• Nem Talált Eredményt

The Inelastic Maxwell Model

N/A
N/A
Protected

Academic year: 2022

Ossza meg "The Inelastic Maxwell Model"

Copied!
21
0
0

Teljes szövegt

(1)

The Inelastic Maxwell Model

Eli Ben-Naim

Theoretical Division, Los Alamos National Lab

I Motivation

II Freely evolving inelastic gases III Forced inelastic gases

III Higher dimensions

E. Ben-Naim and P. L. Krapivsky, Lecture Notes in Physics, cond-mat/0301238.

(2)

The Elastic Maxwell Model

J.C. Maxwell, Phil. Tran. Roy. Soc 157, 49 (1867)

Infinite particle system

Binary collisions

Random collision partners

Random impact directions n

Elastic collisions (g = v1 − v2)

v1 v1 g · n n

Mean-field collision process

Purely Maxwellian velocity distributions

P(v) = 1

(2πT)d/2 exp µ

v2 2T

What about inelastic, dissipative collisions?

(3)

The Inelastic Maxwell Model (1D)

Inelastic collisions r = 1 − 2²

v1 = ²u1 + (1 ²)u2

Boltzmann equation (collision rate=1)

∂P(v, t)

∂t = Z Z

du1du2P(u1, t)P(u2, t) [δ(v v1) δ(v u1)]

Fourier transform F(k, t) = R

dveikvP(v, t)

Evolution

∂tF(k, t) + F(k, t) =

=

Z Z Z

dvdu1du2eikvP(u1, t)P(u2, t)

×δ(v ²u1)δ(v (1 ²)u2)

= Z

du1ei²ku1P(u1, t) Z

du2ei(1−²)ku2P(u2, t)

Closed equations

∂tF(k, t) + F(k, t) = F[²k, t]F[(1 ²)k, t]

(4)

Similarity solutions

Scaling of isotropic velocity distribution

P(v, t) 1 Td/2Φ

µ |v| T1/2

or F(k, t) f ³

kT1/2´

Nonlinear and nonlocal (T = T0 exp−2²(1−²)t)

²(1 ²)f0(x) + f(x) = f(²x)f ((1 ²)x)

Exact solution

f(x) = (1 + x)e−x = 1 1

2x2 + 1

3x3 + · · ·

Lorentzian2 velocity distribution

Φ(v) = 2 π

1

(1 + v2)2

Algebraic tail Baldassari 2001

Φ(v) v−4 w À 1

Universal scaling function, exponent

(5)

Algebraic Tails

Velocity distribution (v → ∞)

P(v, t) v−σ

Fourier transform (k → 0)

F(k, t) = Z

dveikvv−σ

kσ−1 Z

d(kv)eikv(kv)−σ

constkσ−1

Non-analytic small-k behavior

F(k, t) = Freg(k) + Fsing(k) Fsing(k) kσ−1

(6)

The Forced Case

Add white noise

dvj

dt |heat = ηj(t) hηi(t)ηj(t0)i = 2Dδijδ(t t0)

Diffusion in velocity space

∂t

∂t + Dk2

Steady state solution ∂t ≡ 0

(1 + Dk2)P(k) = P(²k)P((1 ²)k)

Recursive solution

P(k) = (1 + Dk2)−1P(²k)P((1 ²)k)

= (1 + Dk2)−1(1 + ²2Dk2)−1(1 (1 ²)2Dk2)−1 · · ·

Product solution

Pˆ(k) =

Y

i=0 i

Y

j=0

h1 + ²2j(1 ²)2(i−j)Dk2i(ji) .

