• Nem Talált Eredményt

ON SOME INEQUALITIES IN NORMED ALGEBRAS

N/A
N/A
Protected

Academic year: 2022

Ossza meg "ON SOME INEQUALITIES IN NORMED ALGEBRAS"

Copied!
19
0
0

Teljes szövegt

(1)

Inequalities in Normed Algebras Sever S. Dragomir vol. 9, iss. 1, art. 5, 2008

Title Page

Contents

JJ II

J I

Page1of 19 Go Back Full Screen

Close

ON SOME INEQUALITIES IN NORMED ALGEBRAS

SEVER S. DRAGOMIR

School of Computer Science and Mathematics Victoria University

PO Box 14428, Melbourne City 8001, VIC, Australia

EMail:sever.dragomir@vu.edu.au URL:http://rgmia.vu.edu.au/dragomir

Received: 24 October, 2007 Accepted: 29 October, 2007 Communicated by: S. Saitoh

2000 AMS Sub. Class.: Primary 46H05; Secondary 47A10.

Key words: Normed algebras, Unital algebras, Generalised triangle inequality.

Abstract: Some inequalities in normed algebras that provides lower and upper bounds for the norm ofPn

j=1ajxjare obtained. Applications for estimating the quantities

x−1

x± y−1

y and

y−1

x± x−1

y

for invertible elementsx, y in unital normed algebras are also given.

(2)

Inequalities in Normed Algebras Sever S. Dragomir vol. 9, iss. 1, art. 5, 2008

Title Page Contents

JJ II

J I

Page2of 19 Go Back Full Screen

Close

Contents

1 Introduction 3

2 Inequalities fornPairs of Elements 6

3 Inequalities for Two Pairs of Elements 11

4 Applications for Two Invertible Elements 15

(3)

Inequalities in Normed Algebras Sever S. Dragomir vol. 9, iss. 1, art. 5, 2008

Title Page Contents

JJ II

J I

Page3of 19 Go Back Full Screen

Close

1. Introduction

In [1], in order to provide a generalisation of a norm inequality forn vectors in a normed linear space obtained by Peˇcari´c and Raji´c in [2], the author obtained the following result:

(1.1) max

k∈{1,...,n}

(

k|

n

X

j=1

xj

n

X

j=1

j −αk| kxjk )

n

X

j=1

αjxj

≤ min

k∈{1,...,n}

(

k|

n

X

j=1

xj

+

n

X

j=1

j−αk| kxjk )

,

where xj, j ∈ {1, . . . , n} are vectors in the normed linear space (X,k·k) over K whileαj, j∈ {1, . . . , n}are scalars inK(K=C,R).

Forαk = kx1

kk, withxk 6= 0, k ∈ {1, . . . , n} the above inequality produces the following result established by Peˇcari´c and Raji´c in [2]:

(1.2) max

k∈{1,...,n}

( 1 kxkk

"

n

X

j=1

xj

n

X

j=1

|kxjk − kxkk|

#)

n

X

j=1

xj kxjk

≤ min

k∈{1,...,n}

( 1 kxkk

"

n

X

j=1

xj

+

n

X

j=1

|kxjk − kxkk|

#) ,

which implies the following refinement and reverse of the generalised triangle in-

(4)

Inequalities in Normed Algebras Sever S. Dragomir vol. 9, iss. 1, art. 5, 2008

Title Page Contents

JJ II

J I

Page4of 19 Go Back Full Screen

Close

equality due to M. Kato et al. [3]:

(1.3) min

k∈{1,...,n}{kxkk}

"

n−

n

X

j=1

xj kxjk

#

n

X

j=1

kxjk −

n

X

j=1

xj

≤ max

k∈{1,...,n}{kxkk}

"

n−

n

X

j=1

xj kxjk

# .

The other natural choice,αk=kxkk, k ∈ {1, . . . , n}in (1.1) produces the result

(1.4) max

k∈{1,...,n}

( kxkk

n

X

j=1

xj

n

X

j=1

|kxjk − kxkk| kxjk )

n

X

j=1

kxjkxj

≤ min

k∈{1,...,n}

( kxkk

n

X

j=1

xj

+

n

X

j=1

|kxjk − kxkk| kxjk )

,

which in its turn implies another refinement and reverse of the generalised triangle inequality:

(0≤) Pn

j=1kxjk2

Pn

j=1kxjkxj

k∈{1,...,n}max {kxkk}

(1.5)

n

X

j=1

kxjk −

n

X

j=1

xj

≤ Pn

j=1kxjk2

Pn

j=1kxjkxj min

k∈{1,...,n}{kxkk} , providedxk6= 0, k ∈ {1, . . . , n}.

