• Nem Talált Eredményt

JJ II

N/A
N/A
Protected

Academic year: 2022

Ossza meg "JJ II"

Copied!
18
0
0

Teljes szövegt

(1)

volume 5, issue 2, article 34, 2004.

Received 24 September, 2003;

accepted 01 March, 2004.

Communicated by:S.S. Dragomir

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

HILBERT–PACHPATTE TYPE MULTIDIMENSIONAL INTEGRAL INEQUALITIES

G.D. HANDLEY, J.J. KOLIHA AND J. PE ˇCARI ´C

Department of Mathematics and Statistics University of Melbourne

Melbourne, VIC 3010 Australia.

EMail:g.handley@pgrad.unimelb.edu.au EMail:j.koliha@ms.unimelb.edu.au Faculty of Textile Engineering University of Zagreb 10 000 Zagreb Croatia.

EMail:pecaric@juda.element.hr

2000c Victoria University ISSN (electronic): 1443-5756 129-03

(2)

Hilbert–Pachpatte Type Multidimensional Integral

Inequalities

G.D. Handley, J.J. Koliha and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of18

Abstract

In this paper we use a new approach to obtain a class of multivariable integral inequalities of Hilbert type from which we can recover as special cases integral inequalities obtained recently by Pachpatte and the present authors.

2000 Mathematics Subject Classification:26D15

Key words: Hilbert’s inequality, Hilbert-Pachpatte integral inequalities, Hölder’s in- equality.

Contents

1 Introduction. . . 3

2 Notation and Preliminaries. . . 5

3 The Main Result . . . 7

4 Applications to Derivatives . . . 11 References

(3)

Hilbert–Pachpatte Type Multidimensional Integral

Inequalities

G.D. Handley, J.J. Koliha and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of18

J. Ineq. Pure and Appl. Math. 5(2) Art. 34, 2004

1. Introduction

The integral version of Hilbert’s inequality [7, Theorem 316] has been general- ized in several directions (see [1,3,4,7,8,9,20,21,22]). Recently, inequalities similar to those of Hilbert were considered by Pachpatte in [12,13,14, 15,16, 19]. The present authors in [5, 6] established a new class of related inequali- ties, which were further extended by Dragomir and Kim [2]. Two and higher dimensional variants were treated by Pachpatte in [17,18]. In the present paper we use a new systematic approach to these inequalities based on Theorem 3.1, which serves as an abstract springboard to classes of concrete inequalities.

To motivate our investigation, we give a typical result of [17]. In this theo- rem,H(I×J)denotes the class of functionsu ∈C(n−1,m−1)(I×J)such that Di1u(0, t) = 0,0≤i≤n−1,t ∈J,D2ju(s,0) = 0,0≤j ≤m−1,s∈I, and Dn1Dm−12 u(s, t)andDn−11 D2mu(s, t)are absolutely continuous onI ×J. Here I, J are intervals of the typeIξ = [0, ξ)for some realξ >0.

Theorem 1.1 (Pachpatte [17, Theorem 1]). Let u(s, t) ∈ H(Ix × Iy) and v(k, r)∈ H(Iz×Iw). Then, for0≤ i≤n−1, 0≤j ≤ m−1, the following inequality holds:

Z x

0

Z y

0

Z z

0

Z w

0

|D1iD2ju(s, t)Di1Dj2v(k, r)|

s2n−2i−1t2m−2j−1 +k2n−2i−1r2m−2j−1 dk dr

! ds dt

≤ 1

2[Ai,jBi,j]2√ xyzw

Z x

0

Z y

0

(x−s)(y−t)|Dn1D2mu(s, t)|2ds dt 12

× Z z

0

Z w

0

(z−k)(w−r)|D1nDm2 v(k, r)|2dk dr 12

,

(4)

Hilbert–Pachpatte Type Multidimensional Integral

Inequalities

G.D. Handley, J.J. Koliha and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of18

where

Aij = 1

(n−i−1)!(m−j −1)!, Bij = 1

(2n−2i−1)(2m−2j−1). The purpose of the present paper is to obtain a simultaneous generalization of Pachpatte’s multivariable results [17], and of the results [5,6] of the present authors. The single variable results [14,15,16,19] follow as special cases of our theorems. Our treatment is based on Theorem 3.1, in particular on the abstract inequality (3.1), which yields a variety of special cases when the functions Φi are specified.

