• Nem Talált Eredményt

JJ II

N/A
N/A
Protected

Academic year: 2022

Ossza meg "JJ II"

Copied!
29
0
0

Teljes szövegt

(1)

volume 6, issue 2, article 50, 2005.

Received 17 February, 2005;

accepted 06 April, 2005.

Communicated by:N.E. Cho

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

INTEGRAL MEANS FOR STARLIKE AND CONVEX FUNCTIONS WITH NEGATIVE COEFFICIENTS

SHIGEYOSHI OWA1, MIHAI PASCU2, DAISUKE YAGI1 AND JUNICHI NISHIWAKI1

Department of Mathematics1 Kinki University

Higashi-Osaka, Osaka 577-8502 Japan

EMail:owa@math.kindai.ac.jp Department of Mathematics2 Transilvania University of Brasov R-2200 Brasov

Romania

EMail:mihai.pascu@unitbv.ro

c

2000Victoria University ISSN (electronic): 1443-5756 041-05

(2)

Integral Means for Starlike and Convex Functions with Negative

Coefficients

Shigeyoshi Owa, Mihai Pascu, Daisuke Yagi and Junichi Nishiwaki

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of29

Abstract

LetT be the class of functionsf(z)with negative coefficients which are analytic and univalent in the open unit diskUwithf(0) = 0andf0(0) = 1. The classes TandCare defined as the subclasses ofT which are starlike and convex in U, respectively. In view of the interesting results for integral means given by H. Silverman (Houston J. Math. 23(1977)), some generalization theorems are discussed in this paper.

2000 Mathematics Subject Classification:Primary 30C45.

Key words: Univalent, Starlike, Convex, Integral mean.

Memorial Paper for Professor Nicolae N. Pascu

Contents

1 Introduction. . . 3

2 Generalization Properties. . . 6

3 Integral Means for Functions in the ClassC. . . 14

4 Applications for the Integrated Functions. . . 19 References

(3)

Integral Means for Starlike and Convex Functions with Negative

Coefficients

Shigeyoshi Owa, Mihai Pascu, Daisuke Yagi and Junichi Nishiwaki

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of29

1. Introduction

LetAdenote the class of functionsf(z)of the form

(1.1) f(z) =z+

X

n=2

anzn

that are analytic in the open unit disk U = {z ∈ C : |z| < 1}. Let S be the subclass of A consisting of all univalent functions f(z) in U. A function f(z)∈ Ais said to be starlike with respect to the origin inUif it satisfies

(1.2) Re

zf0(z) f(z)

>0 (z ∈U).

We denote bySthe subclass ofS consisting of all starlike functionsf(z)with respect to the origin inU. Further, a functionf(z)∈ Ais said to be convex in Uif it satisfies

(1.3) Re

1 + zf00(z) f0(z)

>0 (z ∈U).

We also denote byKthe subclass ofSconsisting off(z)which are convex in U. By the above definitions, we know thatf(z)∈ Kif and only ifzf0(z)∈ S, and thatK ⊂ S ⊂ S ⊂ A.

The classT is defined as the subclass ofS consisting of all functionsf(z) which are given by

(1.4) f(z) =z−

X

n=2

anzn (an ≥0).

(4)

Integral Means for Starlike and Convex Functions with Negative

Coefficients

Shigeyoshi Owa, Mihai Pascu, Daisuke Yagi and Junichi Nishiwaki

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of29

Further, we denote by T = S ∩ T and C = K ∩ T. It is well-known by Silverman [6] that

Remark 1. A functionf(z)∈ Tif and only if (1.5)

X

n=2

nan ≤1.

A functionf(z)∈ C if and only if (1.6)

X

n=2

n2an≤1.

For f(z) ∈ A and g(z) ∈ A, f(z) is said to be subordinate to g(z)in U if there exists an analytic function ω(z)in U such that ω(0) = 0, |ω(z)| < 1 (z ∈U), andf(z) =g(ω(z)). We denote this subordination by

(1.7) f(z)≺g(z). (cf. Duren [1]).

