• Nem Talált Eredményt

JJ II

N/A
N/A
Protected

Academic year: 2022

Ossza meg "JJ II"

Copied!
11
0
0

Teljes szövegt

(1)

volume 6, issue 4, article 117, 2005.

Received 01 June, 2005;

accepted 23 September, 2005.

Communicated by:N.S. Barnett

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

SOME RESULTS ON A GENERALIZED USEFUL INFORMATION MEASURE

1ABUL BASAR KHAN, 1BILAL AHMAD BHAT AND2S. PIRZADA

1Division of Agricultural Economics and Statistics, Sher-e-Kashmir University of Agricultural Sciences and Technology Jammu Faculty of Agriculture

Main Campus Chatha-180009 India.

EMail:bhat_bilal@rediffmail.com

2Department of Mathematics University of Kashmir Srinagar-190006, India EMail:sdpirzada@yahoo.co.in

c

2000Victoria University ISSN (electronic): 1443-5756 176-05

(2)

Some Results On A Generalized Useful Information Measure

Abul Basar Khan, Bilal Ahmad Bhat and S. Pirzada

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of11

J. Ineq. Pure and Appl. Math. 6(4) Art. 117, 2005

Abstract

A parametric mean length is defined as the quantity

αβLu= α α−1

1−X

Piβ ui Puipβi

!α1

D−ni(α−1α )

,

where α 6= 1,X pi= 1

this being the useful mean length of code words weighted by utilities,ui. Lower and upper bounds forαβLuare derived in terms of useful information for the incomplete power distribution,pβ.

2000 Mathematics Subject Classification:94A24, 94A15, 94A17, 26D15.

Key words: Entropy, Useful Information, Utilities, Power probabilities.

The authors wish to thank the anonymous referee for his valuable suggestions, which improved the presentation of the paper.

Contents

1 Introduction. . . 3 2 Coding Theorems . . . 5

References

(3)

Some Results On A Generalized Useful Information Measure

Abul Basar Khan, Bilal Ahmad Bhat and S. Pirzada

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of11

J. Ineq. Pure and Appl. Math. 6(4) Art. 117, 2005

http://jipam.vu.edu.au

1. Introduction

Consider the following model for a random experimentS, SN = [E;P;U]

whereE = (E1, E2, . . . , En)is a finite system of events happening with respec- tive probabilitiesP = (p1, p2, . . . , pN),pi ≥0, andP

pi = 1and credited with utilities U = (u1, u2, . . . , uN), ui > 0, i = 1,2, . . . , N. Denote the model by E, where

(1.1) E =

E1E2 · · · EN p1p2 · · · pN u1u2 · · · uN

We call (1.1) a Utility Information Scheme (UIS). Belis and Guiasu [3] pro- posed a measure of information called ‘useful information’ for this scheme, given by

(1.2) H(U;P) =−X

uipilogpi,

where H(U;P) reduces to Shannon’s [8] entropy when the utility aspect of the scheme is ignored i.e., when ui = 1 for each i. Throughout the paper,P will stand forPN

i=1 unless otherwise stated and logarithms are taken to baseD (D >1).

Guiasu and Picard [5] considered the problem of encoding the outcomes in (1.1) by means of a prefix code with codewordsw1, w2, . . . , wN having lengths

(4)

Some Results On A Generalized Useful Information Measure

Abul Basar Khan, Bilal Ahmad Bhat and S. Pirzada

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of11

J. Ineq. Pure and Appl. Math. 6(4) Art. 117, 2005

n1, n2, . . . , nN and satisfying Kraft’s inequality [4]

(1.3)

N

X

i=1

D−ni ≤1,

where Dis the size of the code alphabet. The useful mean lengthLu of code was defined as

(1.4) Lu =

Puinipi

Puipi

and the authors obtained bounds for it in terms ofH(U;P).

Longo [8], Gurdial and Pessoa [6], Khan and Autar [7], Autar and Khan [2]

have studied generalized coding theorems by considering different generalized measures of (1.2) and (1.4) under condition (1.3) of unique decipherability.

In this paper, we study some coding theorems by considering a new function depending on the parametersαandβand a utility function. Our motivation for studying this new function is that it generalizes some entropy functions already existing in the literature (see C. Arndt [1]). The function under study is closely related to Tsallis entropy which is used in physics.

(5)

Some Results On A Generalized Useful Information Measure

Abul Basar Khan, Bilal Ahmad Bhat and S. Pirzada

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of11

J. Ineq. Pure and Appl. Math. 6(4) Art. 117, 2005

http://jipam.vu.edu.au

2. Coding Theorems

Consider a function

(2.1) αβH(U;P) = α

α−1

1−

Puipαβi Puipβi

!α1

, whereα >0 (6= 1),β >0,pi ≥0,i= 1,2, . . . , N andP

pi ≤1.

