• Nem Talált Eredményt

JJ II

N/A
N/A
Protected

Academic year: 2022

Ossza meg "JJ II"

Copied!
18
0
0

Teljes szövegt

(1)

volume 4, issue 1, article 16, 2003.

Received 31 October, 2002;

accepted 8 January, 2003.

Communicated by:P.S. Bullen

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

HILBERT-PACHPATTE TYPE INTEGRAL INEQUALITIES AND THEIR IMPROVEMENT

S.S. DRAGOMIR AND YOUNG-HO KIM

School of Computer Science and Mathematics Victoria University of Technology

PO Box 14428 , Melbourne City MC Victoria 8001, Australia.

EMail:sever.dragomir@vu.edu.au

URL:http://rgmia.vu.edu.au/SSDragomirWeb.html Department of Applied Mathematics

Changwon National University Changwon 641-773, Korea.

EMail:yhkim@sarim.changwon.ac.kr

c

2000Victoria University ISSN (electronic): 1443-5756 114-02

(2)

Hilbert-Pachpatte Type Integral Inequalities and their

Improvement S.S. Dragomir and Young-Ho Kim

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of19

J. Ineq. Pure and Appl. Math. 4(1) Art. 16, 2003

http://jipam.vu.edu.au

Abstract

In this paper, we obtain an extension of multivariable integral inequality of Hilbert-Pachpatte type. By specializing the upper estimate functions in the hy- pothesis and the parameters, we obtain many special cases.

2000 Mathematics Subject Classification:26D15.

Key words: Hilbert’s inequality, Hilbert-Pachpatte type inequality, Hölder’s inequality, Jensen inequality.

The authors would like to thank Professor P.S. Bullen, University of British Columbia, Canada, for the careful reading of the manuscript which led to a considerable im- provement in the presentation of this paper.

Contents

1 Intoduction. . . 3 2 Main Results . . . 5 3 The Various Inequalities. . . 13

References

(3)

Hilbert-Pachpatte Type Integral Inequalities and their

Improvement S.S. Dragomir and Young-Ho Kim

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of19

J. Ineq. Pure and Appl. Math. 4(1) Art. 16, 2003

http://jipam.vu.edu.au

1. Intoduction

Hilbert’s double series theorem [3, p. 226] was proved first by Hilbert in his lectures on integral equations. The determination of the constant, the integral analogue, the extension, other proofs of the whole or of parts of the theorems and generalizations in different directions have been given by several authors (cf. [3, Chap. 9]). Specifically, in [10] – [14] the author has established some new inequalities similar to Hilbert’s double-series inequality and its integral analogue which we believe will serve as a model for further investigation. Re- cently, G.D. Handley, J.J. Koliha and J.E. Peˇcari´c [2] established a new class of related integral inequalities from which the results of Pachpatte [12] – [14] are obtained by specializing the parameters and the functions Φi.A representative sample is the following.

Theorem 1.1 (Handley, Koliha and Peˇcari´c [2, Theorem 3.1]). Let ui ∈ Cmi([0, xi])fori∈I.If

u(ki i)(si) ≤

Z si

0

(si−τi)mi−ki−1Φii)dτi, si ∈[0, xi], i∈I,

then

Z x1

0

· · · Z xn

0

Qn i=1

u(ki i)(si) Pn

i=1ωisi i+1)/(qiωi) ds1· · ·dsn

≤U

n

Y

i=1

x

1 qi

i n

Y

i=1

Z xi

0

(xi −si)βi+1Φi(si)pidsi 1

pi ,

(4)

Hilbert-Pachpatte Type Integral Inequalities and their

Improvement S.S. Dragomir and Young-Ho Kim

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of19

J. Ineq. Pure and Appl. Math. 4(1) Art. 16, 2003

http://jipam.vu.edu.au

whereU = 1 .Qn

i=1[(αi+ 1)

1

qii+ 1)

1 pi].

The purpose of the present paper is to derive an extension of the inequality given in Theorem1.1. In addition, we obtain some new inequalities as Hilbert- Pachpatte type inequalities, these inequalities improve the results obtained by Handley, Koliha and Peˇcari´c [2].

