• Nem Talált Eredményt

CENTRAL RESEARCH INSTITUTE FOR PHYSICSBUDAPEST

N/A
N/A
Protected

Academic year: 2022

Ossza meg "CENTRAL RESEARCH INSTITUTE FOR PHYSICSBUDAPEST"

Copied!
12
0
0

Teljes szövegt

(1)

K F K I-7 6 -4 3

0H u n g a ria n A c a d e m y o f S c ie n c e s

CENTRAL RESEARCH

INSTITUTE FOR PHYSICS

BUDAPEST

L, D I Ó S I

A S I M P L E M E T H O D FOR M E A S U R I N G THE M O M E N T S

OF M U L T I P L I C I T Y D I S T R I B U T I O N

(2)

дог

(3)

KFKI-76-43

A SIMPLE M E T H O D FOR MEASURING THE MOMENTS OF MULTIPLICITY DISTRIBUTION

L. Diósi

High Energy Physics Department

Central Research Institute for Physics, Budapest, Hungary

Submitted to Nuclear Instruments and Methods.

ISBN 963 371 157 6

(4)

ABSTRACT

In this paper we propose an efficient statistical method for estimat­

ing the moments of the secondary у multiplicity distribution in high energy bubble chamber processes. Our method requires relatively small statistics,

even if the detection losses are considerable, as it is demonstrated by calculat­

ing the dispersion of the secondary ir° multiplicity distribution from 1200 events with a detection probability of about 25% for y ’s.

АННОТАЦИЯ

В настоящей статье предлогается эффективный статистический метод для оценки моментов распределения по множественности вторичных у -квантов в реакциях происходящих в пузырьковых камерах. Этот метод требует относительно небольшую статистику даже в случае заметных потер регистрации,как доказывает­

ся вычислением дисперсии распределения по множественности вторичных тт°-мезо- нов из 1200 событий при вероятности регистрации около 25%-ов для у-квантов ‘

K I V O N A T

Е cikkben egy hatékony módszert mutatunk nagyenergiájú buborékkamrás reakciók szekunder у multiplicitásmomentumainak becslésére. E módszer viszony­

lag kis eseményszámot igényel még számottevő detektálási veszteségeknél is.

Ezt megmutatjuk a szekunder тг° multiplicitáseloszlás szórásának meghatározá­

sával 1200 eseményből 25% körüli у detektálási valószinüség mellett.

(5)

I. IUTRODUCTIOH

This work was stimulated by the methodical difficulties due to the low efficiency of the measurements of neutral particles in bubble chambers

[Í.J.

The neutral secondary particles are mostly y ’a emerging from the decays of neutral pions. In order to take into account the detection losses, the probability ou of the e+e~ pair creation in the fiducial volume has to be defined for each secondary у particles

" - 1 - « = p ( - W b) /!.!/

where L is the radiation length in the liquid of the chamber, Lmax is the distance between the interaction vertex and the boundary of the fiducial vo­

lume measured in the direction of the momentum of the y. In the literature, usually the conversion weight

W = 1/uo

is used instead of со .

/1.2/

In this paper we will investigate, what kind of conclusions can be made concerning the original multiplicity distribution of у secondaries based on the conversion weights of the detected y ’s. There are several works dealing with this problem e.g. Ref. 2, but their methods have not come into general use because of the particular conditions they require. Our method works without any unnatural assumption.

In part II we consider a simplified model and show the possibility of estimating multiplicity moments even for considerable detection losses.

In part III we present and prove a new method for estimating the binomial moments of the secondary у multiplicity distribution from the conversion weights. In part IV some results on1T0multiplicity distribution are

presented. It is the first time that these Tr°multiplicity moments have been obtained in a model independent way, merely analysing a sample of data of 1200 bubble chamber if'p events at 40 GeV/с incident n~ momentum.

(6)

2

II. A SIMPLIFIED TREATMENT:uo=const

In order to find a well estimable set of quantities characterizing the multiplicity distribution, in this Section we investigate the simple case when cu is constant.