For subordinations, Littlewood [2] has given the following integral mean.

Theorem A. If f(z) and g(z) are analytic in U with f(z) ≺ g(z), then, for λ >0and|z|=r(0< r <1),

(1.8)

Z 0

|f(re)|λdθ ≤ Z

0

|g(re)|λdθ.

Furthermore, Silverman [6] has shown that

(5)

Integral Means for Starlike and Convex Functions with Negative

Coefficients

Shigeyoshi Owa, Mihai Pascu, Daisuke Yagi and Junichi Nishiwaki

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of29

Remark 2. f1(z) = z andfn(z) = z − znn (n ≥ 2)are extreme points of the classT(orT). f1(z) = z andfn(z) =z − znn2 (n ≥ 2)are extreme points of the classC.

Applying Theorem A with extreme points ofT, Silverman [7] has proved the following results.

Theorem B. Suppose thatf(z) ∈ T, λ > 0 andf2(z) = z− z22. Then, for z =re(0< r <1),

(1.9)

Z 0

|f(z)|λdθ ≤ Z

0

|f2(z)|λdθ.

Theorem C. If f(z) ∈ T, λ > 0, and f2(z) = z − z22, then, for z = re (0< r <1),

(1.10)

Z 0

|f0(z)|λdθ ≤ Z

0

|f20(z)|λdθ.

In the present paper, we consider the generalization properties for Theorem Band TheoremCwithf(z)∈ Tandf(z)∈ C.

Remark 3. More recently, applying TheoremAby Littlewood [2], Sekine, Tsu- rumi and Srivastava [4]; and Sekine, Tsurumi, Owa and Srivastava [5] have discussed some interesting properties of integral means inequalities for frac- tional derivatives of some general subclasses of analytic functions f(z)in the open unit disk U. Further, Owa and Sekine [3] have considered the integral means with some coefficient inequalities for certain analytic functions f(z)in U.

(6)

Integral Means for Starlike and Convex Functions with Negative

Coefficients

Shigeyoshi Owa, Mihai Pascu, Daisuke Yagi and Junichi Nishiwaki

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of29

2. Generalization Properties

Our first result for the generalization properties is contained in

Theorem 2.1. Let f(z) ∈ T, λ > 0, and fk(z) = z − zkk (k ≥ 2). Iff(z) satisfies

(2.1)

k−3

X

j=0

j+ 1

k (a2k+j−1+ak+j+1−ak−j−1)≥0 fork ≥3, and if there exists an analytic functionω(z)inUgiven by

(ω(z))k−1 =k

X

n=2

anzn−1

! ,

then, forz =re (0< r <1), (2.2)

Z 0

|f(z)|λdθ ≤ Z

0

|fk(z)|λdθ.

Proof. Forf(z)∈ T, we have to show that Z

0

1−

X

n=2

anzn−1

λ

dθ≤ Z

0

1− zk−1 k

λ

dθ.

By TheoremA, it suffices to prove that 1−

X

n=2

anzn−1 ≺1− zk−1 k .

(7)

Integral Means for Starlike and Convex Functions with Negative

Coefficients

Shigeyoshi Owa, Mihai Pascu, Daisuke Yagi and Junichi Nishiwaki

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of29

Let us define the functionω(z)by

(2.3) 1−

X

n=2

anzn−1 = 1− 1

k(ω(z))k−1. It follows from (2.3) that

|ω(z)|k−1 = k

X

n=2

anzn−1

≤ |z|

X

n=2

kan

! .

Thus, we only show that

X

n=2

kan

X

n=2

nan,

or

X

n=2

an≤ 1 k

X

n=2

nan

! .

Indeed, we see that 1

k

X

n=2

nan

!

