• Nem Talált Eredményt

AMPEROMETRIA (VOLTAMMETRIA)a mérendő oldatba merülő (munka-) elektródra feszültséget kapcsolva, a rendszerben folyó áramot mérjük és ebből nyerünk analitikai információtÁram akkor folyik, ha mindkét elektródon e

N/A
N/A
Protected

Academic year: 2023

Ossza meg "AMPEROMETRIA (VOLTAMMETRIA)a mérendő oldatba merülő (munka-) elektródra feszültséget kapcsolva, a rendszerben folyó áramot mérjük és ebből nyerünk analitikai információtÁram akkor folyik, ha mindkét elektródon e"

Copied!
25
0
0

Teljes szövegt

(1)

AMPEROMETRIA (VOLTAMMETRIA)

a mérendő oldatba merülő (munka-) elektródra feszültséget kapcsolva, a rendszerben folyó áramot

mérjük és ebből nyerünk analitikai információt

Áram akkor folyik, ha mindkét elektródon e

-

átadás vagy átvétel (azaz kémiai reakció) játszódik le.

Lényeges eltérés a potenciometriától: amperometria során a rendszert kibillentjük az egyensúlyi

állapotából.

(2)

Az áram létrejöttének feltételei:

• e

-

leadásra ill. felvételre képes komponens (depolarizátor)

• megfelelő, az egyensúlyitól eltérő potenciál

• az elektródaktív komponensnek transzportja (az

elektródra kell jutniuk ill. a reakció után onnan el kell távozni)

Transzport folyamatok

• migráció (E-tér hatására töltéselmozdulás)

• diffúzió (koncentrációgrádiens)

• konvekció (kavarás)

Az áram erősségét az elektronátmenetet megelőző egyes

részfolyamatok közül a leglassúbb határozza meg.

(3)

Egyenáramú polarográfia (DC polarográfia)

Munkaelektród: csepegő Hg-elektród (esetleg Pt vagy C, ill. Ga) - előnyei

1. polarizálható (  Ag/AgCl elektród v. Hg-tócsa elektród)

2. nagy rajta a H túlfeszültsége (-2,5 V)

3. anódos oldódása + 0,3-0,4 V-nál következik be (hátrány)

4. amalgámképzés (csökken a fémek redukciós

potenciálja)

(4)

A polarográfiás mérés eredménye a polarogram (I = f (V))

csepegő Hg-elektródon

(5)

A polarográf részei

(6)

A diffúzós áram

• migráció minimalizálása (inert vezetősó)

• konvekció minimalizálása (nem keverjük az oldatot)

• ekkor az elektród felületére depolarizátor csak diffúzió révén kerül - diffúziós áram

Ilkovic egyenlet

i

d

= KnD

1/2

m

2/3

t

1/6

c ;

i

d

diffúziós határáram

n depolarizátor vegyértéke D diffúziós állandó

m higany kifolyási sebessége t csepp élettartama

c depolarizátor koncentrációja

i = c; : Ilkovic állandó

(7)

Koncentrációmeghatározás DC polarográfiával

• kalibrációs egyenes felvételével

• standard addíciós módszerrel

x k

x x

k

k k x

x

i v v i v

c v c i

 

• többszörös standard addícióval

(8)

Az elektródpotenciál (E) és a polarográfiás áram (id) intenzitása közötti összefüggés

k a d

o

i

i i

nf E RT

E

 

'

ln

• féllépcsőpotenciál meghatározása lehetséges belőle

• ox és red forma diffúziós állandóinak aránya (~konst.)