(5)

Hilbert-Pachpatte Type Integral Inequalities and their

Improvement S.S. Dragomir and Young-Ho Kim

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of19

J. Ineq. Pure and Appl. Math. 4(1) Art. 16, 2003

http://jipam.vu.edu.au

2. Main Results

In what follows we denote byRthe set of real numbers;R+denotes the interval [0,∞).The symbolsN,Zhave their usual meaning. The following notation and hypotheses will be used throughout the paper:

I ={1, ..., n} n∈N mi, i∈I mi ∈N

ki, i∈I ki ∈ {0,1, . . . , mi−1}

xi, i∈I xi ∈R, xi >0

pi, qi, i∈I pi, qi ∈R, pi, qi >0, p1

i +q1

i = 1

p, q 1p =Pn

i=1

1 pi

, 1q =Pn i=1

1 qi

ai, bi, i∈I ai, bi ∈R+, ai+bi = 1 ωi, i∈I ωi ∈R, ωi >0, Pn

i=1ωi = Ωn αi, i∈I αi = (ai+biqi)(mi−ki−1) βi, i∈I βi =ai(mi−ki−1)

ui, i∈I ui ∈Cm0i([0, xi]) for some m0i ≥mi Φi, i∈I Φi ∈C1([0, xi]), Φi ≥mi.

(6)

Hilbert-Pachpatte Type Integral Inequalities and their

Improvement S.S. Dragomir and Young-Ho Kim

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of19

J. Ineq. Pure and Appl. Math. 4(1) Art. 16, 2003

http://jipam.vu.edu.au

Here theui are given functions of sufficient smoothness, and theΦi are subject to choice. The coefficients pi, qi are conjugate Hölder exponents to be used in applications of Hölder’s inequality, and the coefficients ai, bi will be used in exponents to factorize integrands. The coefficients ωi will act as weights in applications of the geometric-arithmetic mean inequality. The coefficients αi

andβi arise naturally in the derivation of the inequalities. Our main results are given in the following theorems.

Theorem 2.1. Letui ∈Cmi([0, xi])fori∈I.If

(2.1)

u(ki i)(si) ≤

Z si

0

(si−τi)mi−ki−1Φii)dτi, si ∈[0, xi], i∈I, then

(2.2) Z x1

0

· · · Z xn

0

Qn i=1

u(ki i)(si) h 1

n

Pn

i=1ωisi i+1)/(qiωi)in ds1· · ·dsn

≤V

n

Y

i=1

x

1 qi

i n

Y

i=1

Z xi

0

(xi −si)βi+1Φi(si)pidsi pi1

,

where

(2.3) V = 1

Qn i=1

h

i+ 1)qi1i+ 1)pi1i. Proof. Factorize the integrand on the right side of (2.1) as

(si−τi)(ai/qi+bi)(mi−ki−1)×(si−τi)(ai/pi)(mi−ki−1)Φii)

(7)

Hilbert-Pachpatte Type Integral Inequalities and their

Improvement S.S. Dragomir and Young-Ho Kim

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of19

J. Ineq. Pure and Appl. Math. 4(1) Art. 16, 2003

http://jipam.vu.edu.au

and apply Hölder’s inequality [9, p.106]. Then

u(ki i)(si) ≤

Z si

0

(si−τi)(ai+biqi)(mi−ki−1)i

qi1

× Z si

0

(si−τi)ai(mi−ki−1)Φii)pii

pi1

= si i+1)/qii+ 1)qi1

Z si

0

(si−τi)βiΦii)pii pi1

.

Using the inequality of means [9, p. 15]

n

Y

i=1

swii

!Ωn1

≤ 1

n n

X

i=1

wisri

!1r

forr >0,we deduce that

n

Y

i=1

swiir

"

1 Ωn

n

X

i=1

wisri

#n

forr >0.According to above inequality, we have

n

Y

i=1

u(ki i)(si)

≤ 1 Qn

i=1i+ 1)qi1

"

1 Ωn

n

X

i=1

ωisi i+1)/(qiωi)

#n

×

n

Y

i=1

Z si

0

(si −τi)βiΦii)pii 1

pi

(8)

Hilbert-Pachpatte Type Integral Inequalities and their

Improvement S.S. Dragomir and Young-Ho Kim

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of19

J. Ineq. Pure and Appl. Math. 4(1) Art. 16, 2003

http://jipam.vu.edu.au

for r = (αi + 1)/qiωi. In the following estimate we apply Hölder’s inequality and, at the end, change the order of integration:

Z x1

0

· · · Z xn

0

Qn i=1

u(ki i)si

h 1

n

Pn

i=1ωisi i+1)/(qiωi)in ds1· · ·dsn

≤ 1

Qn

i=1i+ 1)qi1

n

Y

i=1

"

Z xi

0

Z si

0

(si−τi)βiΦii)pii, pi1

dsi

#

≤ 1

Qn

i=1i+ 1)qi1

n

Y

i=1

x

1 qi

i

Z xi

0

Z si

0

(si−τi)βiΦii)pii,

dsi

pi1

= 1

Qn

i=1[(αi+ 1)qi1i+ 1)pi1]

n

Y

i=1

x

1 qi

i n

Y

i=1

Z xi

0

(xi−si)βi+1Φi(si)pidsi 1

pi .

This proves the theorem.

Remark 2.1. In Theorem2.1, settingn = 1, we have Theorem1.1.

Corollary 2.2. Under the assumptions of Theorem2.1, ifr >0, we have

Z x1

0

· · · Z xn

0

Qn i=1

u(ki i)si

h 1

n

Pn

i=1ωisi i+1)/(qiωi)in ds1· · ·dsn

≤pr·p1 V

n

Y

i=1

x

1 qi

i

" n X

i=1

1 pi

Z xi

0

(xi−si)βi+1Φispiidsi r#r·p1

,

(9)

Hilbert-Pachpatte Type Integral Inequalities and their

Improvement S.S. Dragomir and Young-Ho Kim

Title Page Contents

JJ II

J I

Go Back Close

Quit Page9of19

J. Ineq. Pure and Appl. Math. 4(1) Art. 16, 2003

http://jipam.vu.edu.au

whereV is defined by (2.3).

Proof. By the inequality of means, for anyAi ≥0andr >0,we obtain

n

Y

i=1

A

1 pi

i

"

p

n

X

i=1

1 piAri

#r·p1 .

The corollary then follows from the preceding theorem.

Lemma 2.3. Let γ1 > 0 and γ2 < −1. Let ωi > 0, Pn

i=1ωi = Ωn and let si >0, i= 1, . . . , nbe real numbers. Then

n

Y

i=1

sωiiγ1γ2

"

1 Ωn

n

X

i=1

ωis−γi 2

#−γ1n

.

Proof. By the inequality of means, for anyγ1 >0andγ2 <−1,we have

n

Y

i=1

sωiiγ1γ2

"

1 Ωn

n

X

i=1

ωisi

#γ1γ2n

.

Using the fact that xγ12 is concave and using the Jensen inequality, we have that

"

1 Ωn

n

X

i=1

ωisi

#γ1γ2n

=

"

1 Ωn

n

X

i=1

ωif(s−γi 2)

#γ1γ2n

"

f 1

n

n

X

i=1

ωis−γi 2

!#γ1γ2n

(10)

Hilbert-Pachpatte Type Integral Inequalities and their

Improvement S.S. Dragomir and Young-Ho Kim

Title Page Contents

JJ II

J I

Go Back Close

Quit Page10of19

J. Ineq. Pure and Appl. Math. 4(1) Art. 16, 2003

http://jipam.vu.edu.au

=

 1 Ωn

n

X

i=1

ωis−γi 2

!γ1

2

γ1γ2n

=

"

1 Ωn

n

X

i=1

ωis−γi 2

#−γ1n

.

The proof of the lemma is complete.

Theorem 2.4. Under the assumptions of Theorem2.1, ifγ2 <−1,then

Z x1

0

· · · Z xn

0

Qn i=1

u(ki i)(si) h 1

n

Pn

i=1ωis−γi 2i−(αi+1)Ωn2qiωi ds1· · ·dsn

≤V

n

Y

i=1

x

1 qi

i n

Y

i=1

Z xi

0

(xi−si)βi+1Φi(si)pidsi

pi1 ,

whereV is given by (2.3).

Proof. Using the inequality of Lemma2.3, for anyγ1 >0andγ2 <−1,we get

n

Y

i=1

sωiiγ1

"

1 Ωn

n

X

i=1

ωis−γi 2

#γ1Ωn

γ2

.