=

1− k−2 k

a2+

1− k−3 k

a3+· · ·+

1− 2 k

ak−2

+

1− 1 k

ak−1+ak+

1 + 1 k

ak+1+

1 + 2 k

ak+2

+· · ·+

1 + k+ 1 k

a2k+1+

1 + k+ 2 k

a2k+2+· · ·

(8)

Integral Means for Starlike and Convex Functions with Negative

Coefficients

Shigeyoshi Owa, Mihai Pascu, Daisuke Yagi and Junichi Nishiwaki

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of29

= k−2

k (a2k−2−a2) + k−3

k (a2k−3−a3) +· · · + 2

k(ak+2−ak−2) + 1

k(ak+1−ak−1) +

1 + k−1 k

a2k−1

+

1 + k k

a2k+

1 + k+ 1 k

a2k+1+· · ·+

2k−2

X

n=2

an.

Noting that

1 + k+j

k ≥1 + 2 +j

k , (j =−1,0,1, . . .), we obtain

1 k

X

n=2

nan

! (2.4)

≥ k−2

k (a2k−2−a2) + k−3

k (a2k−3−a3) +· · · + 2

k(ak+2−ak−2) + 1

k(ak+1−ak−1) +

1 + 1

k

a2k−1+

1 + 2 k

a2k+· · · +

1 + k−3 k

a3k−5+

1 + k−2 k

a3k−4+· · ·+

2k−2

X

n=2

an

(9)

Integral Means for Starlike and Convex Functions with Negative

Coefficients

Shigeyoshi Owa, Mihai Pascu, Daisuke Yagi and Junichi Nishiwaki

Title Page Contents

JJ II

J I

Go Back Close

Quit Page9of29

≥ 1

k(a2k−1 +ak+1−ak−1) + 2

k(a2k+ak+2−ak−2) +· · · +k−2

k (a3k−4+a2k−2−a2) +

X

n=2

an

=

k−3

X

j=0

j + 1

k (a2k+j−1+ak+j+1−ak−j−1) +

X

n=2

an

X

n=2

an

with the following condition

k−3

X

j=0

j+ 1

k (a2k+j−1+ak+j+1−ak−j−1)≥0.

Thus, we observe that the function ω(z)defined by (2.3) is analytic inU with ω(0) = 0,|ω(z)|<1 (z ∈U). This completes the proof of the theorem.

Remark 4. Taking k = 2 in Theorem 2.1, we have Theorem B by Silverman [7].

Example 2.1. Let us define

(2.5) f(z) =z− 37

1200z2− 1

18z3− 1

48z4− 1 100z5 and

(2.6) f3(z) =z− 1

3z3

(10)

Integral Means for Starlike and Convex Functions with Negative

Coefficients

Shigeyoshi Owa, Mihai Pascu, Daisuke Yagi and Junichi Nishiwaki

Title Page Contents

JJ II

J I

Go Back Close

Quit Page10of29

withk= 3in Theorem2.1. Sincef(z)satisfies

X

n=2

nan= 217 600 <1, we havef(z)∈ T. Furthermore,f(z)satisfies,

1

3(a5+a4−a2) = 1 3

1 100 + 1

48− 37 1200

= 0.

Thus,f(z)satisfies the conditions in Theorem2.1withk = 3.

If we takeλ= 2, then we have Z

0

|f(z)|2dθ ≤2πr2

1 + 1 9r4

< 20

9 π = 6.9813. . . .

Corollary 2.2. Letf(z)∈ T,0< λ≤2, andfk(z) =z−zkk (k ≥2). Iff(z) satisfies the conditions in Theorem2.1, then, forz =re (0< r <1),

(2.7)

Z 0

|f(z)|λdθ ≤2πrλ

1 + 1

k2r2(k−1) λ2

<2π

1 + 1 k2

λ2 .

Proof. It follows that

Z 0

|fk(z)|λdθ = Z

0

|z|λ

1− zk−1 k

λ

dθ.