(5)

Hilbert–Pachpatte Type Multidimensional Integral

Inequalities

G.D. Handley, J.J. Koliha and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of18

J. Ineq. Pure and Appl. Math. 5(2) Art. 34, 2004

2. Notation and Preliminaries

ByZ(Z+) andR(R+) we denote the sets of all (nonnegative) integers and (non- negative) real numbers. We will be working with functions ofdvariables, where dis a fixed positive integer, writing the variable as a vectors = (s1, . . . , sd)∈ Rd. A multiindex m is an element m = (m1, . . . , md) of Zd+. As usual, the factorial of a multiindexm is defined bym! = m1!· · ·md!. An integerj may be regarded as the multiindex(j, . . . , j)depending on the context. For vectors inRdand multiindices we use the usual operations of vector addition and mul- tiplication of vectors by scalars. We writes ≤ τ (s < τ) ifsj ≤ τj (sj < τj) for1 ≤ j ≤ d. The same convention will apply to multiindices. In particular, s ≥0(s >0) will meansj ≥0(sj >0) for1≤j ≤d.

Ifs= (s1, . . . , sd)∈Rdands >0, we define the cell Q(s) = [0, s1]× · · · ×[0, sj]× · · · ×[0, sd];

replacing the factor [0, sj] by {0} in this product, we get the facejQ(s) of Q(s).

Lets = (s1, . . . , sd), τ = (τ1, . . . , τd)∈ Rd,s, τ > 0, letk = (k1, . . . , kd) be a multiindex and let and u : Q(s) → R. Write Dj = ∂sj. We use the following notation:

sτ = (s1)τ1· · ·(sd)τd, Dku(s) =Dk11· · ·Dkddu(s), Z s

0

u(τ)dτ = Z s1

0

· · · Z sd

0

u(τ)dτ1· · ·dτd.

(6)

Hilbert–Pachpatte Type Multidimensional Integral

Inequalities

G.D. Handley, J.J. Koliha and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of18

An exponent α ∈ Rin the expression sα, wheres ∈ Rd, will be regarded as a multiexponent, that is,sα =s(α,...,α).

Another positive integernwill be fixed throughout.

The following notation and hypotheses will be used throughout the paper:

I ={1, . . . , n} n ∈N

mi, i∈I mi = (m1i, . . . mdi)∈Zd+

xi, i∈I xi = (x1i, . . . , xdi)∈Rd,xi >0 pi, qi, i∈I pi, qi ∈R+, p1

i +q1

i = 1

p, q 1p =Pn

i=1 1

pi, 1q =Pn i=1

1 qi

ai, bi, i∈I ai, bi ∈R+,ai+bi = 1 wi, i∈I wi ∈R,wi >0,Pn

i=1wi = 1.

Throughout the paper, ui, vi,Φ will denote functions from[0, xi]to Rof suf- ficient smoothness. If m is a multiindex and x ∈ Rd, x > 0, then Cm[0, x]

will denote the set of all functions u : [0, x] → R which possess continuous derivativesDku, where0≤k≤m.

The coefficientspi, qiare conjugate Hölder exponents used in applications of Hölder’s inequality, and the coefficientsai, biare used in exponents to factorize integrands. The coefficientswi act as weights in applications of the geometric- arithmetic mean inequality; this enables us to pass from products to sums of terms.

(7)

Hilbert–Pachpatte Type Multidimensional Integral

Inequalities

G.D. Handley, J.J. Koliha and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of18

J. Ineq. Pure and Appl. Math. 5(2) Art. 34, 2004

3. The Main Result

First we present a theorem that can be regarded as a template for concrete in- equalities obtained by selecting suitable functionsΦiin (3.1). A special case of this theorem is given in [6, Theorem 3.1].