(i) Whenβ = 1andα→1, (2.1) reduces to a measure of useful information for the incomplete distribution due to Belis and Guiasu [3].

(ii) Whenui = 1for eachii.e., when the utility aspect is ignored,P

pi = 1, β = 1andα→1, the measure (2.1) reduces to Shannon’s entropy [10].

(iii) When ui = 1 for each i, the measure (2.1) becomes entropy for the β- power distribution derived fromP studied by Roy [9]. We callαβH(U;P) in (2.1) the generalized useful measure of information for the incomplete power distributionPβ.

Further consider,

(2.2) αβLu = α α−1

1−X

Piβ ui

Puipβi

!α1

D−ni(α−1α )

, whereα >0 (6= 1),P

pi ≤1.

(6)

Some Results On A Generalized Useful Information Measure

Abul Basar Khan, Bilal Ahmad Bhat and S. Pirzada

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of11

J. Ineq. Pure and Appl. Math. 6(4) Art. 117, 2005

(i) For β = 1, ui = 1 for each i and α → 1, αβLu in (2.2) reduces to the useful mean lengthLuof the code given in (1.4).

(ii) Forβ = 1,ui = 1for eachiandα→ 1,αβLu becomes the optimal code length defined by Shannon [10].

We establish a result, that in a sense, provides a characterization of αβH(U;P) under the condition of unique decipherability.

Theorem 2.1. For all integersD >1

(2.3) αβLuαβH(U;P)

under the condition (1.3). Equality holds if and only if

(2.4) ni =−log uiPiαβ

Puipαβi

! . Proof. We use Hölder’s [11] inequality

(2.5) X

xiyi ≥X

xpi1pX yiq1q

for allxi ≥0, yi ≥ 0, i = 1,2, . . . , N whenP < 1 (6= 1)andp−1+q−1 = 1, with equality if and only if there exists a positive numbercsuch that

(2.6) xpi =cyiq.

Setting

xi =p

αβ α−1

i

ui Puipβi

!α−11 D−ni,

(7)

Some Results On A Generalized Useful Information Measure

Abul Basar Khan, Bilal Ahmad Bhat and S. Pirzada

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of11

J. Ineq. Pure and Appl. Math. 6(4) Art. 117, 2005

http://jipam.vu.edu.au

yi =p

αβ 1−α

i

ui Puipβi

!1−α1 ,

p = 1−1/αandq = 1−αin (2.5) and using (1.3) we obtain the result (2.3) after simplification for α−1α >0asα >1.

Theorem 2.2. For every code with lengths {ni}, i = 1,2, ..., N, αβLu can be made to satisfy,

(2.7) αβLuαβH(U;P)D(1−αα )+ α 1−α

h

1−D(1−αα )i . Proof. Letni be the positive integer satisfying, the inequality (2.8) −log uiPiαβ

Puipαβi

!

≤ni <−log uiPiαβ Puipαβi

! + 1.

Consider the intervals

(2.9) δi =

"

−log uiPiαβ Puipαβi

!

,−log uiPiαβ Puipαβi

! + 1

#

of length 1. In everyδi, there lies exactly one positive numbernisuch that (2.10) 0<−log uiPiαβ

Puipαβi

!

≤ni <−log uiPiαβ Puipαβi

! + 1.

(8)

Some Results On A Generalized Useful Information Measure

Abul Basar Khan, Bilal Ahmad Bhat and S. Pirzada

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of11

J. Ineq. Pure and Appl. Math. 6(4) Art. 117, 2005

It can be shown that the sequence {ni}, i = 1,2, . . . , N thus defined, satisfies (1.3). From (2.10) we have

ni <−log uiPiαβ Puipαβi

! + 1 (2.11)

⇒D−ni < uiPiαβ Puipαβi

! D

⇒D−ni(α−1α )< uiPiαβ Puipαβi

!1−αα Dα−1α

Multiplying both sides of (2.11) bypβi ui

Puipαβi

α1

,summing overi= 1,2, . . . , N and simplifying, gives (2.7).

Theorem 2.3. For every code with lengths {ni}, i = 1,2, ..., N, of Theorem 2.1,αβLu can be made to satisfy

(2.12) αβH(U;P)≤ αβLu < αβH(U;P) + α

α−1(1−D) Proof. Suppose

(2.13) ni =−log uiPiαβ

Puipαβi

!

Clearlyni andni + 1satisfy ‘equality’ in Hölder’s inequality (2.5). Moreover, nisatisfies Kraft’s inequality (1.3).