(11)

Integral Means for Starlike and Convex Functions with Negative

Coefficients

Shigeyoshi Owa, Mihai Pascu, Daisuke Yagi and Junichi Nishiwaki

Title Page Contents

JJ II

J I

Go Back Close

Quit Page11of29

Applying Hölder’s inequality for0< λ <2, we obtain that

Z 0

|z|λ

1− zk−1 k

λ

dθ ≤ Z

0

(|z|λ)2−λ22−λ2

 Z

0

1− zk−1 k

λ!2λ

λ 2

= Z

0

|z|2−λ

2−λ

2 Z

0

1− zk−1 k

2

!λ2

=

2πr2−λ 2−λ2

1 + 1

k2r2(k−1) λ2

= 2πrλ

1 + 1

k2r2(k−1) λ2

<2π

1 + 1 k2

λ2 .

Further, it is clear forλ= 2.

For the generalization of TheoremCby Silverman [7], we have

Theorem 2.3. Let f(z) ∈ T, λ > 0, andfk(z) = z − zkk (k ≥ 2). If there exists an analytic functionω(z)inUgiven by

ω(z)k−1

=

X

n=2

nanzn−1,

(12)

Integral Means for Starlike and Convex Functions with Negative

Coefficients

Shigeyoshi Owa, Mihai Pascu, Daisuke Yagi and Junichi Nishiwaki

Title Page Contents

JJ II

J I

Go Back Close

Quit Page12of29

then, forz =re (0< r <1), (2.8)

Z 0

|f0(z)|λdθ ≤ Z

0

|fk0(z)|λdθ.

Proof. Forf(z)∈ T, it is sufficient to show that

(2.9) 1−

X

n=2

nanzn−1 ≺1−zk−1. Let us define the functionω(z)by

(2.10) 1−

X

n=2

nanzn−1 = 1−ω(z)k−1, or, by

ω(z)k−1 =

X

n=2

nanzn−1.

Sincef(z)satisfies

X

n=2

nan ≤1,

the functionω(z)is analytic inU,ω(0) = 0, and|ω(z)|<1 (z ∈U).

Remark 5. If we take k = 2 in Theorem 2.3, then we have Theorem C by Silverman [7].

(13)

Integral Means for Starlike and Convex Functions with Negative

Coefficients

Shigeyoshi Owa, Mihai Pascu, Daisuke Yagi and Junichi Nishiwaki

Title Page Contents

JJ II

J I

Go Back Close

Quit Page13of29

Using the Hölder inequality for Theorem2.3, we have

Corollary 2.4. Letf(z)∈ T,0< λ≤2, andfk(z) =z−zkk (k ≥2). Iff(z) satisfies the conditions in Theorem2.3, then, forz =re (0< r <1),

Z 0

|f0(z)|λdθ ≤2π 1 +r2(k−1)λ2

<22+λ2 π.

(14)

Integral Means for Starlike and Convex Functions with Negative

Coefficients

Shigeyoshi Owa, Mihai Pascu, Daisuke Yagi and Junichi Nishiwaki

Title Page Contents

JJ II

J I

Go Back Close

Quit Page14of29

3. Integral Means for Functions in the Class C

In this section, we discuss the integral means for functionsf(z)in the classC.

Theorem 3.1. Let f(z) ∈ C, λ > 0, and fk(z) = z − zkk2 (k ≥ 2). If f(z) satisfies

(3.1)

k−1

X

j=2

(k+j)(k−j)

k2 (a2k−j −aj)≥0

fork ≥3, and if there exists an analytic functionω(z)inUgiven by (ω(z))k−1 =k2

X

n=2

anzn−1,

then, forz =re (0< r <1), (3.2)

Z 0

|f(z)|λdθ ≤ Z

0

|fk(z)|λdθ.

Proof. For the proof, we need to show that

(3.3) 1−

X

n=2

anzn−1 ≺1− zk−1 k2 by TheoremA. Define the functionω(z)by

(3.4) 1−

X

n=2

anzn−1 = 1− 1

k2ω(z)k−1,

(15)

Integral Means for Starlike and Convex Functions with Negative

Coefficients

Shigeyoshi Owa, Mihai Pascu, Daisuke Yagi and Junichi Nishiwaki

Title Page Contents

JJ II

J I

Go Back Close

Quit Page15of29

or by

(3.5) (ω(z))k−1 =k2

X

n=2

anzn−1

! .

