1 r

D.b a/˛CˇC1ŒB.˛C1; ˇC1/rr1

1.t /jf .a/jrC 2.t /jf .b/jr1r :

This completes the proof.

Ifh1.t /Dts1 andh2.t /Dts2in Theorem6, then we have

Corollary 11. Letf WIDŒa; bR!Rbe a continuous function such thatf 2 LŒa; b. Ifjfjr is a Breckner type of.s1; s2/-convex function, wheres1; s22Œ0; 1, then we have

b

Z

a

.u a/˛.b u/ˇf .u/du

.b a/˛CˇC1ŒB.˛C1; ˇC1/rr1 0

1.t /jf .a/jrC 20.t /jf .b/jr1r

; where 10.t /and 20.t /are given by (3.7) and (3.8) respectively.

Ifh1.t /Dt s1andh2.t /Dt s2in Theorem6, then we have

(13)

Corollary 12. Let f WIDŒa; bR!R be a continuous function such that f 2LŒa; b. Ifjfjris a Godunova-Levin-Dragomir type of.s1; s2/-convex function, wheres1; s22Œ0; 1, then we have

b

Z

a

.u a/˛.b u/ˇf .u/du

.b a/˛CˇC1ŒB.1 ˛; 1 ˇ/rr1 00

1.t /jf .a/jrC 200.t /jf .b/jr1r

; where 100.t /and 200.t /are given by (3.9) and (3.10) respectively.

Now using Lemma2, we derive some new inequalities forn-times differentiable .h1; h2/-convex functions.

Theorem 7. Letf WIıR!R,a; b2Iıwitha < b where Iı is the interior ofIı. Also supposef.n/exists onIıandf.n/2LŒa; b. Ifjf.n/jqis an.h1; h2/- convex function, then forn; q1, we have

ˇ ˇ ˇ ˇ ˇ ˇ

f .a/Cf .b/

2

1

b a

b

Z

a

f .x/dx

n 1

X

kD2

.k 1/.b a/k

2.kC1/Š f.k/.a/

ˇ ˇ ˇ ˇ ˇ ˇ .b a/n

2nŠ

n 1 nC1

1 1q

1.t /jfn.a/jqC2.t /jfn.b/jq1q

;

where

1.t /WD

1

Z

0

tn 1.n 2t /h1.t /h2.1 t /dt; (3.11) and

2.t /WD

1

Z

0

tn 1.n 2t /h1.1 t /h2.t /dt; (3.12) respectively.

Proof. Using Lemma2, property of modulus, power means inequality and the fact thatjf.n/jq is an.h1; h2/-convex function, we have

ˇ ˇ ˇ ˇ ˇ ˇ

f .a/Cf .b/

2

1

b a

b

Z

a

f .x/dx

n 1

X

kD2

.k 1/.b a/k

2.kC1/Š f.k/.a/

ˇ ˇ ˇ ˇ ˇ ˇ D

ˇ ˇ ˇ ˇ ˇ ˇ

.b a/n 2nŠ

1

Z

0

tn 1.n 2t /f.n/.t aC.1 t /b/dt ˇ ˇ ˇ ˇ ˇ ˇ

(14)

.b a/n 2nŠ

1

Z

0

tn 1.n 2t /jf.n/.t aC.1 t /b/jdt

.b a/n 2nŠ

0

@

1

Z

0

tn 1.n 2t /dt 1 A

1 q10

@

1

Z

0

tn 1.n 2t /jf.n/.t aC.1 t /b/jqdt 1 A

1 q

.b a/n 2nŠ

n 1 nC1

1 1q

0

@

1

Z

0

tn 1.n 2t /Œh1.t /h2.1 t /jfn.a/jqCh1.1 t /h2.t /jfn.b/jqdt 1 A

1 q

D.b a/n 2nŠ

n 1 nC1

1 1q

1.t /jfn.a/jqC2.t /jfn.b/jq1q :

This completes the proof.