According to above inequality, we deduce that

n

Y

i=1

u(ki i)(si)

≤ 1 Qn

i=1i+ 1)qi1

"

1 Ωn

n

X

i=1

ωis−γi 2

#−W1

(11)

Hilbert-Pachpatte Type Integral Inequalities and their

Improvement S.S. Dragomir and Young-Ho Kim

Title Page Contents

JJ II

J I

Go Back Close

Quit Page11of19

J. Ineq. Pure and Appl. Math. 4(1) Art. 16, 2003

http://jipam.vu.edu.au

×

n

Y

i=1

"

Z (si) 0

(si−τi)βiΦii)pii

#1

pi

,

where W1 = (αi+ 1)Ωn2qiωi. The proof of the theorem then follows from the preceding Theorem2.1.

Corollary 2.5. Under the assumptions of Theorem2.4, ifr >0, we have

Z x1

0

· · · Z xn

0

Qn i=1

u(ki i)(si) h 1

n

Pn

i=1ωis−γi 2i−(αi+1)Ωn2qiωi ds1· · ·dsn

≤pr·p1 V

n

Y

i=1

x

1 qi

i

" n X

i=1

1 pi

Z xi

0

(xi−si)βi+1Φi(si)pidsi r#r·p1

,

whereV is given by (2.3).

Proof. By the inequality of means, for anyAi ≥0andr >0,we obtain

n

Y

i=1

A

1 pi

i

"

p

n

X

i=1

1 piAri

#r·p1 .

The corollary then follows from the preceding Theorem2.4.

In the following section we discuss some choice of the functionsΦi.

(12)

Hilbert-Pachpatte Type Integral Inequalities and their

Improvement S.S. Dragomir and Young-Ho Kim

Title Page Contents

JJ II

J I

Go Back Close

Quit Page12of19

J. Ineq. Pure and Appl. Math. 4(1) Art. 16, 2003

http://jipam.vu.edu.au

3. The Various Inequalities

Theorem 3.1. Letui ∈Cmi([0, xi])be such thatu(j)i (0) = 0forj ∈ {0, . . . , mi− 1}, i∈I.Then

(3.1) Z x1

0

· · · Z xn

0

Qn i=1

u(ki i)(si) h 1

n

Pn

i=1ωisi i+1)/(qiωi)

in ds1· · ·dsn

≤V1

n

Y

i=1

x

1 qi

i n

Y

i=1

Z xi

0

(xi−si)βi+1

u(mi i)(si)

pi

dsi pi1

,

where

(3.2) V1 = 1

Qn i=1

h

(mi−ki−1)!(αi+ 1)qi1i + 1)pi1 i.

Proof. Inequality (3.1) is proved when we set

Φi(si) =

u(mi i)(si) (mi−ki−1)!

in Theorem2.1.

(13)

Hilbert-Pachpatte Type Integral Inequalities and their

Improvement S.S. Dragomir and Young-Ho Kim

Title Page Contents

JJ II

J I

Go Back Close

Quit Page13of19

J. Ineq. Pure and Appl. Math. 4(1) Art. 16, 2003

http://jipam.vu.edu.au

Corollary 3.2. Under the assumptions of Theorem3.1, ifr >0, we have

Z x1

0

· · · Z xn

0

Qn i=1

u(ki i)(si) h 1

n

Pn

i=1ωisi i+1)/(qiωi)in ds1· · ·dsn

≤pr·p1 V1

n

Y

i=1

x

1 qi

i

" n X

i=1

1 pi

Z xi

0

(xi−si)βi+1

u(mi i)(si)

pi

dsi r#r·p1

,

whereV1 is given by (3.2).

Theorem 3.3. Under the assumptions of Theorem3.1, ifγ2 <−1,then

(3.3) Z x1

0

· · · Z xn

0

Qn i=1

u(ki i)(si) h 1

n

Pn

i=1ωis−γi 2i−(αi+1)Ωn2qiωi ds1· · ·dsn

≤V1

n

Y

i=1

x

1 qi

i n

Y

i=1

Z xi

0

(xi−si)βi+1

u(mi i)(si)

pi

dsi 1

pi ,

whereV1 is given by (3.2).

Proof. Inequality (3.3) is proved when we set

Φi(si) =

u(mi i)(si) (mi−ki−1)!

in Theorem2.4.