Therefore, we have to show that

X

n=2

an≤ 1 k2

X

n=2

n2an

! .

Using the same technique as in the proof of Theorem2.1, we see that 1

k2

X

n=2

n2an

!

k−1

X

j=2

(k+j)(k−j)

k2 (a2k−j −aj) +

X

n=2

an

X

n=2

an.

Example 3.1. Consider the functions

(3.6) f(z) =z− 1

40z2− 1

18z3− 1 40z4 and

(3.7) f3(z) =z− 1

9z3

(16)

Integral Means for Starlike and Convex Functions with Negative

Coefficients

Shigeyoshi Owa, Mihai Pascu, Daisuke Yagi and Junichi Nishiwaki

Title Page Contents

JJ II

J I

Go Back Close

Quit Page16of29

withk= 3in Theorem3.1. Then we have that

X

n=2

n2an= 4 40+ 9

18 +16 40 = 1, which impliesf(z)∈ C, and that

5

9(a4−a2) = 0.

Thus f(z)satisfies the conditions of Theorem3.1. If we makeλ = 2, then we see that

Z 0

|f(z)|2dθ ≤2πr2

1 + 1 81r4

< 164

81π = 6.3607· · · .

Corollary 3.2. Let f(z) ∈ C, 0 < λ ≤ 2, and fk(z) = z − zkk2 (k ≥ 2). If f(z)satisfies the condition in Theorem3.1, then, fork ≥ 3, then, forz = re (0< r <1),

Z 0

|f(z)|λdθ ≤2πrλ

1 + 1

k4r2(k−1) λ2 (3.8)

<2π

1 + 1 k4

λ2 .

Further, we may have

(17)

Integral Means for Starlike and Convex Functions with Negative

Coefficients

Shigeyoshi Owa, Mihai Pascu, Daisuke Yagi and Junichi Nishiwaki

Title Page Contents

JJ II

J I

Go Back Close

Quit Page17of29

Theorem 3.3. Let f(z) ∈ C, λ > 0, and fk(z) = z − zkk2 (k ≥ 2). If f(z) satisfies

(3.9)

2k−2

X

j=2

j(k−j)aj ≤0,

and if there exists an analytic functionω(z)inUgiven by

(ω(z))k−1 =k

X

n=2

nanzn−1,

then, forz =re (0< r <1), (3.10)

Z 0

|f0(z)|λdθ ≤ Z

0

|fk0(z)|λdθ.

Example 3.2. Take the functions

(3.11) f(z) =z− 1

24z2− 1

18z3− 1 48z4 and

(3.12) f3(z) =z− 1

9z3 withk= 3in Theorem3.3. Since

X

n=2

n2an = 4 24+ 9

18+ 16 48 = 5

6 <1

(18)

Integral Means for Starlike and Convex Functions with Negative

Coefficients

Shigeyoshi Owa, Mihai Pascu, Daisuke Yagi and Junichi Nishiwaki

Title Page Contents

JJ II

J I

Go Back Close

Quit Page18of29

and

2(3−2)a2+ 3(3−3)a3+ 4(3−4)a4 = 1 12− 1

12 = 0,

f(z)satisfies the conditions in Theorem3.3. If we takeλ = 2, then we have Z

0

|f0(z)|2dθ ≤2π

1 + 1 9r4

< 20 9 π.

Corollary 3.4. Let f(z) ∈ C, 0 < λ ≤ 2, and fk(z) = z − zkk2 (k ≥ 2). If f(z)satisfies the condition in Theorem3.3, then, fork ≥ 2, then, forz = re (0< r <1),

Z 0

|f0(z)|λdθ ≤2π

1 + 1 kr2(k−1)

λ2

<2π

1 + 1 k

λ2 .