Theorem 3.1. Letvii ∈C(Q(xi))and letci be multiindices fori∈I. If

(3.1) |vi(si)| ≤ Z si

0

(si−τi)ciΦii)dτi, si ∈Q(xi), i ∈I,

then (3.2)

Z x1

0

. . . Z xn

0

Qn

i=1|vi(si)|

Pn

i=1wisi i+1)/(qiwi) ds1· · ·dsn

≤U

n

Y

i=1

x1/qi i

n

Y

i=1

Z xi

0

(xi −si)βi+1Φi(si)pidsi pi1

,

whereαi = (ai+biqi)ci,βi =aici, and

U = 1

Qn

i=1[(αi+ 1)1/qii+ 1)1/pi].

Remark 3.1. Remembering our conventions, we observe that, for example,

x1/qi i = (x1i)1/qi. . .(xdi)1/qi,

n

Y

i=1

i+ 1)1/qi =

n

Y

i=1 d

Y

j=1

ji + 1)1/qi.

(8)

Hilbert–Pachpatte Type Multidimensional Integral

Inequalities

G.D. Handley, J.J. Koliha and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of18

Proof. Factorize the integrand on the right side of (3.1) as

(si−τi)(ai/qi+bi)ci·(si−τi)(ai/pi)ciΦii)

and apply Hölder’s inequality [10, p. 106] and Fubini’s theorem. Then

|vi(si)| ≤ Z si

0

(si−τi)(ai+biqi)cii qi1

× Z si

0

(si−τi)aiciΦii)pii pi1

= si i+1)/qii+ 1)1/qi

Z si

0

(si−τi)βiΦii)pii pi1

.

Using the inequality of means [10, p. 15]

n

Y

i=1

si i+1)/qi

n

X

i=1

wisi i+1)/(qiwi),

we get

n

Y

i=1

|vi(si)| ≤W

n

X

i=1

wisi i+1)/(qiwi)

n

Y

i=1

Z si

0

(si−τi)βiΦii)pii 1

pi ,

where

W = 1

Qn

i=1i+ 1)1/qi.

(9)

Hilbert–Pachpatte Type Multidimensional Integral

Inequalities

G.D. Handley, J.J. Koliha and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page9of18

J. Ineq. Pure and Appl. Math. 5(2) Art. 34, 2004

In the following estimate we apply Hölder’s inequality, Fubini’s theorem, and, at the end, change the order of integration:

Z x1

0

. . . Z xn

0

Qn

i=1|vi(si)|

Pn

i=1wisi i+1)/(qiwi)ds1· · ·dsn

≤W

n

Y

i=1

"

Z xi

0

Z si

0

(si−τi)βiΦii)pii pi1

dsi

#

≤W

n

Y

i=1

x1/qi i Z xi

0

Z si

0

(si−τi)βiΦii)pii

dsi 1

pi

= W

Qn

i=1i+ 1)1/pi

n

Y

i=1

x1/qi i

n

Y

i=1

Z xi

0

(xi−τi)βi+1Φii)pii pi1

.

This proves the theorem.

Ifd = 1 andvi are replaced by the derivativesu(k)i , the preceding theorem reduces to [6, Theorem 3.1].

Corollary 3.2. Under the assumptions of Theorem3.1, (3.3)

Z x1

0

. . . Z xn

0

Qn

i=1|vi(si)|

Pn

i=1wisi i+1)/(qiwi)

ds1· · ·dsn

≤p1/pU

n

Y

i=1

x1/qi i

n

X

i=1

1 pi

Z xi

0

(xi−si)βi+1Φ(τi)pidsi

!1p ,

whereU is given by (3.2).

(10)

Hilbert–Pachpatte Type Multidimensional Integral

Inequalities

G.D. Handley, J.J. Koliha and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page10of18

Proof. By the inequality of means, for anyAi ≥0,

n

Y

i=1

A1/pi i ≤p1/p

n

X

i=1

1 piAi

!1p .

The corollary then follows from the preceding theorem.

The preceding corollary reduces to [6, Corollary 3.2] in the special case whend= 1andviare replaced byu(k)i .

(11)

Hilbert–Pachpatte Type Multidimensional Integral

Inequalities

G.D. Handley, J.J. Koliha and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page11of18

J. Ineq. Pure and Appl. Math. 5(2) Art. 34, 2004

4. Applications to Derivatives

Convention 1. In this section we shall assume thatmi, ki are multiindices sat- isfying0≤ki ≤mi−1, and write

(4.1) αi = (ai+biqi)(mi−ki−1), βi =ai(mi−ki−1).