(14)

Hilbert-Pachpatte Type Integral Inequalities and their

Improvement S.S. Dragomir and Young-Ho Kim

Title Page Contents

JJ II

J I

Go Back Close

Quit Page14of19

J. Ineq. Pure and Appl. Math. 4(1) Art. 16, 2003

http://jipam.vu.edu.au

Corollary 3.4. Under the assumptions of Theorem3.3, ifr >0, we have

Z x1

0

· · · Z xn

0

Qn i=1

u(ki i)(si) h 1

n

Pn

i=1ωis−γi 2

i−(αi+1)Ωn2qiωi ds1· · ·dsn

≤pr·p1 V1 n

Y

i=1

x

1 qi

i

" n X

i=1

1 pi

Z xi

0

(xi−si)βi+1

u(mi i)(si)

pi

dsi

r#r·p1 .

We discuss a number of special cases of Theorem 3.1. Similar examples apply also to Corollary3.2, Theorem3.3and Corollary3.4.

Example 3.1. Ifai = 0andbi = 1fori∈I,then Theorem3.1becomes

Z x1

0

· · · Z xn

0

Qn i=1

u(ki i)(si) h 1

n

Pn

i=1ωis(qi imi−qiki−qi+1)/(qiωi)in ds1· · ·dsn

≤V2

n

Y

i=1

x

1 qi

i n

Y

i=1

Z xi

0

(xi−si)

u(mi i)(si)

pi

dsi 1

pi ,

where

V2 = 1

Qn i=1

h

(mi−ki−1)!(qimi−qiki−qi+ 1)qi1i.

(15)

Hilbert-Pachpatte Type Integral Inequalities and their

Improvement S.S. Dragomir and Young-Ho Kim

Title Page Contents

JJ II

J I

Go Back Close

Quit Page15of19

J. Ineq. Pure and Appl. Math. 4(1) Art. 16, 2003

http://jipam.vu.edu.au

Example 3.2. If ai = 0, bi = 1, qi =n, pi = n/(n−1), mi =mandki = k fori∈I,then

Z x1

0

· · · Z xn

0

Qn i=1

u(ki i)(si) h 1

n

Pn

i=1ωis(nm−nk−n+1)/(nωi) i

in ds1· · ·dsn

n

x1· · ·xn (m−k−1)!n

(nm−nk−n+ 1)

×

n

Y

i=1

Z xi

0

(xi−si)

u(m)i (si)

n n−1 dsi

n−1n .

For q = p = n = 2 andωi = n1 this is [12, Theorem 1]. Settingq = p = 2, k = 0, n= 1andωi = n1, we recover the result of [14].

Example 3.3. Ifai = 0andbi = 1fori∈I,then Theorem3.1becomes

Z x1

0

· · · Z xn

0

Qn i=1

u(ki i)(si) h 1

n

Pn

i=1ωis(mi i−ki)/(qiωi)in ds1· · ·dsn

≤V3

n

Y

i=1

x

1 qi

i n

Y

i=1

Z xi

0

(xi−si)mi−ki

u(mi i)(si)

pi

dsi pi1

,

where

V3 = 1

Qn i=1

(mi−ki)!.

(16)

Hilbert-Pachpatte Type Integral Inequalities and their

Improvement S.S. Dragomir and Young-Ho Kim

Title Page Contents

JJ II

J I

Go Back Close

Quit Page16of19

J. Ineq. Pure and Appl. Math. 4(1) Art. 16, 2003

http://jipam.vu.edu.au

Example 3.4. If ai = 1, bi = 0, qi =n, pi = n/(n−1), mi =mandki = k fori∈I.Then (3.1) becomes

Z x1

0

· · · Z xn

0

Qn i=1

u(ki i)(si) h 1

n

Pn

i=1ωis(m−k)/(nωi i)in ds1· · ·dsn

n

x1· · ·xn

(m−k)!n n

Y

i=1

Z xi

0

(xi−si)m−k

u(m)i (si)

n/(n−1)

dsi (n−1)n

.

Example 3.5. Letp1, p2 ∈R+.If we setn = 2, ω1 = p1

1, ω2 = p1

2, mi = 1and ki = 0fori = 1,2in Theorem3.1, then by our assumptionsq1 =p1/(p1−1), q2 =p2/(p2−1),and we obtain

Z x1

0

Z x2

0

|u1(s1)| |u2(s2)|

h 1 p1p22

p2s(p11−1)+p1s(p22−1)i2 ds1ds2

≤x(p11−1)/p1x(p2 2−1)/p2 Z x1

0

(x1−s1)|u01(s1)|p1 ds1

p1

1

× Z x2

0

(x2−s2)|u02(s2)|p2 ds2

p1

2

. If we set ω12 = 1 in Example 3.5, then we have [13, Theorem 2]. (The values ofai andbiare irrelevant.)