(19)

Integral Means for Starlike and Convex Functions with Negative

Coefficients

Shigeyoshi Owa, Mihai Pascu, Daisuke Yagi and Junichi Nishiwaki

Title Page Contents

JJ II

J I

Go Back Close

Quit Page19of29

4. Applications for the Integrated Functions

Forf(z)∈ T, we define I0f(z) = f(z) =z−

X

n=2

anzn

If(z) = I1f(z) = Z z

0

f(t)dt= 1 2z2

X

n=2

an n+ 1zn+1 Ikf(z) = I(Ik−1f(z)) = 1

(k+ 1)!zk+1

X

n=2

n!

(n+k)!anzn+k (k = 1,2,3, . . .).

Theorem 4.1. Letf(z)∈ T,λ >0, andfj(z) =z− zjj (j = 2,3,4, . . .).

Iff(z)satisfies (4.1)

j2+j−1

X

k=2

j2+j−k

j(j+ 1) (a2j2+2j−k−ak)≥0

forj = 2,3,4, . . . ,and if there exists an analytic functionω(z)inUgiven by (ω(z))j−1 =j(j+ 1)

X

n=2

1

n+ 1anzn−1

! ,

then (4.2)

Z 0

|If(z)|λdθ ≤ Z

0

|Ifj(z)|λdθ.

(20)

Integral Means for Starlike and Convex Functions with Negative

Coefficients

Shigeyoshi Owa, Mihai Pascu, Daisuke Yagi and Junichi Nishiwaki

Title Page Contents

JJ II

J I

Go Back Close

Quit Page20of29

Proof. We have to prove

Z 0

1−

X

n=2

2

n+ 1anzn−1

λ

dθ ≤ Z

0

1− 2

j(j+ 1)zj−1

λ

dθ.

If

1−

X

n=2

2

n+ 1anzn−1 ≺1− 2

j(j + 1)zj−1, then the proof is completed by TheoremA.

Let us define the functionω(z)by 1−

X

n=2

2

n+ 1anzn−1 = 1− 2

j(j+ 1)(ω(z))j−1. Then

|ω(z)|j−1 =

j(j+ 1)

X

n=2

1

n+ 1anzn−1

≤ |z| j(j+ 1)

X

n=2

1 n+ 1an

! .

Thus, we only show that

j(j+ 1)

X

n=2

1

n+ 1an

X

n=2

nan

(21)

Integral Means for Starlike and Convex Functions with Negative

Coefficients

Shigeyoshi Owa, Mihai Pascu, Daisuke Yagi and Junichi Nishiwaki

Title Page Contents

JJ II

J I

Go Back Close

Quit Page21of29

or

X

n=2

an

X

n=2

n

1

j(j + 1) + 1 n+ 1

an.

Indeed,

X

n=2

n

1

j(j+ 1) + 1 n+ 1

an

= 2

1

j(j+ 1) +1 3

a2+ 3

1

j(j+ 1) + 1 4

a3+· · · + (j−1)

1

j(j + 1) +1 j

aj−1+j

1

j(j+ 1) + 1 j+ 1

aj

+ (j+ 1)

1

j(j+ 1) + 1 j+ 2

aj+1

+· · ·+ (2j2+ 2j−3)

1

j(j + 1) + 1 2j2+ 2j−2

a2j2+2j−3

+ (2j2+ 2j−2)

1

j(j+ 1) + 1 2j2+ 2j−1

a2j2+2j−1+· · ·

1− j(j+ 1)−2 j(j+ 1)

a2+

1− j(j+ 1)−3 j(j+ 1)

a3+· · · +

1−j(j + 1)−(j−1) j(j+ 1)

aj−1 +

1− j(j+ 1)−j j(j+ 1)

aj

+

1−j(j + 1)−(j+ 1) j(j+ 1)

aj+1

(22)