(5)

Inequalities in Normed Algebras Sever S. Dragomir vol. 9, iss. 1, art. 5, 2008

Title Page Contents

JJ II

J I

Page5of 19 Go Back Full Screen

Close

In [2], the authors have shown that the casen = 2in (1.2) produces the Maligranda- Mercer inequality:

(1.6) kx−yk − |kxk − kyk|

min{kxk,kyk} ≤

x

kxk − y kyk

≤ kx−yk+|kxk − kyk|

max{kxk,kyk} , for anyx, y ∈X\ {0}.

We notice that Maligranda proved the right inequality in [5] while Mercer proved the left inequality in [4].

We have shown in [1] that the following dual result for two vectors is also valid:

(0≤) kx−yk

min{kxk,kyk} − |kxk − kyk|

max{kxk,kyk}

(1.7)

x

kyk − y kxk

≤ kx−yk

max{kxk,kyk}+ |kxk − kyk|

min{kxk,kyk}, for anyx, y ∈X\ {0}.

Motivated by the above results, the aim of the present paper is to establish lower and upper bounds for the norm ofPn

j=1ajxj, where aj, xj, j ∈ {1, . . . , n}are el- ements in a normed algebra (A,k·k) over the real or complex number field K. In the case where(A,k·k)is a unital algebra and x, y are invertible, lower and upper bounds for the quantities

x−1

y−1 y

and

y−1

x−1 y

are provided as well.

(6)

Inequalities in Normed Algebras Sever S. Dragomir vol. 9, iss. 1, art. 5, 2008

Title Page Contents

JJ II

J I

Page6of 19 Go Back Full Screen

Close

2. Inequalities for n Pairs of Elements

Let(A,k·k)be a normed algebra over the real or complex number fieldK. Theorem 2.1. If(aj, xj)∈A2,j ∈ {1, . . . , n},then

k∈{1,...,n}max (

ak n

X

j=1

xj

!

n

X

j=1

kaj −akk kxjk ) (2.1)

≤ max

k∈{1,...,n}

(

ak

n

X

j=1

xj

!

n

X

j=1

k(aj −ak)xjk )

n

X

j=1

ajxj

≤ min

k∈{1,...,n}

(

ak

n

X

j=1

xj

!

+

n

X

j=1

k(aj−ak)xjk )

≤ min

k∈{1,...,n}

(

ak n

X

j=1

xj

!

+

n

X

j=1

kaj−akk kxjk )

.

Proof. Observe that for anyk ∈ {1, . . . , n}we have

n

X

j=1

ajxj =ak n

X

j=1

xj

! +

n

X

j=1

(aj −ak)xj.

Taking the norm and utilising the triangle inequality and the normed algebra proper-

(7)

Inequalities in Normed Algebras Sever S. Dragomir vol. 9, iss. 1, art. 5, 2008

Title Page Contents

JJ II

J I

Page7of 19 Go Back Full Screen

Close

ties, we have

n

X

j=1

ajxj

ak

n

X

j=1

xj

!

+

n

X

j=1

(aj−ak)xj

ak

n

X

j=1

xj

!

+

n

X

j=1

k(aj−ak)xjk

ak

n

X

j=1

xj

!

+

n

X

j=1

kaj −akk kxjk,

for anyk ∈ {1, . . . , n},which implies the second part in (2.1).

Observing that

n

X

j=1

ajxj =ak n

X

j=1

xj

!

n

X

j=1

(ak−aj)xj

and utilising the continuity of the norm, we have

n

X

j=1

ajxj

ak

n

X

j=1

xj

!

n

X

j=1

(ak−aj)xj

ak

n

X

j=1

xj

!

n

X

j=1

(ak−aj)xj

ak

n

X

j=1

xj

!

n

X

j=1

k(ak−aj)xjk

(8)

Inequalities in Normed Algebras Sever S. Dragomir vol. 9, iss. 1, art. 5, 2008

Title Page Contents

JJ II

J I

Page8of 19 Go Back Full Screen

Close

ak

n

X

j=1

xj

!

n

X

j=1

kak−ajk kxjk

for anyk ∈ {1, . . . , n},which implies the first part in (2.1).