(17)

Hilbert-Pachpatte Type Integral Inequalities and their

Improvement S.S. Dragomir and Young-Ho Kim

Title Page Contents

JJ II

J I

Go Back Close

Quit Page17of19

J. Ineq. Pure and Appl. Math. 4(1) Art. 16, 2003

http://jipam.vu.edu.au

References

[1] BICHENG YANG, On Hilbert’s integral inequality, J. Math. Anal. Appl., 220 (1988), 778–785.

[2] G.D. HANDLEY, J.J. KOLIHA AND PE ˇCARI ´C, New Hilbert-Pachpatte type integral inequalities, J. Math. Anal. Appl., 257 (2001), 238–250.

[3] G.H. HARDY, J.E. LITTLEWOOD AND G. POLYA, Inequalities, Cam- bridge Univ. Press, London, 1952.

[4] YOUNG-HO KIM, Refinements and Extensions of an inequality, J. Math.

Anal. Appl., 245 (2000), 628–632.

[5] V. LEVIN, On the two-parameter extension and analogue of Hilbert’s in- equality, J. London Math. Soc., 11 (1936), 119–124.

[6] G. MINGZE, On Hilbert’s inequality and its applications, J. Math. Anal.

Appl., 212 (1997), 316–323.

[7] D.S. MITRINOVI ´C, Analytic inequalities, Springer-Verlag, Berlin, New York, 1970.

[8] D.S. MITRINOVI ´C AND J.E. PE ˇCARI ´C, On inequalities of Hilbert and Widder, Proc. Edinburgh Math. Soc., 34 (1991), 411–414.

[9] D.S. MITRINOVI ´C, J.E. PE ˇCARI ´CANDA.M. FINK, Classical and New Inequalities in Analysis, Kluwer Academic, Dordrecht, 1993.

[10] B.G. PACHPATTE, A note on Hilbert type inequality, Tamkang J. Math., 29 (1998), 293–298.

(18)

Hilbert-Pachpatte Type Integral Inequalities and their

Improvement S.S. Dragomir and Young-Ho Kim

Title Page Contents

JJ II

J I

Go Back Close

Quit Page18of19

J. Ineq. Pure and Appl. Math. 4(1) Art. 16, 2003

http://jipam.vu.edu.au

[11] B.G. PACHPATTE, On some new inequalities similar to Hilbert’s inequal- ity, J. Math. Anal. Appl., 226 (1998), 166–179.

[12] B.G. PACHPATTE, Inequalities similar to the integral analogue of Hilbert’s Inequality, Tamkang J. Math., 30 (1999), 139–146.

[13] B.G. PACHPATTE, Inequalities similar to certain extensions of Hilbert’s inequality, J. Math. Anal. Appl., 243 (2000), 217–227.

[14] B.G. PACHPATTE, A note on inequality of Hilbert type, Demonstratio Math., in press.

[15] D.V. WIDDER, An inequality related to one of Hilbert’s, J. London Math.

Soc., 4 (1929), 194–198.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

In this paper, by the Chebyshev-type inequalities we define three mappings, inves- tigate their main properties, give some refinements for Chebyshev-type inequalities, obtain

B.G. Pure and Appl. Motivated by the results in [10] and [3], in this paper we establish new Ostrowski type inequalities involving the product of two functions. The anal- ysis used

LOVE, Inequalities related to Carleman’s inequality, Inequalities, (Birmingham, 1987), 135–141, Lecture Notes in Pure and Appl. MOND

We first establish some ˇ Cebyšev inequalities which generalize some results of Audréief [1], Beesack and Peˇcari´c [2], Dunkel [4], Fujimara [5, 6], Isayama [8], and Winckler

Some classical and new inequalities of an approximate integration are obtained with use of Hadamard type inequalities and delta–convex functions of higher orders.. 2000

J. Pure and Appl. As it will be seen, this theorem is a corollary of Theorem 2.1. Let the situation be the same as in Theorem 2.16.. Certain Inequalities Concerning Some Kinds

In this paper we use a new approach to obtain a class of multivariable integral inequalities of Hilbert type from which we can recover as special cases integral inequalities

In this paper we use a new approach to obtain a class of multivariable integral inequalities of Hilbert type from which we can recover as special cases integral inequalities