(9)

Some Results On A Generalized Useful Information Measure

Abul Basar Khan, Bilal Ahmad Bhat and S. Pirzada

Title Page Contents

JJ II

J I

Go Back Close

Quit Page9of11

J. Ineq. Pure and Appl. Math. 6(4) Art. 117, 2005

http://jipam.vu.edu.au

Supposeni is the unique integer betweenni and ni + 1, then obviously,ni satisfies (1.3).

Sinceα >0 (6= 1), we have Xpβi ui

Puipβi

!α1

Dni(α−1)/α (2.14)

≤X

pβi ui

Puipβi

!α1

Dni(α−1)/α

< D

Xpβi ui Puipβi

!1α

Dni(α−1)/α

Since,

Xpβi ui Puipβi

!α1

Dni(α−1)/α =

Puipαβi Puipβi

!α1

Hence, (2.14) becomes Puipαβi

Puipβi

!1α

≤X

pβi ui Puipβi

!α1

D−ni(α−1)/α< D

Puipαβi Puipβi

!α1

which gives the result (2.12).

(10)

Some Results On A Generalized Useful Information Measure

Abul Basar Khan, Bilal Ahmad Bhat and S. Pirzada

Title Page Contents

JJ II

J I

Go Back Close

Quit Page10of11

J. Ineq. Pure and Appl. Math. 6(4) Art. 117, 2005

References

[1] C. ARNDT, Information Measures- Information and its Description in Sci- ence and Engineering, Springer, (2001) Berlin.

[2] R. AUTAR AND A.B. KHAN, On generalized useful information for in- complete distribution, J. of Comb. Information and Syst. Sci., 14(4) (1989), 187–191.

[3] M. BELIS ANDS. GUIASU, A qualitative-quantitative measure of infor- mation in Cybernetics Systems, IEEE Trans. Information Theory, IT-14 (1968), 593–594.

[4] A. FEINSTEIN, Foundation of Information Theory, McGraw Hill, New York, (1958).

[5] S. GUIASU AND C.F. PICARD, Borne infericutre de la Longuerur utile de certain codes, C.R. Acad. Sci, Paris, 273A (1971), 248–251.

[6] GURDIAL ANDF. PESSOA, On useful information of orderα, J. Comb.

Information and Syst. Sci., 2 (1977), 158–162.

[7] A.B. KHAN AND R. AUTAR, On useful information of order α and β, Soochow J. Math., 5 (1979), 93–99.

[8] G. LONGO, A noiseless coding theorem for sources having utilities, SIAM J. Appl. Math., 30(4) (1976), 739–748.

[9] L.K. ROY, Comparison of Renyi entropies of power distribution, ZAMM, 56 (1976), 217–218.

(11)

Some Results On A Generalized Useful Information Measure

Abul Basar Khan, Bilal Ahmad Bhat and S. Pirzada

Title Page Contents

JJ II

J I

Go Back Close

Quit Page11of11

J. Ineq. Pure and Appl. Math. 6(4) Art. 117, 2005

http://jipam.vu.edu.au

[10] C.E. SHANNON, A Mathematical Theory of Communication, Bell System Tech-J., 27 (1948), 394–423, 623–656.

[11] O. SHISHA, Inequalities, Academic Press, New York, (1967).

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Az előadó saját provokatív kérdésére (ami innen nézve már-már költői volt) megadta az igenlő választ, s nyomatékkal hívta fel arra a figyelmet, hogy meg kell változnia

Vagy egyszerűen, túl- erőben voltak, többen lehettek, mint azok heten, és arra ment a harc, hogy kifosszák őket, ami nyilván sikerült is nekik, mert különben jóval több

Rónay könyve számos vonásban hasonlít Böll regényéhez, bár lényeges mondanivalóban különbözik i s tőle... Rónay György:

If the 95% confidence interval is calculated for the expected value from 100 different sample, than approximately 95 interval contains the true expected value out of the 100.

rendelet megfosztotta a munkáltatókat attól a lehetőségtől, hogy a szokásos munkavégzési hely szerinti bíróságok előtt pereljenek, továbbá lehetővé tette,

In general, we can influence signaling pathways at multiple levels (Figure II.8-1, Figure II.8-2 and Table II.8-1): (1) blockade of cell surface receptors; (2) inhibition of

The three major schemes for the lunar mission were the direct approach involving no rendezvous, rendezvous of two parts of the mission payload in Earth orbit, and use of a

Ве1%уо%уазгаИ КНтка, Сазг1гоеп1его16ргаг Тапзгёк 8 Рёсзг Тикотапуе%уе1ет, АкаМпоз ОгуозЫкотапуг Каг, 1.зг.. Ве1%уд%уазгаЫ КНтка, КагсНо16%шг ёз