Remark 1. If there existsr >0so thatkaj −akk ≤rkakkfor anyj, k∈ {1, . . . , n}, then, by the second part of (2.1), we have

(2.2)

n

X

j=1

ajxj

≤ min

k∈{1,...,n}{kakk}

"

n

X

j=1

xj

+r

n

X

j=1

kxjk

# .

Corollary 2.2. Ifxj ∈A, j ∈ {1, . . . , n},then

k∈{1,...,n}max (

xk

n

X

j=1

xj

!

n

X

j=1

kxj−xkk kxjk ) (2.3)

≤ max

k∈{1,...,n}

(

xk

n

X

j=1

xj

!

n

X

j=1

k(xj−xk)xjk )

n

X

j=1

x2j

≤ min

k∈{1,...,n}

(

xk

n

X

j=1

xj

!

+

n

X

j=1

k(xj −xk)xjk )

≤ min

k∈{1,...,n}

(

xk

n

X

j=1

xj

!

+

n

X

j=1

kxj−xkk kxjk )

.

Corollary 2.3. Assume thatAis a unital normed algebra. Ifxj ∈ Aare invertible

(9)

Inequalities in Normed Algebras Sever S. Dragomir vol. 9, iss. 1, art. 5, 2008

Title Page Contents

JJ II

J I

Page9of 19 Go Back Full Screen

Close

for anyj ∈ {1, . . . , n},then

k∈{1,...,n}min x−1k

" n X

j=1

kxjk −

n

X

j=1

xj

# (2.4)

n

X

j=1

x−1j

kxjk −

n

X

j=1

x−1j xj

≤ max

k∈{1,...,n}

x−1k

" n X

j=1

kxjk −

n

X

j=1

xj

# .

Proof. If1∈Ais the unity, then on choosingak = x−1k

·1in (2.1) we get

k∈{1,...,n}max (

x−1k

n

X

j=1

xj

n

X

j=1

x−1j

x−1k kxjk

) (2.5)

n

X

j=1

x−1j xj

≤ min

k∈{1,...,n}

( x−1k

n

X

j=1

xj

+

n

X

j=1

x−1j

x−1k kxjk

) .

Now, assume that min

k∈{1,...,n}

x−1k =

x−1k

0

.Then

x−1k

0

n

X

j=1

xj

+

n

X

j=1

x−1j

x−1k

0

kxjk

(10)

Inequalities in Normed Algebras Sever S. Dragomir vol. 9, iss. 1, art. 5, 2008

Title Page Contents

JJ II

J I

Page10of 19 Go Back Full Screen

Close

=− x−1k

0

n

X

j=1

kxjk −

n

X

j=1

xj

! +

n

X

j=1

x−1j kxjk. Utilising the second inequality in (2.5), we deduce

x−1k

0

n

X

j=1

kxjk −

n

X

j=1

xj

!

n

X

j=1

x−1j

kxjk −

n

X

j=1

x−1j xj

and the first inequality in (2.4) is proved.

The second part of (2.4) can be proved in a similar manner, however, the details are omitted.

Remark 2. An equivalent form of (2.4) is:

(2.6) Pn

j=1

x−1j

kxjk −

Pn j=1

x−1j xj

k∈{1,...,n}max x−1k

n

X

j=1

kxjk −

n

X

j=1

xj

≤ Pn

j=1

x−1j

kxjk −

Pn j=1

x−1j xj

k∈{1,...,n}min x−1k

,

which provides both a refinement and a reverse inequality for the generalised triangle inequality.

(11)

Inequalities in Normed Algebras Sever S. Dragomir vol. 9, iss. 1, art. 5, 2008

Title Page Contents

JJ II

J I

Page11of 19 Go Back Full Screen

Close

3. Inequalities for Two Pairs of Elements

The following particular case of Theorem2.1is of interest for applications.