• ideális viselkedéstől való eltérés mértékének jellemzése

i i i

f n E RT

E

o d

''

ln

: átlépési tényező, reverzibilitás mértékét fejezi ki

(9)

A polarográfia néhány alkalmazása

• fémek minőségi és mennyiségi analízise

• fémkomplexek összetételének és egyensúlyi

állandóinak meghatározása (de Ford-Hume egyenlet)

• szerves vegyületek mennyiségi analízise

• katódos redukció (alkének, aldehidek, karbonsavak)

• anódos oxidáció (hidrokinonok, endiolok)

• speciális polarográfiás módszerek

• DPP módszer

• inverz polarográfia (függő Hg-csepp)

(10)

Inverz polarográfia

(ASV = anodic stripping voltammetry)

(11)

Amperometriás titrálások

1. Amperometriás titrálások egy polarizálható elektród alkalmazásával - példák

a. Pb2+ + CrO42-  PbCrO4 E = 0,0V (konst.) b. Pb2+ + SO42-  PbSO4 E = 0,8V (konst.) c. Pb2+ + CrO42-  PbCrO4 E = 0,8V (konst.)

(12)

Amperometriás titrálások

2. Amperometriás titrálások két polarizálható elektród alkalmazásával (biamperometriának is hívják)

(13)

Amperometriás titrálások

1. Csak akkor folyik áram, ha az oldatban egy reverzibilis redox rendszer mindkét formája jelen van az oldatban

2. Az áramerősséget a kisebb koncentrációban jelenlévő komponens határozza meg

• feszültség megválasztása

• főként I2/I- rendszerre használják

• “dead-stop” módszer

• titrálási görbék

I2 titrálása S2O32--mal KI/I titrálása S O 2--mal

(14)

Coulombmetria (Szebellédy László)

Az elektródreakció teljes lejátszódásához szükséges töltés mérésén alapuló analitikai módszer

Faraday törvény: az elektrokémiai

reakció során kivált anyag m tömege:

zF mMQ

ahol M: moltömeg; z: ion töltésszáma; F: Faraday állandó; Q: a reakció során elhasznált töltés

• feltétel a 100%-os áramkihasználás

• előny, hogy “árammal titrálunk” (automatizálható)

• előny, hogy reagenstermelésre is alkalmazható

• előny, hogy nagyon kicsiny anyagmennyiségek (ppm-körül) mérhetők

• hátrány, hogy nem szelektív

• direkt (közvetlen) coulombmetria

• indirekt (reagenstermelő) coulombmetria

(15)

Coulombmetria állandó áramerősség mellett 1. Direkt coulombmetria

• Q = It (időmérésre vezethető vissza)

• a mérés előrehaladtával a szükséges E növekszik

• egyéb komponensek is reakcióba léphetnek, emiatt ritkán alkalmazzák

2. Indirekt coulombmetria

• reagenstermelés

• Pl. As(III) ionok titrálása Br2-vel

(16)

Coulombmetriás mérőberendezés

indirekt, I = áll.

coulombmetriás

méréshez

(17)

Coulombmetria állandó potencál mellett (ritkán használják)

• a mérés során az áramerősség folyamatosan csökken

• coulombméterre van szükség (stopper nem elég…)

• nincs szükség végpontjelzésre (maradékáram)

• szükség van viszont türelemre

t

t

t

dt i Q

0

(18)

A coulombmetria analitikai alkalmazásai

• H+ (sav) ill. OH- (lúg) előállítása H2O elektrolízisével

 acidi-alkalimetriás titrálás

• Ag+ előállítása Ag anódos oxidációjával

 halogenidek argentometriás titrálása

• Br2 előállítása Br- anódos oxidációjával

 brómozási reakciók

• Hg(II)EDTA katódos redukciója

 komplexometriás titrálás

Végpontjelzési módszerek az indirekt coulombmetriában

• vizuális

• potenciometria (üvegelektród vagy Pt-elektród)

• “dead-stop” módszer (biamperometria)

(19)

Elektrogravimetria

(az elektrokémiai reakció során kivált anyag tömegének mérésén alapuló analitikai módszer)

(20)

Konduktometria (vezetőképesség mérés)

Az oldatok elektromos vezetőképességének ill. vezetőképesség- változásainak mérésén alapuló analitikai módszer

Elektromos vezetés: az elektrolit oldatban található ionok az E-tér hatására elmozdulnak, ionos vezetés játszódik le.

