• Nem Talált Eredményt

Some inequalities in normed algebras that provides lower and upper bounds for the norm ofPn j=1ajxjare obtained

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Some inequalities in normed algebras that provides lower and upper bounds for the norm ofPn j=1ajxjare obtained"

Copied!
9
0
0

Teljes szövegt

(1)

ON SOME INEQUALITIES IN NORMED ALGEBRAS

SEVER S. DRAGOMIR

SCHOOL OFCOMPUTERSCIENCE ANDMATHEMATICS

VICTORIAUNIVERSITY

PO BOX14428, MELBOURNECITYMAILCENTRE

VIC, 8001, AUSTRALIA. sever.dragomir@vu.edu.au URL:http://rgmia.vu.edu.au/dragomir

Received 24 October, 2007; accepted 29 October, 2007 Communicated by S. Saitoh

ABSTRACT. Some inequalities in normed algebras that provides lower and upper bounds for the norm ofPn

j=1ajxjare obtained. Applications for estimating the quantities

x−1 x±

y−1 y

and

y−1

x± x−1

y

for invertible elementsx, yin unital normed algebras are also given.

Key words and phrases: Normed algebras, Unital algebras, Generalised triangle inequality.

2000 Mathematics Subject Classification. Primary 46H05; Secondary 47A10.

1. INTRODUCTION

In [1], in order to provide a generalisation of a norm inequality for n vectors in a normed linear space obtained by Peˇcari´c and Raji´c in [2], the author obtained the following result:

(1.1) max

k∈{1,...,n}

(

k|

n

X

j=1

xj

n

X

j=1

j−αk| kxjk )

n

X

j=1

αjxj

≤ min

k∈{1,...,n}

(

k|

n

X

j=1

xj

+

n

X

j=1

j −αk| kxjk )

,

where xj, j ∈ {1, . . . , n} are vectors in the normed linear space (X,k·k) over K while αj, j ∈ {1, . . . , n}are scalars inK(K=C,R).

324-07

(2)

Forαk = kx1

kk, with xk 6= 0, k ∈ {1, . . . , n}the above inequality produces the following result established by Peˇcari´c and Raji´c in [2]:

(1.2) max

k∈{1,...,n}

( 1 kxkk

"

n

X

j=1

xj

n

X

j=1

|kxjk − kxkk|

#)

n

X

j=1

xj kxjk

≤ min

k∈{1,...,n}

( 1 kxkk

"

n

X

j=1

xj

+

n

X

j=1

|kxjk − kxkk|

#) , which implies the following refinement and reverse of the generalised triangle inequality due to M. Kato et al. [3]:

(1.3) min

k∈{1,...,n}{kxkk}

"

n−

n

X

j=1

xj kxjk

#

n

X

j=1

kxjk −

n

X

j=1

xj

≤ max

k∈{1,...,n}{kxkk}

"

n−

n

X

j=1

xj kxjk

# .

The other natural choice,αk =kxkk, k ∈ {1, . . . , n}in (1.1) produces the result (1.4) max

k∈{1,...,n}

( kxkk

n

X

j=1

xj

n

X

j=1

|kxjk − kxkk| kxjk )

n

X

j=1

kxjkxj

≤ min

k∈{1,...,n}

( kxkk

n

X

j=1

xj

+

n

X

j=1

|kxjk − kxkk| kxjk )

,

which in its turn implies another refinement and reverse of the generalised triangle inequality:

(0≤) Pn

j=1kxjk2

Pn

j=1kxjkxj

k∈{1,...,n}max {kxkk}

(1.5)

n

X

j=1

kxjk −

n

X

j=1

xj

≤ Pn

j=1kxjk2

Pn

j=1kxjkxj

k∈{1,...,n}min {kxkk} , providedxk 6= 0, k ∈ {1, . . . , n}.

In [2], the authors have shown that the casen = 2in (1.2) produces the Maligranda-Mercer inequality:

(1.6) kx−yk − |kxk − kyk|

min{kxk,kyk} ≤

x

kxk− y kyk

≤ kx−yk+|kxk − kyk|

max{kxk,kyk} , for anyx, y ∈X\ {0}.

We notice that Maligranda proved the right inequality in [5] while Mercer proved the left inequality in [4].