Let pn be the probability that a source of a certain kind emits n signals at a given instant. Let our detector system detect a single signal with probability cu , independently of the other n-1 signals. Then the measured multiplicity n has a distribution p- which is related to pn as follows s

PH /11.1/

We can measure the distribution of n, and in this way estimate

— _ I

the p~* s . If in N experiments the multiplicity n is observed Ж- times then

Pn lim

/ И . 2 / Our aim is to determine the properties of the original distribution pn knowing the efficiency u) of the detection. By a simple algebraic inversion of eq. /11.1/ we gets

n & * т п ы )

n-n

/ И . З / Using eq. /11.2/ this can be written in terms of the directly measured quan­

tities s

• n lim i ' Л H- R / i ) n f 1- i f ' “ Por n=0 the above formula gives!

/11.4/

p = lim ~ N- (l- — )

Fo ьи/

The formula /11.4/ gives the distribution pn in the limit N-*» <*» but we have to calculate the necessary minimal value of I for a fixed confidence level.

/II.5/

As a well computable example let us consider the Poisson distributions Pn

/11.6/

(7)

3 -

Therefore the distribution of n will be again a Poisson one but with an average value decreased by Uj:

- -Aw (Яш)11 Pn - e Т Г

In this case we can compute the error of the estimation of pQ to be (д p ^ 2 g - 1 - У ~1-1- (1- — )2\ 4 e ~ WAX ^ ^ ( l - — )2П = -jUxp(— -2л) .

1 ol h 2 ^ 0 n v T 5=0 n! 4 uj/ N J

/11.7/

/П.8/

If we keep д р о fixed, the required statistics К varies with the efficiency

00 as follows:

К

/ П . 9 / It can be seen that eq. /11.3-5/ cannot be used for small value of oo because N depends exponentially on oo"^.

However what could be said about the distribution of n if the sta­

tistics N is too small to derive the pn probabilities?

Let B, denote the k’th binomial moment of the distribution p :

к rn

Let Bk be the same for the distribution

/11.10/

B,

/11.11/ Using eq. /11.1/ and the properties of the binomial coefficients we obtain the following formulae:

Bk =0Ok -Bk , /11.12/

Bk " ~iT \ " О Т £ NH(k) * / И . 1 3 / They relate the "measured" and the "true" moments Bk , B^ in a quite simple way.

Let us discuss the error of the estimation of Bk# Prom eq. /11.13/

the error of the estimation can be written as:

/11.14/

Therefore we can conclude that the required statistics N has a power-like rise with и» if tu goes to 0:

(8)

- 4 -

N ~

ш

/11.15/

This fact makes it possible to obtain good estimation for the B^'s /if к is not too large/ even if u> is much 1еав than unity and thus the p 'в cannot be estimated.

*n

III. DESCRIPTION OF THE GENERAL METHOD FOR ESTIMATING THE BINOMIAL MOMENTS /u^const/

Considering N high energy events of a given type let n (ot)be the number of the detected secondary y ’s in the oc'th event /<*.=1,2,.. .,N/, and W ^ V r ^ l , 2, ...»n^ the conversion weights of the detected jp’s, see eqs./1.1-2/.

The k ’th binomial moment of the true multiplicity distribution of the j^’s can be estimated by the following generalization of the formula /11.13/:

Ihm i N-»«o N

where the symbol stands for the summation for all the

/111.1/

different set of indices ip /r=l,2,...,n/. The meaning of the right-hand side of eq. /III.1/

is the following! for the ot’th event with the measured values n ^ ,

/oC=l,2, ...,N/ in which n <ot)>k sum up all the ( different products of the Wr ’s of number к and average over the N events. Eq. /111.1/

can be written in a more compact form:

= IV, ...w, \

\® 12 V

where the bracket denotes the sample mean.

/111.2/

Proofs Introducing a distribution function vp of the multiplicity n and weights W^,W2 , ..., Wn of all secondary jj-’s; these have either been

actually detected or not. We choose the following normalization:

if« >„(»!.. wn)aw1...awn = nipn

Note that vp is a symmetric function.

/ Ш . З /

(9)

- 5 -

Let us define the distribution function (p of the multiplicity and weights of the detected ^p’s and choose the normalization as follows:

^ n K

... w> wr ..dwn ■ n!PH * /111.4/

The relation between the two distributions is given by

í n W ' * * * *Wn^ * •Ц^(

1

",л^+

1

^ dWn+l* * * (l"Wn^ dWn */111,5/

Introduce two further distribution functions, the so-called inclu­

sive distributions of order к [з] :

fk (wi» •••,wk)= ^ (гДс)T\^n^W1» * * *'Wn)dWk+l** *dWn » /III.6/

fk Cwi. • * *»Wk) = J?H (Wl» * * *»Wn )dWk+l* • *dWü * /111.7/

Using /III.5/ the following relation between f^ and f^ can be proved [4] : fk (wi» ••*.wk)= W 1W2...V/k*^k (Wl*.**»Wk) * /111.8/

Using the definition /11.10/ of the binomial moment B, and also eqs.