d A GR 1  

G elektromos vezetés (S) - additív; nem specifikus R elektromos ellenállás ()

A elektródok felülete d elektródok távolsága

 specifikus vezetőképesség

(21)

A specifikus vezetőképesség ()

 függ az oldatban (vezetőképességi cellában)

levő ionok számától, vagyis az összkoncentrációtól, arányos vele Ekvivalens vezetőképesség ()

c

  1000 

Az ekvivalens vezetőképesség függ a koncentrációtól

       lim0

c egyes ionok

hozzájárulása

(független vándorlás)

(22)

Néhány ion értéke vízben, 25 oC-on

H+ 314.5 S OH- 173.5 S

K+ 65.4 S I- 46.7 S

Na+ 43.4 S Cl- 65.4 S

Ag+ 54.2 S NO3- 61.8 S

Ca2+/2 51.2 S SO42-/268.0 S

NH4+ 64.5 S CH3COO- 34.6 S

• H+ és OH- kitüntetett szerepe

• növekvő tömeggel csökken

• K+ és Cl- mozgékonysága azonos

(23)

A konduktometria gyakorlata

• Elektród: harangelektród (rögzített geometria)

• Alkalmazott feszültség: nem =, hanem kisfrekvenciás ~ (100-1000 Hz), azért, hogy

– az elektródok ne polarizálódjanak – ne játszódjon le töltésátadás

• Közvetlen konduktometria

– természetes ill. desztillált vizek minőségellenőrzése – csak vezető szennyezések kimutatására alkalmas 1. Kisfrekvenciás konduktometria (tradícionális)

(24)

A konduktometria gyakorlata

• Alkalmazott feszültség: nagyfrekvenciás ~1-10 MHz

• Elektródok körülveszik a mérendő oldatot – zárt edényben elvégezhető mérés

– sorozatmérésekre alkalmas, automatizálható

• Nagyfrekvenciás rezgőkör

• Jósági tényező

• A rezgőkör “elhangolódása”

• Ma már ritkán alkalmazott módszer

• Magyar fejlesztés (Pungor E.)

2. Nagyfrekvenciás konduktometria (oszcillometria)

(25)

3. Konduktometriás titrálások

(a konduktometria mint végpontjelzési módszer)

Akkor (és csak akkor) alkalmazható ha a a titrálás során a vezető részecskék koncentrációja vagy mozgékonysága a titrálás során

jelentősen megváltozik Példák:

• csapadékos titrálások

• erős sav - erős bázis titrálások

• gyenge sav - erős bázis titrálások

• gyenge sav - gyenge bázis titrálások

• nem alkalmazható:

A konduktometria gyakorlata

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

acetoxy-nitro vegyületet (XXXVII) 20 ccm aceton- ban oldunk és rázogatás mellett hozzáadunk 25 ccm 3%-os sósavat. 4 orai főzés után a kezdetben kivált kristályos anyag

(az elektrokémiai reakció során kivált anyag tömegének mérésén alapuló analitikai

Könnyen belátható, hogy a FIA nem önálló, újszerű analitikai módszer, hiszen a mérendő komponens meghatározása egy már jól bevált műszeren és annak ismert kémiai

(az elektrokémiai reakció során kivált anyag tömegének mérésén alapuló analitikai módszer).. Konduktometria

A kapott jelből közvetlenül az analát mennyiségére, koncentrációjára következtetünk (műszeres analitikai

Öregítés: 2 órán keresztül, vízfürdőn ( a kolloid méretű csapadék összeáll) Szűrés, mosás: szűrés G4 üvegszűrőn, mosás meleg, híg ammóniás vízzel Szárítás:

Kelátkomplex (kelát): gyűrűs komplex, a ligandum több foggal (több atomja) kapcsolódik ugyanahhoz a központi atomhoz ( ionhoz), ezáltal több gyűrűből álló

Megjegyezzük, hogy ez a viszonylag egyszerű módszer csak akkor használható, ha a reakció kezdeti ideje pontosan ismert, továbbá olyan érzékeny analitikai módszer