We have shown in [1] that the following dual result for two vectors is also valid:

(0≤) kx−yk

min{kxk,kyk} − |kxk − kyk|

max{kxk,kyk}

(1.7)

x

kyk − y kxk

≤ kx−yk

max{kxk,kyk}+ |kxk − kyk|

min{kxk,kyk},

(3)

for anyx, y ∈X\ {0}.

Motivated by the above results, the aim of the present paper is to establish lower and upper bounds for the norm of Pn

j=1ajxj, where aj, xj, j ∈ {1, . . . , n} are elements in a normed algebra(A,k·k)over the real or complex number fieldK. In the case where(A,k·k)is a unital algebra andx, yare invertible, lower and upper bounds for the quantities

x−1

y−1 y

and

y−1

x−1 y

are provided as well.

2. INEQUALITIES FORnPAIRS OFELEMENTS

Let(A,k·k)be a normed algebra over the real or complex number fieldK. Theorem 2.1. If(aj, xj)∈A2,j ∈ {1, . . . , n},then

k∈{1,...,n}max (

ak n

X

j=1

xj

!

n

X

j=1

kaj −akk kxjk ) (2.1)

≤ max

k∈{1,...,n}

(

ak n

X

j=1

xj

!

n

X

j=1

k(aj −ak)xjk )

n

X

j=1

ajxj

≤ min

k∈{1,...,n}

(

ak n

X

j=1

xj

!

+

n

X

j=1

k(aj−ak)xjk )

≤ min

k∈{1,...,n}

(

ak n

X

j=1

xj

!

+

n

X

j=1

kaj−akk kxjk )

.

Proof. Observe that for anyk∈ {1, . . . , n}we have

n

X

j=1

ajxj =ak

n

X

j=1

xj

! +

n

X

j=1

(aj −ak)xj.

Taking the norm and utilising the triangle inequality and the normed algebra properties, we have

n

X

j=1

ajxj

ak

n

X

j=1

xj

!

+

n

X

j=1

(aj−ak)xj

ak

n

X

j=1

xj

!

+

n

X

j=1

k(aj−ak)xjk

ak

n

X

j=1

xj

!

+

n

X

j=1

kaj −akk kxjk,

for anyk∈ {1, . . . , n},which implies the second part in (2.1).

Observing that

n

X

j=1

ajxj =ak

n

X

j=1

xj

!

n

X

j=1

(ak−aj)xj

(4)

and utilising the continuity of the norm, we have

n

X

j=1

ajxj

ak

n

X

j=1

xj

!

n

X

j=1

(ak−aj)xj

ak

n

X

j=1

xj

!

n

X

j=1

(ak−aj)xj

ak

n

X

j=1

xj

!

n

X

j=1

k(ak−aj)xjk

ak

n

X

j=1

xj

!

n

X

j=1

kak−ajk kxjk

for anyk∈ {1, . . . , n},which implies the first part in (2.1).

Remark 2.2. If there existsr >0so thatkaj−akk ≤ rkakkfor anyj, k ∈ {1, . . . , n},then, by the second part of (2.1), we have

(2.2)

n

X

j=1

ajxj

≤ min

k∈{1,...,n}{kakk}

"

n

X

j=1

xj

+r

n

X

j=1

kxjk

# .

Corollary 2.3. Ifxj ∈A, j ∈ {1, . . . , n},then

k∈{1,...,n}max (

xk

n

X

j=1

xj

!

n

X

j=1

kxj−xkk kxjk ) (2.3)

≤ max

k∈{1,...,n}

(

xk

n

X

j=1

xj

!

n

X

j=1

k(xj −xk)xjk )

n

X

j=1

x2j

≤ min

k∈{1,...,n}

(

xk

n

X

j=1

xj

!

+

n

X

j=1

k(xj −xk)xjk )

≤ min

k∈{1,...,n}

(

xk

n

X

j=1

xj

!

+

n

X

j=1

kxj −xkk kxjk )

.

Corollary 2.4. Assume that A is a unital normed algebra. If xj ∈ A are invertible for any j ∈ {1, . . . , n},then

k∈{1,...,n}min x−1k

" n X

j=1

kxjk −

n

X

j=1

xj

# (2.4)

n

X

j=1

x−1j

kxjk −

n

X

j=1

x−1j xj

≤ max

k∈{1,...,n}

x−1k

" n X

j=1

kxjk −

n

X

j=1

xj

# .

(5)

Proof. If1∈Ais the unity, then on choosingak = x−1k

·1in (2.1) we get

k∈{1,...,n}max (

x−1k

n

X

j=1

xj

n

X

j=1

x−1j

x−1k kxjk

) (2.5)

n

X

j=1

x−1j xj

≤ min

k∈{1,...,n}

( x−1k

n

X

j=1

xj

+

n

X

j=1

x−1j

x−1k kxjk

) .