Ifh1.t /Dts1 andh2.t /Dts2in Theorem7, then we have

Corollary 13. Letf WIıR!R,a; b2Iıwitha < bwhereIıis the interior ofIı. Also supposef.n/ exists onIıandf.n/ 2LŒa; b. Ifjf.n/jq is a Breckner type of.s1; s2/-convex function, then fors1; s22Œ0; 1andn; q1, we have

ˇ ˇ ˇ ˇ ˇ ˇ

f .a/Cf .b/

2

1

b a

b

Z

a

f .x/dx

n 1

X

kD2

.k 1/.b a/k

2.kC1/Š f.k/.a/

ˇ ˇ ˇ ˇ ˇ ˇ .b a/n

2nŠ

n 1 nC1

1 1q

10.t /jfn.a/jqC20.t /jfn.b/jq1q

;

where

10.t /WDnB.nCs1; s2C1/ 2B.nCs1C1; s2C1/;

and

20.t /WDnB.nCs2; s1C1/ 2B.nCs2C1; s2C1/;

respectively.

Ifh1.t /Dt s1andh2.t /Dt s2in Theorem7, then we have

Corollary 14. Letf WIıR!R,a; b2Iıwitha < bwhereIıis the interior ofIı. Also supposef.n/ exists onIıandf.n/2LŒa; b. Ifjf.n/jqis a Godunova- Levin-Dragomir type of.s1; s2/-convex function, then fors1; s22Œ0; 1andn; q1,

(15)

we have ˇ ˇ ˇ ˇ ˇ ˇ

f .a/Cf .b/

2

1

b a

b

Z

a

f .x/dx

n 1

X

kD2

.k 1/.b a/k

2.kC1/Š f.k/.a/

ˇ ˇ ˇ ˇ ˇ ˇ .b a/n

2nŠ

n 1 nC1

1 1q

100.t /jfn.a/jqC200.t /jfn.b/jqq1

;

where

100.t /WDnB.n s1; 1 s2/ 2B.n s1C1; 1 s2/;

and

200.t /WDnB.n s2; 1 s1/ 2B.n s2C1; 1 s2/;

respectively.

Theorem 8. Letf WIıR!R,a; b2Iıwitha < b where Iı is the interior ofIı. Also supposef.n/ exists onIıandf.n/2LŒa; b. Ifjf.n/jP is a.h1; h2/- convex function, then forn; q1, we have

ˇ ˇ ˇ ˇ ˇ ˇ

f .a/Cf .b/

2

1

b a

b

Z

a

f .x/dx

n 1

X

kD2

.k 1/.b a/k

2.kC1/Š f.k/.a/

ˇ ˇ ˇ ˇ ˇ ˇ .b a/n

2n.n 1/1q

1.t /jfn.a/jqC2.t /jfn.b/jqq1

;

where

1.t /WD

1

Z

0

tq.n 1/.n 2t /h1.t /h2.1 t /dt; (3.13) and

2.t /WD

1

Z

0

tq.n 1/.n 2t /h1.1 t /h2.t /dt; (3.14) respectively.

Proof. Using Lemma2, property of modulus, Holder’s inequality and the fact that jf.n/jqis an.h1; h2/-convex function, we have

ˇ ˇ ˇ ˇ ˇ ˇ

f .a/Cf .b/

2

1

b a

b

Z

a

f .x/dx

n 1

X

kD2

.k 1/.b a/k

2.kC1/Š f.k/.a/

ˇ ˇ ˇ ˇ ˇ ˇ

(16)

D ˇ ˇ ˇ ˇ ˇ ˇ

.b a/n 2nŠ

1

Z

0

tn 1.n 2t /f.n/.t aC.1 t /b/dt ˇ ˇ ˇ ˇ ˇ ˇ .b a/n

2nŠ

1

Z

0

tn 1.n 2t /jf.n/.t aC.1 t /b/jdt

.b a/n 2nŠ

0

@

1

Z

0

.n 2t /dt 1 A

1 1q0

@

1

Z

0

tq.n 1/.n 2t /jf.n/.t aC.1 t /b/jqdt 1 A

1 q

.b a/n

2nŠ .n 1/1 q1

0

@

1

Z

0

tq.n 1/.n 2t /Œh1.t /h2.1 t /jfn.a/jqCh1.1 t /h2.t /jfn.b/jqdt 1 A

1 q

D .b a/n 2n.n 1/q1

1.t /jfn.a/jqC2.t /jfn.b/jqq1 :

This completes the proof.