Integral Means for Starlike and Convex Functions with Negative

Coefficients

Shigeyoshi Owa, Mihai Pascu, Daisuke Yagi and Junichi Nishiwaki

Title Page Contents

JJ II

J I

Go Back Close

Quit Page22of29

+· · ·+

1− j(j+ 1)−(2j2+ 2j−3) j(j+ 1)

a2j2+2j−3

+

1−j(j + 1)−(2j2+ 2j −2) j(j+ 1)

a2j2+2j−2+· · ·

= j2+j−2

j(j + 1) (a2j2+2j−2−a2) + j2+j −3

j(j+ 1) (a2j2+2j−3−a3) +· · ·+ j2+ 1

j(j+ 1)(a2j2+j+1−aj−1) + j2

j(j+ 1)(a2j2+j −aj) + j2−1

j(j+ 1)(a2j2+j−1−aj+1) +· · ·+a2+a3+· · ·+a2j2+2j−2+· · ·

=

j2+j−1

X

k=2

j2+j−k

j(j+ 1) (a2j2+2j−k−ak) +

X

n=2

an

X

n=2

an

for

j2+j−1

X

k=2

j2+j −k

j(j+ 1) (a2j2+2j−k−ak)≥0.

This completes the proof of Theorem4.1.

Finally, we derive

Theorem 4.2. Letf(z)∈ T,λ >0,andfj(z) = z− zjj (j = 2,3,4, . . .). If

(23)

Integral Means for Starlike and Convex Functions with Negative

Coefficients

Shigeyoshi Owa, Mihai Pascu, Daisuke Yagi and Junichi Nishiwaki

Title Page Contents

JJ II

J I

Go Back Close

Quit Page23of29

f(z)satisfies

(4.3)

X

n=2

an≥ 6 5

(j+k)!

2(j−1)!−1

X

n=2

1− 2n(j−1)!

(j+k)! an−a(j+k)!

(j−1)!−n

fork = 2,3,4, . . . ,and if there exists an analytic functionω(z)inUgiven by (ω(z))j−1 = (j+k)!

(j−1)!

X

n=2

n!

(n+k)!anzn−1, then

(4.4)

Z 0

|Ikf(z)|λdθ ≤ Z

0

|Ikfj(z)|λdθ.

Proof. We have to show that 1−

X

n=2

n!(k+ 1)!

(n+k)! anzn−1 ≺1− (j−1)!(k+ 1)!

(j+k)! zj−1. Defineω(z)by

1−

X

n=2

n!(k+ 1)!

(n+k)! anzn−1 = 1−(j−1)!(k+ 1)!

(j +k)! (ω(z))j−1 or by

(ω(z))j−1 = (j+k)!

(j−1)!

X

n=2

n!

(n+k)!anzn−1.

(24)

Integral Means for Starlike and Convex Functions with Negative

Coefficients

Shigeyoshi Owa, Mihai Pascu, Daisuke Yagi and Junichi Nishiwaki

Title Page Contents

JJ II

J I

Go Back Close

Quit Page24of29

Then we have to show that (j+k)!

(j −1)!

X

n=2

n!

(n+k)!an

X

n=2

nan, that is, that

X

n=2

n!

(n+k)!an ≤ (j−1)!

(j +k)!

X

n=2

nan. Since

X

n=2

n!

(n+k)!an =

X

n=2

1

(n+ 1)(n+ 2)· · ·(n+k)an

=

X

n=2

1

n+ 1 − 1 n+ 2

1

n+ 3 − 1 n+ 4

· · ·

an

X

n=2

1

n+ 1 − 1 n+ 2

[k2] an

X

n=2

1

n+ 1 − 1 n+ 2

an, we obtain

X

n=2

1

n+ 1 − 1 n+ 2

an≤ (j−1)!

(j+k)!

X

n=2

nan. Furthermore, we have

X

n=2

an

X

n=2

2n(j −1)!

(j +k)! + 2n

n+ 1 − n n+ 2

an.