Now, assume that min

k∈{1,...,n}

x−1k =

x−1k

0

.Then

x−1k

0

n

X

j=1

xj

+

n

X

j=1

x−1j

x−1k

0

kxjk

=− x−1k

0

n

X

j=1

kxjk −

n

X

j=1

xj

! +

n

X

j=1

x−1j kxjk. Utilising the second inequality in (2.5), we deduce

x−1k

0

n

X

j=1

kxjk −

n

X

j=1

xj

!

n

X

j=1

x−1j

kxjk −

n

X

j=1

x−1j xj

and the first inequality in (2.4) is proved.

The second part of (2.4) can be proved in a similar manner, however, the details are omitted.

Remark 2.5. An equivalent form of (2.4) is:

(2.6) Pn

j=1

x−1j

kxjk −

Pn j=1

x−1j xj

max

k∈{1,...,n}

x−1k

n

X

j=1

kxjk −

n

X

j=1

xj

≤ Pn

j=1

x−1j

kxjk −

Pn j=1

x−1j xj

min

k∈{1,...,n}

x−1k

,

which provides both a refinement and a reverse inequality for the generalised triangle inequality.

3. INEQUALITIES FORTWO PAIRS OFELEMENTS

The following particular case of Theorem 2.1 is of interest for applications.

Lemma 3.1. If(a, b),(x, y)∈A2,then

(3.1) max{ka(x±y)k − k(b−a)yk,kb(x±y)k − k(b−a)xk}

≤ kax±byk ≤min{ka(x±y)k+k(b−a)yk,kb(x±y)k+k(b−a)xk}

(6)

or, equivalently, 1

2{ka(x±y)k+kb(x±y)k −[k(b−a)yk+k(b−a)xk]}

(3.2)

+1

2|ka(x±y)k − kb(x±y)k+k(b−a)yk − k(b−a)xk|

≤ kax±byk

≤ 1

2{ka(x±y)k+kb(x±y)k+ [k(b−a)yk+k(b−a)xk]}

− 1

2|ka(x±y)k+kb(x±y)k − k(b−a)yk − k(b−a)xk|.

Proof. The inequality (3.1) follows from Theorem 2.1 forn = 2, a1 = a, a2 =b, x1 =xand x2 =±y.

Utilising the properties of real numbers, min{α, β}= 1

2[α+β− |α−β|], max{α, β}= 1

2[α+β+|α−β|] ; α, β ∈R;

the inequality (3.1) is clearly equivalent with (3.2).

The following result contains some upper bounds forkax±bykthat are perhaps more useful for applications.

Theorem 3.2. If(a, b),(x, y)∈A2,then

kax±byk ≤min{ka(x±y)k,kb(x±y)k}+kb−akmax{kxk,kyk}

(3.3)

≤ kx±ykmin{kak,kbk}+kb−akmax{kxk,kyk}

and

kax±byk ≤ kx±ykmax{kak,kbk}+ min{k(b−a)xk,k(b−a)yk}

(3.4)

≤ kx±ykmax{kak,kbk}+kb−akmin{kxk,kyk}.

Proof. Observe thatk(b−a)xk ≤ kb−ak kxkandk(b−a)yk ≤ kb−ak kyk, and then (3.5) k(b−a)xk,k(b−a)yk ≤ kb−akmax{kxk,kyk},

which implies that

min{ka(x±y)k+k(b−a)yk,kb(x±y)k+k(b−a)xk}

≤min{ka(x±y)k,kb(x±y)k}+kb−akmax{kxk,kyk}

≤ kx±ykmin{kak,kbk}+kb−akmax{kxk,kyk}. Utilising the second inequality in (3.1), we deduce (3.3).

Also, sinceka(x±y)k ≤ kak kx±ykandkb(x±y)k ≤ kbk kx±yk,hence ka(x±y)k,kb(x±y)k ≤ kx±ykmax{kak,kbk}, which implies that

min{ka(x±y)k+k(b−a)yk,kb(x±y)k+k(b−a)xk}

≤ kx±ykmax{kak,kbk}+ min{k(b−a)xk,k(b−a)yk}

≤ kx±ykmax{kak,kbk}+kb−akmin{kxk,kyk},

and the inequality (3.4) is also proved.