Ifh1.t /Dts1 andh2.t /Dts2in Theorem8, then we have

Corollary 15. Letf WIıR!R,a; b2Iıwitha < bwhereIıis the interior ofIı. Also supposef.n/exists onIıandf.n/2LŒa; b. Ifjf.n/jP is a Breckner type of.s1; s2/-convex function, then fors1; s22Œ0; 1andn; q1, we have

ˇ ˇ ˇ ˇ ˇ ˇ

f .a/Cf .b/

2

1

b a

b

Z

a

f .x/dx

n 1

X

kD2

.k 1/.b a/k

2.kC1/Š f.k/.a/

ˇ ˇ ˇ ˇ ˇ ˇ .b a/n

2n.n 1/1q

10.t /jfn.a/jqC20.t /jfn.b/jqq1

;

where

10.t /WDnB.nqCs1 qC1; s2C1/ 2B.nqCs1 qC2; s2C1/;

and

20.t /WDnB.nqCs2 qC1; s1C1/ 2B.nqCs2 qC2; s1C1/;

respectively.

Ifh1.t /Dt s1andh2.t /Dt s2in Theorem8, then we have

(17)

Corollary 16. Letf WIıR!R,a; b2Iıwitha < bwhereIıis the interior ofIı. Also supposef.n/exists onIıandf.n/2LŒa; b. Ifjf.n/jP is a Godunova- Levin-Dragomir type of.s1; s2/-convex function, then fors1; s22Œ0; 1andn; q1, we have

ˇ ˇ ˇ ˇ ˇ ˇ

f .a/Cf .b/

2

1

b a

b

Z

a

f .x/dx

n 1

X

kD2

.k 1/.b a/k

2.kC1/Š f.k/.a/

ˇ ˇ ˇ ˇ ˇ ˇ .b a/n

2n.n 1/1q

100.t /jfn.a/jqC200.t /jfn.b/jq1q

;

where

100.t /WDnB.nq s1 qC1; 1 s2/ 2B.nq s1 qC2; 1 s2/;

and

200.t /WDnB.nq s2 qC1; 1 s1/ 2B.nq s2 qC2; 1 s1/;

respectively.

CONCLUSION

In this paper, we have introduced a new extension of convex functions which is called as.h1; h2/-convex functions. We have noticed that it contains some new and known classes of convex functions among one of those ish-convex functions. We have derived several new generalizations of Hermite-Hadamard type inequalities via .h1; h2/-convex functions. We have also discussed some of new special cases which can be easily deduced from our main results. It is expected that the interested readers may further explore the property of.h1; h2/-convexity of functions.

ACKNOWLEDGEMENTS

This research is supported by HEC SRGP project No: 21-985/SRGP/R

& D/HEC/2016.

REFERENCES

[1] W. W. Breckner, “Stetigkeitsaussagen fiir eine klasse verallgemeinerter convexer funktionen in topologischen linearen,”Raumen. Pupl. Inst. Math., vol. 23, pp. 13–20, 1978.

[2] G. Cristescu and L. Lupsa,Non-connected Convexities and Applications. Kluwer Academic Publishers, Dordrecht, Holland, 2002.

[3] G. Cristescu, M. A. Noor, and M. U. Awan, “Bounds of the second degree cumulative frontier gaps of functions with generalized convexity,”Carpathian J. Math., vol. 31, pp. 173–180, 2015.

[4] S. S. Dragomir, “Inequalities of jensen type for'-convex functions,”Fasciculi Mathematici, 2015.

[5] S. S. Dragomir and R. P. Agarwal, “Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula,”Appl. Math. Lett., vol. 11, pp. 91–95, 1998.

(18)

[6] S. S. Dragomir and C. E. M. Pearce,Selected topics on Hermite-Hadamard inequalities and ap- plications. Victoria University, Australia, 2000.

[7] S. S. Dragomir, J. Pecaric, and L. E. Persson, “Some inequalities of hadamard type,”Soochow J.

Math., vol. 21, pp. 335–341, 1995.

