• Nem Talált Eredményt

Physical Chemistry I. practice

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Physical Chemistry I. practice"

Copied!
9
0
0

Teljes szövegt

(1)

Physical Chemistry I. practice

Gyula Samu

IV.: Phase transitions of ideal one-component systems

gysamu@mail.bme.hu

http://oktatas.ch.bme.hu/oktatas/konyvek/fizkem /PysChemBSC1/Requirements.pdf

http://oktatas.ch.bme.hu/oktatas/konyvek/fizkem /PysChemBSC1/Important dates.pdf

(2)

p-T diagram

Clapeyron:

dp

dT = T∆H∆V

Clausius-Clapeyron:

dp

dT = Tλp2R

→ lnpp2

1 = −Rλ

1

T2T1

1

T,∆H, ∆V : Temperature, enthalpy change and volume change during phase transition

λ: Latent heat, T-independent ∆H

∆H, λ, and ∆V can be either molar ( J , m3 ) or specific ( J , m3) changes

(3)

Clapeyron vs. Clausius-Clapeyron

Calculate the heat of vaporization of benzene at p = 101,3kP a.

Tv(101,3 kP a) = 80,1C ρvap. = 2,741 mkg3

dTv

dp = 0,32kP aK (around 1 bar) ρliq. = 814,4 mkg3

dp

dTv = d1Tv

dp

= 3,125 kP aK Clapeyron: ∆H = dTdp

v · Tv(101,3 kP a) ·

1

ρvap. ρ1

liq.

3,125 kP aK · 353,25 K ·

1 2,741 kg

m3

1

814,4 kg

m3

= 401 kJkg

Clausius-Clapeyron: λ = dTdp

v · [Tv(101,3 kP a)]2 · R · p1

3,125 kP aK · (353,25 K)2 · 8,314mol KJ · 101,3 kP a1 = 32 molkJ

= (since 1 kg Benzene = 12,82 mol) 410 kJkg

(4)

Clausius-Clapeyron

n-octane has

p1 =26660 P a eq. vapor pressure at T1 =83,52 C p2 =39990 P a eq. vapor pressure at T2 =95,16 C What is the p3 eq. vapor pressure at T3 =90 C?

Use the Clausius-Clapeyron approximation!

(5)

Clausius-Clapeyron

First we need λ: use Clausius-Clapeyron λ = −ln

p2 p1·R

1

T2T1

1

= −ln

39,9 kP a 26,6 kP a·R

1

368,31 K356,671 K = 38044molJ

Now we can calculate p3 with Clausius-Clapeyron:

p3 = p1·e

λ R·

1

T3T1

1

= 26, 6 kP a·e

38044 J/mol

R ·

1

363,15 K356,671 K

= 33, 52 kP a

(6)

Clapeyron

The melting point of acetic acid as a function of the pressure is given as (p in P a):

Tm(p) = 16,66C + 0,231 · 10−6P aC · p 2,25 · 10−16P aC2 · p2

a) What is ∆Hf at standard pressure (105 P a) if ∆Vf = 0,156 dmkg3?

We need dTdp

m and Tm for Clapeyron

dp

dTm = dTm1

dp

= 1

2,31·10−7P aC+4,5·10−16 C

P a2·p = 4,328 · 106P aC = 4,328 · 106P aK

Tm(105 P a) = 16,683C

∆Hf = dTdp

m · Tm · ∆Vf = 4,328 · 106P aK · 289,833 K · 1,56 · 10−4mkg3

= 196 kJkg

(7)

Clapeyron

The melting point of acetic acid as a function of the pressure is given as (p in P a):

Tm(p) = 16, 66C + 0, 231· 10−6P aC ·p− 2, 25 ·10−16P aC2 · p2 a) What is ∆Hf at 100 MP a pressure if ∆Vf = 0, 115 dmkg3?

(8)

Clapeyron

We need dTdp

m and Tm for Clapeyron

p = 108P a

Tm(108P a) = 16,66C + 0,231 · 10−6P aC · 108P a

−2,25 · 10−16P aC2 · 1016P a2 = 37,51C

dp

dTm = dTm1

dp

= 1

2,31·10−7P aC+4,5·10−16 C

P a2·p = 5, 376 · 106P aK

∆Hf = dTdp

m·Tm·∆Vf = 5, 376·106P aK ·310, 66 K·1, 15·10−4mkg3

= 192 kJkg

(9)

Application

From the 10 C street we go into a room with 20 C temperature and 60% relative humidity. Will our glasses get steamed?

Eq. vapor pressure of water at 20 C is 2,3 kP a λv = 40, 7 kJ/mol, steam is ideal gas

Question: is the partial pressure of water in the room higher than the eq. vapor pressure for 10 C? If yes, the vapor will conensate on the glasses

p1 = p2

e

λv R

1 T2 1

T1

= 2,3 kP a

e

40700 J/mol R

1

293,15 K 1 283,15 K

= 1, 275 kP a < 0, 6 · 2, 3 kP a = 1, 38 kP a

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

High surface area materials - small/nano particles.. -

http://oktatas.ch.bme.hu/oktatas/konyvek/fizkem

• Plot the thermodynamic cycle on a p–V diagram and denote the known T, p, and V values!. • Collect the equations needed to answere

The system reaches equilibrium without exchanging heat with the enviroment (adiabatic) and at constant pressure (1 bar )... Real systems: water

IV.: Phase transitions of ideal one-component

Gyula Samu &amp; Zolt´ an Rolik. V.:

The basics of quantum mechanics The structure of the hydrogen atom Structure of many-electron atoms Optical spectroscopy.. Rotational spectroscopy

Department of Physical Chemistry and Materials Science, BME e-mail: zhorvolgyi@mail.bme.hu Consultant: Ádám Detrich.. email: adetrich@mail.bme.hu Department of Physical Chemistry