The following corollary may be more useful for applications.

(7)

Corollary 3.3. If(a, b),(x, y)∈A2,then

(3.6) kax±byk ≤ kx±yk · kak+kbk

2 +kb−ak · kxk+kyk

2 .

Proof. Follows from Theorem 3.2 by adding the last inequality in (3.3) to the last inequality (3.4) and utilising the property thatmin{α, β}+ max{α, β}=α+β, α, β ∈R.

The following lower bounds forkax±bykcan be stated as well:

Theorem 3.4. For any(a, b)and(x, y)∈A2,we have:

max{|kaxk − kayk|,|kbxk − kbyk|} − kb−akmax{kxk,kyk}

(3.7)

≤max{ka(x±y)k,kb(x±y)k} − kb−akmax{kxk,kyk}

≤ kax±byk and

min{|kaxk − kayk|,|kbxk − kbyk|} − kb−akmin{kxk,kyk}

(3.8)

≤min{|kaxk − kayk|,|kbxk − kbyk|} −min{k(b−a)xk,k(b−a)yk}

≤ kax±byk.

Proof. Observe that, by (3.5) we have that

max{ka(x±y)k − k(b−a)yk,kb(x±y)k − k(b−a)xk}

≥max{kax±ayk,kbx±byk} − kb−akmax{kxk,kyk}

≥max{|kaxk − kayk|,|kbxk − kbyk|} − kb−akmax{kxk,kyk}

and on utilising the first inequality in (3.1), the inequality (3.7) is proved.

Observe also that, since

ka(x±y)k,kb(x±y)k ≥min{|kaxk − kayk|,|kbxk − kbyk|}, then

max{ka(x±y)k − k(b−a)yk,kb(x±y)k − k(b−a)xk}

≥min{|kaxk − kayk|,|kbxk − kbyk|} −min{k(b−a)xk,k(b−a)yk}

≥min{|kaxk − kayk|,|kbxk − kbyk|} − kb−akmin{kxk,kyk}.

Then, by the first inequality in (3.1), we deduce (3.8).

Corollary 3.5. For any(a, b),(x, y)∈A2, we have

(3.9) 1

2·[|kaxk − kayk|+|kbxk − kbyk|]− kb−ak · kxk+kyk

2 ≤ kax±byk. The proof follows from Theorem 3.4 by adding (3.7) to (3.8). The details are omitted.

4. APPLICATIONS FORTWOINVERTIBLE ELEMENTS

In this section we assume that A is a unital algebra with the unity1.The following results provide some upper bounds for the quantitykkx−1kx± ky−1kyk,wherexandyare invertible inA.

Proposition 4.1. If(x, y)∈A2 are invertible, then (4.1)

x−1

x± y−1

y

≤ kx±ykmin x−1

, y−1

+

x−1

y−1

max{kxk,kyk}

(8)

and (4.2)

x−1

x± y−1

y

≤ kx±ykmax x−1

, y−1

+

x−1

y−1

min{kxk,kyk}. Proof. Follows by Theorem 3.2 on choosinga =kx−1k ·1andb=ky−1k ·1.

Corollary 4.2. With the above assumption forxandy,we have (4.3)

x−1

x± y−1

y

≤ kx±yk · kx−1k+ky−1k

2 +

x−1

− y−1

·kxk+kyk

2 .

Lower bounds forkkx−1kx± ky−1kykare provided below:

Proposition 4.3. If(x, y)∈A2 are invertible, then (4.4) kx±ykmax

x−1 ,

y−1

x−1

− y−1

max{kxk,kyk}

x−1

y−1 y

and

(4.5) kx±ykmin x−1

, y−1

x−1

y−1

min{kxk,kyk}

x−1

y−1 y

. Proof. The first inequality in (4.4) follows from the second inequality in (3.7) on choosing a=kx−1k ·1andb =ky−1k ·1.

We know from the proof of Theorem 3.4 that

(4.6) max{ka(x±y)k − k(b−a)yk,kb(x±y)k − k(b−a)xk} ≤ kax±byk. If in this inequality we choosea=kx−1k ·1andb =ky−1k ·1,then we get

x−1

y−1 y

≥max x−1

kx±yk −

x−1

y−1

kyk, y−1

kx±yk −

x−1

y−1 kxk

≥ kx±ykmin x−1

, y−1

x−1

y−1

min{kxk,kyk}

and the inequality (4.5) is obtained.