Recall that according to our conventions,mi−ki−1 = (m1i−k1i−1, . . . , md1− kdi −1).

Theorem 4.1. Let ui ∈ Cmi(Q(xi)) be such that Drjui(si) = 0 for si

jQ(xi),0≤r≤mji −1,1≤j ≤d,i∈I. Then

(4.2) Z x1

0

. . . Z xn

0

Qn

i=1|Dkiui(si)|

Pn

i=1wisi i+1)/(qiwi) ds1· · ·dsn

≤U1

n

Y

i=1

x1/qi i

n

Y

i=1

Z xi

0

(xi−si)βi+1

Dmiui(si)

pi

dsi 1

pi ,

where

(4.3) U1 = 1

Qn

i=1[(mi−ki−1)!(αi+ 1)1/qii+ 1)1/pi].

Proof. Under the hypotheses of the theorem we have the following multivari- able identities established in [11],

Dkiui(s) = 1 (mi−ki−1)!

Z si

0

(si−τi)mi−ki−1Dmiuii)dτi, i∈I.

(12)

Hilbert–Pachpatte Type Multidimensional Integral

Inequalities

G.D. Handley, J.J. Koliha and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page12of18

Inequality (4.2) is proved when we setvi(si) = Dkiui(si), ci = mi −ki −1, and

(4.4) Φi(si) = |Dmiui(si)|

(mi−ki−1)!

in Theorem3.1.

Corollary 4.2. Under the hypotheses of Theorem4.1,

(4.5) Z x1

0

. . . Z xn

0

Qn

i=1|Dkiui(si)|

Pn

i=1wisi i+1)/(qiwi)

ds1· · ·dsn

≤p1/pU1

n

Y

i=1

x1/qi i

n

X

i=1

1 pi

Z xi

0

(xi−si)βi+1

Dmiui(si)

pi

dsi

!1p ,

whereU1 is given by (4.3).

Proof. The result follows by applying the inequality of means to the preceding theorem.

Single variable analogues of the preceding two results were obtained in [6, Theorem 4.1] and [6, Corollary 4.2].

We discuss a number of special cases of Theorem4.1with similar examples applying also to Corollary4.2.

(13)

Hilbert–Pachpatte Type Multidimensional Integral

Inequalities

G.D. Handley, J.J. Koliha and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page13of18

J. Ineq. Pure and Appl. Math. 5(2) Art. 34, 2004

Example 4.1. Ifai = 0andbi = 1fori∈I, then (4.2) becomes

(4.6) Z x1

0

. . . Z xn

0

Qn

i=1|Dkiui(si)|

Pn

i=1wis(qi imi−qiki−qi+1)/(qiwi)ds1· · ·dsn

≤U1

n

Y

i=1

x1/qi i

n

Y

i=1

Z xi

0

(xi−si)

Dmiui(si)

pi

dsi pi1

,

where

(4.7) U1 = 1

Qn

i=1[(mi−ki−1)!(qimi−qiki−qi+ 1)1/qi].

Example 4.2. Ifai = 0,bi = 1,qi =n,wi = 1n,pi = n−1n ,mi =mandki =k fori∈I, then

(4.8) Z x1

0

. . . Z xn

0

Qn

i=1|Dkui(si)|

Pn

i=1snm−nk−n+1i ds1· · ·dsn

≤ 1 n

n

x1· · ·xn

[(m−k−1)!]n(n(m−k−1) + 1)

×

n

Y

i=1

Z xi

0

(xi−si)

Dmui(si)

n n−1 dsi

n−1n .

Ford= 2andq=p=n = 2this is Pachpatte’s theorem [17, Theorem 1] cited in the Introduction; ifd= 1andq =p=n= 2, we obtain [14, Theorem 1].