/111.3,6,8/ we get for Bk :

B4 ( - l .. »k)d»1...dWk. i j w 1w2 ...wk.fk(w1. . . wk )dw1...awk .

This latter expression is nothing else but the experimental mean /111.2/.

IV. APPLICATION FOR DERIVING THE TT ° MULTIPLICITY МОМЕНТ5

The method presented above seems to be adequate to determine the moments of neutral pion multiplicity distribution in bubble chamber experi­

ments. Starting with the assumption that all jp’s are coming from the decays 'Tr°-> jpjp the IT0 multiplicity moments can be related to those of the Jp’s. For example the dispersion D of the 1t° multiplicity distribution can be obtained as follows:

B - т в2 + T B1 - T Bi /IV.1/

The method has been tested on the data of 1200 Tc~p events at 40 GeV/с incident Ti“ momentum. In this experiment the mean efficiency of the

jp detection was 25% and so the average value of conversion weights is about 4 [1] .

(10)

- 6 -

In Ref. 5 we have derived the dispersion D of the n 0 multiplicity distribution for all events and for the events of fixed number of charged secondaries /n *

nch 2 4 6 8

all events

D 1.30 ±0.25 1.50 ±0.20 1.65 ±0.25 1.40 + 0.35 1.51± 0.08

In spite of the relatively poor statistics the accuracy achieved in calculating the second momente is satisfactory. This indicates that it would be worthwhile to apply our method on a larger statistics of events in oirder to obtain model selective results.

V. CONCLUSION

An efficient statistical method for estimating the moments of the secondary jjp- multiplicity distribution in high energy processes has been proposed. Having tested the method on 1200 bubble chamber events it is the first time that the dispersion of the secondary Tt° multiplicity distribution has been derived from experimental data without any restrictions previously imposed. Using a larger statistics of events model selective results could be obtained.

ACKNOWLEDGEMENTS

I must express my sincere gratitude for continuous support of S. Krasznovszky and the bubble chamber group. I would like to thank Drs.

B. Lukács and A. Somogyi for the valuable remarks.

REFERENCES

[l] Budapest...Dubna...Hanoi, Dubna prep. Pl-6928 1973

[2З D. Fournier, J. F. Grivaz, J. J. Veillet, Orsay prep. 1269 Sept. 1973 [зЗ R. P. Feynman, Phys. Rev. Letters, 23, 1415, 1969

И L. Diősi, KFKI-76-39

[53 L. Diósi, Thesis, Eötvös Loránd University Budapest, 1975

(11)

с*

(12)

Kiadja a Központi Fizikai Kutató Intézet Felelős kiadó: Pintér György, a KFKI Részecske- és Magfizikai Tudományos Taná­

csának szekcióelnöke

Szakmai lektor: Krasznovszky Sándor Nyelvi lektor: Sebestyén Ákos

Példányszám: 310 Törzsszám: 76-654 Készült a KFKI sokszorosító üzemében Budapest, 1976. julius hó

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

The second result follows from our approach too: it is shown that the identification of gravitation with a massless spin 2 gauge field requires the restriction

100 m magas kéménytől 800 m-re szélirányban, 1 m/s szél- sebesség mellett, D stabilitási kategória esetén a csóva gamma-sugárzása által okozott földfelszini

Kiadja a Központi Fizikai Kutató Intézet Felelős kiadó: Lőcs Gyula. Szakmai lektor: Pócs Lajos Nyelvi lektor: Harvey

Mivel a rendszerben a nyomáskülönbségek ekkor más csak néhány század MPa-t tesznek ki, ugyanebben az időpontban vált előjelet a gőzfejlesztők primer és

Both the Curie temperature and the mean magnetic moment of iron and holmium decrease with increasing holmium content.. The temperature dependence of magnetization

characterise different flow regimes. We propose to desc r i b e the propagating two-phase substance by the spatial correlation function of its density

In general we have only a single pair of the exciting and decay curve (or only one exciting curve for a number of different decay curves) therefore we are able to

We report on a new variational method for determining the ground state energy of antiferromagnetic Heisenberg spin chains with nearest neighbour interaction..