Lemma 3.1. If(a, b),(x, y)∈A2,then

(3.1) max{ka(x±y)k − k(b−a)yk,kb(x±y)k − k(b−a)xk}

≤ kax±byk ≤min{ka(x±y)k+k(b−a)yk,kb(x±y)k+k(b−a)xk}

or, equivalently, 1

2{ka(x±y)k+kb(x±y)k −[k(b−a)yk+k(b−a)xk]}

(3.2)

+ 1

2|ka(x±y)k − kb(x±y)k+k(b−a)yk − k(b−a)xk|

≤ kax±byk

≤ 1

2{ka(x±y)k+kb(x±y)k+ [k(b−a)yk+k(b−a)xk]}

− 1

2|ka(x±y)k+kb(x±y)k − k(b−a)yk − k(b−a)xk|. Proof. The inequality (3.1) follows from Theorem 2.1 forn = 2, a1 = a, a2 = b, x1 =xandx2 =±y.

Utilising the properties of real numbers, min{α, β}= 1

2[α+β− |α−β|], max{α, β}= 1

2[α+β+|α−β|] ; α, β ∈R; the inequality (3.1) is clearly equivalent with (3.2).

The following result contains some upper bounds forkax±bykthat are perhaps more useful for applications.

(12)

Inequalities in Normed Algebras Sever S. Dragomir vol. 9, iss. 1, art. 5, 2008

Title Page Contents

JJ II

J I

Page12of 19 Go Back Full Screen

Close

Theorem 3.2. If(a, b),(x, y)∈A2,then

kax±byk ≤min{ka(x±y)k,kb(x±y)k}+kb−akmax{kxk,kyk}

(3.3)

≤ kx±ykmin{kak,kbk}+kb−akmax{kxk,kyk}

and

kax±byk ≤ kx±ykmax{kak,kbk}+ min{k(b−a)xk,k(b−a)yk}

(3.4)

≤ kx±ykmax{kak,kbk}+kb−akmin{kxk,kyk}.

Proof. Observe thatk(b−a)xk ≤ kb−ak kxkandk(b−a)yk ≤ kb−ak kyk, and then

(3.5) k(b−a)xk,k(b−a)yk ≤ kb−akmax{kxk,kyk}, which implies that

min{ka(x±y)k+k(b−a)yk,kb(x±y)k+k(b−a)xk}

≤min{ka(x±y)k,kb(x±y)k}+kb−akmax{kxk,kyk}

≤ kx±ykmin{kak,kbk}+kb−akmax{kxk,kyk}. Utilising the second inequality in (3.1), we deduce (3.3).

Also, sinceka(x±y)k ≤ kak kx±ykandkb(x±y)k ≤ kbk kx±yk,hence ka(x±y)k,kb(x±y)k ≤ kx±ykmax{kak,kbk},

which implies that

min{ka(x±y)k+k(b−a)yk,kb(x±y)k+k(b−a)xk}

≤ kx±ykmax{kak,kbk}+ min{k(b−a)xk,k(b−a)yk}

≤ kx±ykmax{kak,kbk}+kb−akmin{kxk,kyk}, and the inequality (3.4) is also proved.

(13)

Inequalities in Normed Algebras Sever S. Dragomir vol. 9, iss. 1, art. 5, 2008

Title Page Contents

JJ II

J I

Page13of 19 Go Back Full Screen

Close

The following corollary may be more useful for applications.

Corollary 3.3. If(a, b),(x, y)∈A2,then (3.6) kax±byk ≤ kx±yk · kak+kbk

2 +kb−ak · kxk+kyk

2 .

Proof. Follows from Theorem 3.2 by adding the last inequality in (3.3) to the last inequality (3.4) and utilising the property thatmin{α, β}+ max{α, β} = α+β, α, β ∈R.

The following lower bounds forkax±bykcan be stated as well:

Theorem 3.4. For any(a, b)and(x, y)∈A2,we have:

max{|kaxk − kayk|,|kbxk − kbyk|} − kb−akmax{kxk,kyk}

(3.7)

≤max{ka(x±y)k,kb(x±y)k} − kb−akmax{kxk,kyk}

≤ kax±byk and

min{|kaxk − kayk|,|kbxk − kbyk|} − kb−akmin{kxk,kyk}

(3.8)

≤min{|kaxk − kayk|,|kbxk − kbyk|} −min{k(b−a)xk,k(b−a)yk}

≤ kax±byk.