[8] E. K. Godunova and V. I. Levin, “Neravenstva dlja funkcii sirokogo klassa, soderzascego vy- puklye, monotonnye i nekotorye drugie vidy funkii,”Vycislitel. Mat. i. Fiz. Mezvuzov. Sb. Nauc.

Trudov, MGPI, Moskva, pp. 138–142, 1985.

[9] D.-Y. Hwang, “Some inequalities forn-time differentiable mappings and applications,”Kyung- pook Math. J., vol. 43, pp. 335–343, 2003.

[10] S. K. Khattri, “Three proofs of the inequalitye <

1C1nnC0:5

,”Amer. Math. Monthly, vol. 117, pp. 273–277, 2010.

[11] W. Liu, “New integral inequalities involving beta function viap-convexity,”Miskolc Math. Notes, vol. 15, pp. 585–591, 2014.

[12] M. A. Noor, M. U. Awan, and K. I. Noor, “Some new bounds of the quadrature formula of gauss- jacobi type via.p; q/-preinvex functions,”Appl. Math. Inform. Sci. Lett., vol. 5, pp. 51–56, 2017.

[13] M. E. Ozdemir, E. Set, and M. Alomari, “Integral inequalities via several kinds of convexity,”

Creat. Math, Inform., vol. 20, pp. 62–73, 2011.

[14] C. E. M. Pearce and J. Pecaric, “Inequalities for differentiable mappings with application to special means and quadrature formula,”Appl. Math. Lett., vol. 13, pp. 51–55, 2000.

[15] M. Z. Sarikaya, A. Saglam, and H. Yildrim, “On some hadamard-type inequalities forh-convex functons,”J. Math. Inequal., vol. 2, pp. 335–341, 2008.

[16] E. Set, “New inequalities of ostrowski type for mappings whose derivatives ares-convex in the second sense via fractional integrals,”Comput. & Math. Appl., vol. 63, pp. 1147–1154, 2012.

[17] M. Tunc, E. Gov, and U. Sanal, “On tgs-convex function and their inequalities,”Facta universitatis (NIS) Ser. Math. Inform., vol. 30, pp. 679–691, 2015.

[18] S. Varoˇsanec, “Onh-convexity,”J. Math. Anal. Appl., vol. 326, pp. 303–311, 2007.

Authors’ addresses

Muhammad Uzair Awan

Department of Mathematics, GC University, Faisalabad, Pakistan E-mail address:awan.uzair@gmail.com

Muhammad Aslam Noor

Department of Mathematics, COMSATS Institute of Information Technology, Islamabad, Pakistan E-mail address:noormaslam@gmail.com

Khalida Inayat Noor

Department of Mathematics, COMSATS Institute of Information Technology, Islamabad, Pakistan E-mail address:khalidanoor@hotmail.com

Awais Gul Khan

Department of Mathematics, GC University, Faisalabad, Pakistan E-mail address:awaisgulkhan@gmail.com

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

WANG, Convex Functions and Their Inequalities, Sichuan University Press, Chengdu, China, 2001.. WANG, On a chains of Jensen inequalities for convex

In this paper we establish several Hadamard type inequalities for differentiable m- convex and (α, m)-convex functions.. We also establish Hadamard type inequalities for products of

Key words: Analytic functions; Univalent functions; Coefficient inequalities and coefficient estimates; Starlike functions; Convex functions; Close-to-convex functions; k-

A generalized form of the Hermite-Hadamard inequality for convex Lebesgue in- tegrable functions are obtained.. Key words and phrases: Convex function, Hermite-Hadamard inequality,

WANG, Convex Functions and Their Inequalities, Sichuan University Press, Chengdu, China, 2001. WANG, Inequalities of the Rado-Popoviciu type for functions and their

Key words: Partial sums, Meromorphic functions, Integral operators, Meromorphic starlike functions, Meromorphic convex functions, Meromorphic close to convex

Key words and phrases: Partial sums, Meromorphic functions, Integral operators, Meromorphic starlike functions, Meromor- phic convex functions, Meromorphic close to convex

General companion inequalities related to Jensen’s inequality for the classes of m-convex and (α, m)-convex functions are presented.. We show how Jensen’s inequality for these