(14)

Hilbert–Pachpatte Type Multidimensional Integral

Inequalities

G.D. Handley, J.J. Koliha and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page14of18

Example 4.3. Letai = 1andbi = 0fori∈I. Then (4.2) becomes

(4.9) Z x1

0

. . . Z xn

0

Qn

i=1|Dkiui(si)|

Pn

i=1wis(mi i−ki)/(qiwi) ds1· · ·dsn

≤Ue1

n

Y

i=1

x1/qi i

n

Y

i=1

Z xi

0

(xi−si)mi−ki

Dmiui(si)

pi

dsi pi1

,

where

(4.10) Ue1 = 1

Qn

i=1[(mi−ki−1)!(mi−ki)].

Example 4.4. Set ai = 0, bi = 1, qi = n, wi = 1n, pi = n−1n , mi = m and ki =kfori∈I. Then (4.2) becomes

(4.11) Z x1

0

. . . Z xn

0

Qn

i=1|Dkui(si)|

Pn

i=1sm−ki ds1· · ·dsn

≤ 1 n

n

x1· · ·xn

[(m−k−1)!]n(m−k)n

×

n

Y

i=1

Z xi

0

(xi−si)m−k

Dmui(si)

n/(n−1)

dsi

(n−1)/n

.

In the following theorem we establish another inequality similar to the inte- gral analogue of Hilbert’s inequality.

(15)

Hilbert–Pachpatte Type Multidimensional Integral

Inequalities

G.D. Handley, J.J. Koliha and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page15of18

J. Ineq. Pure and Appl. Math. 5(2) Art. 34, 2004

Theorem 4.3. Let ui ∈ Cmi+1(Q(xi)) be such thatDmiui(si) = 0 for si

jQ(si),1≤j ≤d,i∈I. Then

(4.12) Z x1

0

. . . Z xn

0

Qn

i=1|Dmiui(si)|

Pn

i=1wis1/(qi iwi) ds1· · ·dsn

n

Y

i=1

x1/qi i

n

Y

i=1

Z xi

0

(xi−si)

Dmi+1ui(si)

pi

dsi

pi1 .

Proof. Under the hypotheses of the theorem we have the following multivari- able identities established in [11] formi = (0, . . . ,0):

(4.13) Dmiui(si) = Z si

0

Dmi+1uii)dτi, i∈I.

In Theorem3.1setvi(si) = Dmiui(si),ci = 0,Φi(si) =|Dmi+1ui(si)|, and the result follows.

In the special case thatd= 2,mi = (0,0),p=q =n = 2, andwi = 12, the preceding theorem reduces to [17, Theorem 2].

When we apply the inequality of means to the preceding theorem, we get the following corollary which generalizes the inequality obtained in [17, Remark 3].

Corollary 4.4. Under the hypotheses of Theorem4.3, (4.14)

Z x1

0

. . . Z xn

0

Qn

i=1|Dmiui(si)|

Pn

i=1wis1/(qi iwi) ds1· · ·dsn

≤p1/p

n

Y

i=1

x1/qi i

n

X

i=1

1 pi

Z xi

0

(xi−si)

Dmi+1ui(si)

pi

dsi

!1p .

(16)

Hilbert–Pachpatte Type Multidimensional Integral

Inequalities

G.D. Handley, J.J. Koliha and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page16of18

References

[1] Y.C. CHOW, On inequalities of Hilbert and Widder, J. London Math. Soc., 14 (1939), 151–154.

[2] S.S. DRAGOMIR AND YOUNG-HO KIM, Hilbert–Pachpatte type inte- gral inequalities and their improvement, J. Inequal. Pure Appl. Math., 4(1) (2003), Article 16, (electronic) [ONLINE:http://jipam.vu.edu.

au/article.php?sid=252].

[3] M. GAO, An improvement of Hardy–Riesz’s extension of the Hilbert in- equality, J. Math. Res. Exp., 14 (1994), 255–259.

[4] M. GAO, On Hilbert’s inequality and its applications, J. Math. Anal. Appl., 212 (1997).

[5] G.D. HANDLEY, J.J. KOLIHAANDJ. PE ˇCARI ´C, A Hilbert type inequal- ity, Tamkang J. Math., 31 (2000), 311–315.

[6] G.D. HANDLEY, J.J. KOLIHA AND J. PE ˇCARI ´C, New Hilbert–

Pachpatte type integral inequalities, J. Math. Anal. Appl., 257 (2001), 238–

250.