Proof. Observe that, by (3.5) we have that

max{ka(x±y)k − k(b−a)yk,kb(x±y)k − k(b−a)xk}

≥max{kax±ayk,kbx±byk} − kb−akmax{kxk,kyk}

≥max{|kaxk − kayk|,|kbxk − kbyk|} − kb−akmax{kxk,kyk}

(14)

Inequalities in Normed Algebras Sever S. Dragomir vol. 9, iss. 1, art. 5, 2008

Title Page Contents

JJ II

J I

Page14of 19 Go Back Full Screen

Close

and on utilising the first inequality in (3.1), the inequality (3.7) is proved.

Observe also that, since

ka(x±y)k,kb(x±y)k ≥min{|kaxk − kayk|,|kbxk − kbyk|}, then

max{ka(x±y)k − k(b−a)yk,kb(x±y)k − k(b−a)xk}

≥min{|kaxk − kayk|,|kbxk − kbyk|} −min{k(b−a)xk,k(b−a)yk}

≥min{|kaxk − kayk|,|kbxk − kbyk|} − kb−akmin{kxk,kyk}. Then, by the first inequality in (3.1), we deduce (3.8).

Corollary 3.5. For any(a, b),(x, y)∈A2, we have (3.9) 1

2·[|kaxk − kayk|+|kbxk − kbyk|]− kb−ak · kxk+kyk

2 ≤ kax±byk. The proof follows from Theorem 3.4 by adding (3.7) to (3.8). The details are omitted.

(15)

Inequalities in Normed Algebras Sever S. Dragomir vol. 9, iss. 1, art. 5, 2008

Title Page Contents

JJ II

J I

Page15of 19 Go Back Full Screen

Close

4. Applications for Two Invertible Elements

In this section we assume thatAis a unital algebra with the unity 1.The following results provide some upper bounds for the quantitykkx−1kx± ky−1kyk,wherex andyare invertible inA.

Proposition 4.1. If(x, y)∈A2 are invertible, then (4.1)

x−1

x± y−1

y

≤ kx±ykmin x−1

, y−1

+

x−1

y−1

max{kxk,kyk}

and (4.2)

x−1

x± y−1

y

≤ kx±ykmax x−1

, y−1

+

x−1

y−1

min{kxk,kyk}. Proof. Follows by Theorem3.2on choosinga=kx−1k ·1andb=ky−1k ·1.

Corollary 4.2. With the above assumption forxandy,we have

(4.3)

x−1

x± y−1

y

≤ kx±yk · kx−1k+ky−1k

2 +

x−1

− y−1

·kxk+kyk

2 .

Lower bounds forkkx−1kx± ky−1kykare provided below:

Proposition 4.3. If(x, y)∈A2 are invertible, then (4.4) kx±ykmax

x−1 ,

y−1

x−1

− y−1

max{kxk,kyk}

x−1

y−1 y

(16)

Inequalities in Normed Algebras Sever S. Dragomir vol. 9, iss. 1, art. 5, 2008

Title Page Contents

JJ II

J I

Page16of 19 Go Back Full Screen

Close

and

(4.5) kx±ykmin x−1

, y−1

x−1

y−1

min{kxk,kyk}

x−1

y−1 y

. Proof. The first inequality in (4.4) follows from the second inequality in (3.7) on choosinga=kx−1k ·1andb =ky−1k ·1.

We know from the proof of Theorem3.4that

(4.6) max{ka(x±y)k − k(b−a)yk,kb(x±y)k − k(b−a)xk}

≤ kax±byk. If in this inequality we choosea=kx−1k ·1andb =ky−1k ·1,then we get

x−1

y−1 y

≥maxn x−1

kx±yk −

x−1

y−1 kyk, y−1

kx±yk −

x−1

y−1 kxko

≥ kx±ykmin x−1

, y−1

x−1

y−1

min{kxk,kyk}

and the inequality (4.5) is obtained.

Corollary 4.4. If(x, y)∈A2 are invertible, then

(4.7) kx±yk · kx−1k+ky−1k

2 −

x−1

− y−1

· kxk+kyk 2

x−1

y−1 y

.

(17)

Inequalities in Normed Algebras Sever S. Dragomir vol. 9, iss. 1, art. 5, 2008

Title Page Contents

JJ II

J I

Page17of 19 Go Back Full Screen

Close

Remark 3. We observe that the inequalities (4.3) and (4.7) are in fact equivalent with:

(4.8)

x−1

y−1 y

− kx±yk · kx−1k+ky−1k 2

x−1

y−1

·kxk+kyk

2 .