(7)

Overpopulated high-energy tails

Pole closest to origin k = i/√

D dominates

P(k) 1

1 + Dk2 1 (k + i/

D)

1 (k i/

D)

Exponential tail

P(v) ' A(²) exp(−|v|/

D) |v| → ∞

Direct from equation (ignore gain term)

D 2

2vP(v) = P(v) |v| → ∞

Residue at pole yields prefactor

A(²) exp(π2/12p)

Non-Maxwellian

(8)

Still, Maxwellians may resurface

Steady state equation

ln(1+Dk2)+lnP(k)lnP(²k)+lnP((1²)k) = 0

Cumulant expansion

lnP(k) = X

n=1

n−1(Dk2)nψn

Rewrite ln(1 + Dk2) = Pn n−1(Dk2)n

X

n=1

n−1(Dk2)n[1 + ψn(1 ²2n (1 ²)2n)] = 0

Fluctuation-dissipation relations

ψn = [1 (1 ²)2n + ²2n]−1

Small dissipation limit ² → 0

P(k) = exp(²−1Dk2/2) k À ²

Maxwellian for range of velocities

P(v) exp(²v2/D) v ¿ ²−1

(9)

The small dissipation limit ² → 0

Maxwell model

P(v)

(exp(²−1v2/D) v ¿ ²−1 exp(−|v|/

D) v À ²−1

Boltzmann equation

P(v)

(exp(²av3) v ¿ ²−b exp(−|v|3/2) v À ²−b

Limits v → ∞, ² → 0 do not commute!

² → 0 is singular

²(1 ²)xf0(x) + f(x) = f(²x)f((1 ²)x)

Small-² Expansions may not be useful!

(10)

Velocity Moments

The moments

Mn(t) = Z

dvvnP(v, t)

Closed evolution equations

d

dtMnnMn =

n−1

X

m=1

µn m

²m(1²)n−mMmMn−m

Eigenvalues

λn = 1 ²n (1 ²)n

Asymptotic behavior λn > λm + λn−m

Mn exp(λnt)

Multiscaling

Mn/M2n/2 → ∞ t → ∞

algebraic tails causes multiscaling

(11)

Velocity Autocorrelations

The velocity autocorrelation function

A(tw, t) = hv(tw) · v(t)i

Linear evolution equation

T−1/2 d

dtA(tw, t) = (1 ²)A(tw, t)

Nonuniversal ²-dependent decay

A(tw, t) = A0[1 + tw/t0]−2+1/²[1 + t/t0]−1/²

Memory of initial velocity

A(t) A(0, t) t−1/²

Logarithmic spreading (“self-diffusion”)

h|x(t) x(0)|2i ∼ lnt

Memory/Aging - A(tw, t) 6= f(t − tw)

(12)

Higher Dimensions

Inelastic collisions r = 1 − 2²

v1,2 = u1,2 (1 ²) (g · n) n

Boltzmann equation (collision rate=1)

∂P(v, t)

∂t =

Z

dn Z

du1 Z

du2 P(u1, t) P(u2, t)

×n

δ (v v1) δ (v u1)o

Fourier transform Krupp 1967

F(k, t) = Z

dveik·vP(v, t)

Closed equations q = (1 − ²)k · n n

∂tF(k, t) + F(k, t) = Z

dnF [k q, t]F [q, t],

Theory is analytically tractable

(13)

Scaling, Nontrivial Exponents

Freely cooling case

T = hv2i = T0 exp(λt) λ = 2²(1 ²)/d

Governing equation x = k2T

λ xΦ0(x) + Φ(x) = Z

dnΦ(xξ) Φ(xη)

ξ = 1 (1 ²2) cos2 θ, η = (1 ²)2 cos2 θ

Power-law tails

Φ(v) v−σ, v → ∞.

Exact solution for the exponent σ

1²(1²) σ−dd = 2F1 £d−σ

2 , 12; d2; 1²2¤

+(1²)σ−d Γ(σ−d+12 )Γ(d2)

Γ(σ2)Γ(12)

Nonuniversal tails, exponents depend on ², d

(14)

The exponent σ

0 0.1 0.2 0.3 0.4 0.5

ε 0

5 10 15 20

σ/d

d=2 d=3 d=4 f(ε)

Maxwellian distributions: d = ∞, ² = 0

Diverges in high dimensions

σ d

Diverges for low dissipation

σ ²−1

In practice, huge

σ(d = 3, r = 0.8) ∼= 30!