[7] G.H. HARDY, J.E. LITTLEWOOD AND G. POLYA, Inequalities, Cam- bridge University Press, 1934.

[8] L. HE, M. GAO AND S. WEI, A note on Hilbert’s inequality, Math. In- equal. Appl., 6 (2003), 283–288.

[9] D.S. MITRINOVI ´C AND J.E. PE ˇCARI ´C, On inequalities of Hilbert and Widder, Proc. Edinburgh Math. Soc., 34 (1991), 411–414.

(17)

Hilbert–Pachpatte Type Multidimensional Integral

Inequalities

G.D. Handley, J.J. Koliha and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page17of18

J. Ineq. Pure and Appl. Math. 5(2) Art. 34, 2004

[10] D.S. MITRINOVI ´C, J.E. PE ˇCARI ´CANDA.M. FINK, Classical and New Inequalities in Analysis, Kluwer Acad. Publ., Dordrecht, 1993.

[11] B.G. PACHPATTE, Existence and uniqueness of solutions of higher order hyperbolic partial differential equations, Chinese J. Math., 17 (1989), 181–

189.

[12] B.G. PACHPATTE, A note on Hilbert type inequality, Tamkang J. Math., 29 (1998), 293–298.

[13] B.G. PACHPATTE, On some new inequalities similar to Hilbert’s inequal- ity, J. Math. Anal. Appl., 226 (1998), 166–179.

[14] B.G. PACHPATTE, Inequalities similar to the integral analogue of Hilbert’s inequality, Tamkang J. Math., 30 (1999), 139–146.

[15] B.G. PACHPATTE, On a new inequality analogous to Hilbert’s inequality, Rad. Mat., 9 (1999), 5–11.

[16] B.G. PACHPATTE, Inequalities similar to certain extensions of Hilbert’s inequality, J. Math. Anal. Appl., 243 (2000), 217–227.

[17] B.G. PACHPATTE, On two new multidimensional integral inequalities of the Hilbert type, Tamkang J. Math., 31 (2000), 123–129.

[18] B.G. PACHPATTE, On Hilbert type inequality in several variables. An.

¸Stiin¸t. Univ. Al. I. Cuza Ia¸si. Mat. (N.S.), 46 (2000), 245–250.

[19] B.G. PACHPATTE, On an inequality similar to Hilbert’s inequality, Bul.

Inst. Politeh. Ia¸si. Sec¸t. I. Mat. Mec. Teor. Fiz., 46 (50) (2000), 31–36.

(18)

Hilbert–Pachpatte Type Multidimensional Integral

Inequalities

G.D. Handley, J.J. Koliha and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page18of18

[20] BICHENG YANG, On Hilbert’s integral inequality, J. Math. Anal. Appl., 220 (1988), 778–785.

[21] BICHENG YANG, On a new inequality similar to Hardy-Hilbert’s in- equality, Math. Inequal. Appl., 6 (2003), 37–44.

[22] BICHENG YANG ANDL. DEBNATH, On the extended Hardy-Hilbert’s inequality, J. Math. Anal. Appl., 272 (2002), 187–199.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

In this paper we use integral calculus, complex variable techniques and some classical inequalities to establish rational identities and inequalities involving Fibonacci and

In this paper we use integral calculus, complex variable techniques and some clas- sical inequalities to establish rational identities and inequalities involving Fibonacci and

In this note we establish new ˇ Cebyšev type integral inequalities involving functions whose derivatives belong to L p spaces via certain integral identities.. Key words and phrases:

B.G. In this paper we establish new Ostrowski type inequalities involving product of two functions. The analysis used in the proofs is elementary and based on the use of the

In this paper, some generalized integral inequalities which originate from an open problem posed in [FJ. Qi, Several integral

In this paper we use a new approach to obtain a class of multivariable integral inequalities of Hilbert type from which we can recover as special cases integral inequalities

The main purpose of this paper is to establish explicit bounds on the general versions of (1.1) which can be used more effectively in the study of certain classes of

J. Pure and Appl. In addition, we obtain some new inequalities as Hilbert- Pachpatte type inequalities, these inequalities improve the results obtained by Handley, Koliha and