Now we consider the dual expansionkky−1kx± kx−1kyk, for which the follow- ing upper bounds can be stated.

Proposition 4.5. If(x, y)are invertible inA,then (4.9)

y−1

x± x−1

y

≤ kx±ykmin x−1

, y−1

+

x−1

y−1

max{kxk,kyk}

and (4.10)

y−1

x± x−1

y

≤ kx±ykmax x−1

, y−1

+

x−1

y−1

min{kxk,kyk}. In particular,

(4.11)

y−1

x−1 y

≤ kx±yk · kx−1k+ky−1k

2 +

x−1

− y−1

·kxk+kyk

2 .

The proof follows from Theorem3.2on choosinga=ky−1k·1andb=kx−1k·1.

The lower bounds for the quantitykky−1kx± kx−1kykare incorporated in:

(18)

Inequalities in Normed Algebras Sever S. Dragomir vol. 9, iss. 1, art. 5, 2008

Title Page Contents

JJ II

J I

Page18of 19 Go Back Full Screen

Close

Proposition 4.6. If(x, y)are invertible inA,then (4.12) kx±ykmax

x−1 ,

y−1

x−1

− y−1

max{kxk,kyk}

y−1

x−1 y

and

(4.13) kx±ykmin x−1

, y−1

x−1

y−1

min{kxk,kyk}

y−1

x−1 y

. In particular,

(4.14) kx±yk · kx−1k+ky−1k

2 −

x−1

− y−1

· kxk+kyk 2

y−1

x−1 y

. Remark 4. We observe that the inequalities (4.11) and (4.14) are equivalent with (4.15)

y−1

x−1 y

− kx±yk · kx−1k+ky−1k 2

x−1

y−1

·kxk+kyk

2 .

(19)

Inequalities in Normed Algebras Sever S. Dragomir vol. 9, iss. 1, art. 5, 2008

Title Page Contents

JJ II

J I

Page19of 19 Go Back Full Screen

Close

References

[1] S.S. DRAGOMIR, A generalisation of the Peˇcari´c-Raji´c inequality in normed linear spaces, Preprint. RGMIA Res. Rep. Coll., 10(3) (2007), Art. 3. [ONLINE:

http://rgmia.vu.edu.au/v10n3.html].

[2] J. PE ˇCARI ´CANDR. RAJI ´C, The Dunkl-Williams inequality withnelements in normed linear spaces, Math. Ineq. & Appl., 10(2) (2007), 461–470.

[3] M. KATO, K.-S. SAITO AND T. TAMURA, Sharp triangle inequality and its reverses in Banach spaces, Math. Ineq. & Appl., 10(3) (2007).

[4] P.R. MERCER, The Dunkl-Williams inequality in an inner product space, Math.

Ineq. & Appl., 10(2) (2007), 447–450.

[5] L. MALIGRANDA, Simple norm inequalities, Amer. Math. Monthly, 113 (2006), 256–260.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

number of clusters present in the dataset (the most likely parameter K), in Figure 1, we all STRUCTURE runs. Over the entire cattle population, increased from K=1 to K=3, after

It is supposed that the performance criterion in the dynamic optimization problem has its range in a finite-dimensional partially ordered linear normed space

K´ erchy , On the hyperinvariant subspace problem for asymptot- ically nonvanishing contractions, Operator Theory Adv.. K´ erchy , Quasianalytic contractions and function

Assuming the ETH, Point Guard Art Gallery is not solvable in time f (k) n o(k/ log k) , for any computable function f, even on simple polygons, where n is the number of vertices of

Continuous Kleene ω-algebras are idempotent complete semiring-semimodule pairs, and conceptually, ∗ -continuous Kleene ω-algebras are a generalization of continuous Kleene ω-algebras

, n} are elements in a normed algebra (A, k·k) over the real or complex number field K... I NEQUALITIES FOR T WO P AIRS OF

MAC GREGOR, Linear Problems and Con- vexity Techniques in Geometric Function Theory, Pitman Advanced Publishing Program, 1984.

Key words: Smooth normed spaces, quasi-inner product spaces, oriented (non-oriented) B−angle between two vectors, oriented (non-oriented) g−angle between two vectors.. Abstract: It