(15)

Dynamics

0 0.1 0.2 0.3 0.4 0.5

ε 1

2 3 4

d2(ε) d3(ε)

Moments of the velocity distribution

M2n(t) = Z

dv|v|2nP(v, t)

Multiscaling asymptotic behavior

Mn

(exp(2t/2) n < σ 1, exp(λnt) n > σ 1.

Nonlinear multiscaling spectrum (1D):

αn(²) = 1 ²2n (1 ²)2n 1 ²2 (1 ²)2

Sufficiently large moments exhibit multiscaling

(16)

Velocity Correlations

Definition (correlation between vx2 and vy2)

Q = hvx2vy2i − hvx2ihvy2i hvx2ihvy2i

Unforced case (freely evolving) P(v) ∼ v−σ

Q = 2

d (1 + 3²2)

Forced case (white noise) P(v) ∼ e−|v|

Q = 2(1 ²)

(d + 2)(1 + ²) 3(1 ²)(1 + ²2).

0 0.1 0.2 0.3 0.4 0.5

ε 0

2 4 6

Q

d=2 d=3

0 0.1 0.2 0.3 0.4 0.5

ε 0

0.05 0.1 0.15 0.2

Q

d=2 d=3

Correlations diminish with energy input

(17)

The “Brazil nut” problem

Fluid background: mass 1

Impurity: mass m

Theory: Lorentz-Boltzmann equation

Series of transition masses

1 < m1 < m2 < · · · < m

Ratio of moments diverges asymptotically

hvI2ni hvF2ni

(cn m < mn;

m > mn.

Light impurity: moderate violation of equipartition, impurity mimics the fluid

Heavy impurity: extreme violation of equipartition, impurity sees a static fluid

series of phase transitions

(18)

Conclusions (Maxwell specific)

Power-law high energy tails

Non-universal exponents

Multiscaling of the moments, Temperature insufficient to characterize large moments

Generic features

Overpopulated tails

Energy input diminishes correlations, tails

Multiple asymptotics in ² → 0 limit

Logarithmic self-diffusion

Correlations between velocity components

Spatial correlations

Algebraic autocorrelations, aging

(19)

Outlook

Polydisperse media: impurities, mixtures

Lattice gases: correlations

Hydrodynamics

Shear flows, Shocks

Opinion dynamics

Economics

(20)

The Compromise Model

Opinion < x <

Reach compromise in pairs Weisbuch 2001

(x1, x2)

µx1 + x2

2 , x1 + x2 2

As long as we are close |x1 x2| < 1

−4 −2 0 2 4

x

P(x) = X

i

miδ(x xi)

Final State: localized clusters

(21)

Bifurcations and Patterns

0 2 4 6 8 10

−10

−5 0 5 10

x

major central minor

Periodic bifurcations

x(∆) = x(∆ + L)

Alternating major-minor pattern

Critical behavior

m (∆ c)α α = 3 or 4.

Self-similar structure

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

A sejtek differenciációja és a grade ér- téke alapján a NE daganatokat grade I, II és III neuroendok- rin tumor (NET), valamint rosszul differenciált grade III-as

IV A, values of R N/Z were obtained from a mi- croscopic reaction model calculation, based on the QRPA nuclear structure approach, constrained by both experimental reduced

Since a collision of particles having equal but opposite relativistic masses does not lead to an inelastic collision according to our formal definition, we do not include this case

Abstract: The dynamic analysis of legged locomotion is challenging because of many reasons, such as the possibly high degrees of freedom of the model, the alternating topology

II. Értékelési tartalék VII. Hátrasorolt kötelezettségek II. Hosszú lejáratú kötelezettségek III. Rövid lejáratú kötelezettségek G) PASSZÍV

Although Chenouda and Ayoub [19] used an energy-based stiffness and strength degrading hysteretic model with collapse potential in their study, they considered limited number of

The plastic load-bearing investigation assumes the development of rigid - ideally plastic hinges, however, the model describes the inelastic behaviour of steel structures

Four modified bentonites (La(III), Ce(III), Y(III), Fe(III)) were prepared by ion exchange process to remove arsenite (III) ions from water.. The modified bentonites were examined