Corollary 4.4. If(x, y)∈A2 are invertible, then (4.7) kx±yk ·kx−1k+ky−1k

2 −

x−1

− y−1

·kxk+kyk

2 ≤

x−1

x± y−1

y . Remark 4.5. We observe that the inequalities (4.3) and (4.7) are in fact equivalent with:

(4.8)

x−1

y−1 y

− kx±yk · kx−1k+ky−1k 2

x−1

y−1

·kxk+kyk

2 .

Now we consider the dual expansion kky−1kx± kx−1kyk, for which the following upper bounds can be stated.

Proposition 4.6. If(x, y)are invertible inA,then (4.9)

y−1

x± x−1

y

≤ kx±ykmin x−1

, y−1

+

x−1

y−1

max{kxk,kyk}

(9)

and (4.10)

y−1

x± x−1

y

≤ kx±ykmax x−1

, y−1

+

x−1

y−1

min{kxk,kyk}. In particular,

(4.11)

y−1

x−1 y

≤ kx±yk ·kx−1k+ky−1k

2 +

x−1

− y−1

· kxk+kyk

2 .

The proof follows from Theorem 3.2 on choosinga=ky−1k ·1andb =kx−1k ·1.

The lower bounds for the quantitykky−1kx± kx−1kykare incorporated in:

Proposition 4.7. If(x, y)are invertible inA,then (4.12) kx±ykmax

x−1 ,

y−1

x−1

− y−1

max{kxk,kyk}

y−1

x−1 y

and

(4.13) kx±ykmin x−1

, y−1

x−1

y−1

min{kxk,kyk}

y−1

x−1 y

. In particular,

(4.14) kx±yk · kx−1k+ky−1k

2 −

x−1

− y−1

· kxk+kyk 2

y−1

x−1 y

. Remark 4.8. We observe that the inequalities (4.11) and (4.14) are equivalent with

(4.15)

y−1

x−1 y

− kx±yk · kx−1k+ky−1k 2

x−1

y−1

· kxk+kyk

2 .

REFERENCES

[1] S.S. DRAGOMIR, A generalisation of the Peˇcari´c-Raji´c inequality in normed linear spaces, Preprint.

RGMIA Res. Rep. Coll., 10(3) (2007), Art. 3. [ONLINE:http://rgmia.vu.edu.au/v10n3.

html].

[2] J. PE ˇCARI ´C AND R. RAJI ´C, The Dunkl-Williams inequality with n elements in normed linear spaces, Math. Ineq. & Appl., 10(2) (2007), 461–470.

[3] M. KATO, K.-S. SAITO AND T. TAMURA, Sharp triangle inequality and its reverses in Banach spaces, Math. Ineq. & Appl., 10(3) (2007).

[4] P.R. MERCER, The Dunkl-Williams inequality in an inner product space, Math. Ineq. & Appl., 10(2) (2007), 447–450.

[5] L. MALIGRANDA, Simple norm inequalities, Amer. Math. Monthly, 113 (2006), 256–260.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

For the biggest, especially for the 30-task instances the usage of inequalities I, T and K, and the separation of non-preemptive inequalities P increase the number of instances that

In these notes we obtain inequalities for the linear operator T R in the Finsler norm k·k p,a;s as by-products of the complex interpolation method and Kissin’s

, n} are el- ements in a normed algebra (A, k·k) over the real or complex number field K... Inequalities in Normed Algebras

Then provided that 1 ≤ k ≤ n − 1 we give certain lower estimates for expressions of the above form, that extend some cyclic inequalities of Mitrinovic and others.. We also give

• Assume that K is a field admitting a deterministic polynomial time method for computing the Jacobson radical of finite dimensional algebras over K.. Then there is a

Using the upper bound n k ( 2k−1 k −1 ) for the number of maximal intersecting families in [n] k obtained in [1] (see Lemma 10 for the proof of a similar statement), combined

Gong, “On the determinants and inverses of skew circulant and skew left circulant matrices with Fibonacci and Lucas numbers,” WSEAS Trans.. Wang, “The upper bound estimation on

Let n be a positive integer number, the order (or rank) of appearance of n in the Fibonacci sequence, denoted by ´.n/, is defined as the smal- lest positive integer k, such that n j F