(25)

Integral Means for Starlike and Convex Functions with Negative

Coefficients

Shigeyoshi Owa, Mihai Pascu, Daisuke Yagi and Junichi Nishiwaki

Title Page Contents

JJ II

J I

Go Back Close

Quit Page25of29

Let the functionh(n)be given by h(n) = 2n

n+ 1 − n

n+ 2 = 1− 2 n2+ 3n+ 2. Sinceh(n)is increasing forn ≥2,

h(n)≥ 5 6. Thus, we only show that

X

n=2

an

X

n=2

11

6 − (j+k)!−2n(j−1)!

(j+k)!

an.

In fact,

X

n=2

11

6 − (j +k)!−2n(j−1)!

(j+k)!

an

= 11

6 −(j+k)!−4(j−1)!

(j+k)!

a2

+ 11

6 − (j+k)!−6(j−1)!

(j+k)!

a3+· · · +

11

6 − 4(j−1)!

(j+k)!

a(j+k)!

2(j−1)!−2+ 11

6 −2(j−1)!

(j +k)!

a(j+k)!

2(j−1)!−1

(26)

Integral Means for Starlike and Convex Functions with Negative

Coefficients

Shigeyoshi Owa, Mihai Pascu, Daisuke Yagi and Junichi Nishiwaki

Title Page Contents

JJ II

J I

Go Back Close

Quit Page26of29

+ 11

6 −0

a(j+k)!

2(j−1)!

+ 11

6 − 2(j−1)!

(j+k)!

a(j+k)!

2(j−1)!+1

+ 11

6 + 4(j −1)!

(j+k)!

a(j+k)!

2(j−1)!+2+· · · +

11

6 + (j+k)!−6(j−1)!

(j+k)!

a(j+k)!

(j−1)!−3

+ 11

6 + (j+k)!−4(j−1)!

(j+k)!

a(j+k)!

(j−1)!−2+· · ·

≥ 11 6

X

n=2

an+ (j +k)!−4(j −1)!

(j+k)!

a(j+k)!

(j−1)!−2−a2

+ (j+k)!−6(j−1)!

(j+k)!

a(j+k)!

(j−1)!−3−a3

+ 4(j−1)!

(j+k)!

a(j+k)!

2(j−1)!+2−a(j+k)!

2(j−1)!−2

+ 2(j−1)!

(j+k)!

a(j+k)!

2(j−1)!+1−a(j+k)!

2(j−1)!−1

=

X

n=2

an+5 6

X

n=2

an+ (j+k)!−4(j −1)!

(j+k)!

a(j+k)!

2(j−1)!−2−a2

+ (j+k)!−6(j−1)!

(j+k)!

a(j+k)!

2(j−1)!−3 −a3

+· · · + (j+k)!− {(j+k)!−4(j−1)!}

(j+k)!

a(j+k)!

2(j−1)!+2−a(j+k)!

2(j−1)!−2

(27)

Integral Means for Starlike and Convex Functions with Negative

Coefficients

Shigeyoshi Owa, Mihai Pascu, Daisuke Yagi and Junichi Nishiwaki

Title Page Contents

JJ II

J I

Go Back Close

Quit Page27of29

+ (j+k)!− {(j+k)!−2(j−1)!}

(j+k)!

a(j+k)!

2(j−1)!+1−a(j+k)!

2(j−1)!−1

=

X

n=2

an+5 6

X

n=2

an+

(j+k)!

2(j−1)!−1

X

n=2

(j+k)!−2n(j−1)!

(j+k)!

a(j+k)!

(j−1)!−n−an

X

n=2

an

for

X

n=2

an≥ 6 5

(j+k)!

2(j−1)!−1

X

n=2

1− 2n(j−1)!

(j+k)! an−a(j+k)!

(j−1)!−n

.

This completes the proof of Theorem4.2.

Remark 6. Lettingk = 2, iff(z)satisfies,

(4.5)

X

n=2

an ≥ 6 5

j(j+1)(j+2)

2 −1

X

n=2

1− 2n

j(j+ 1)(j+ 2)

(an−aj(j+1)(j+2)−n)

forj = 2,3,4, . . . ,then (4.6)

Z 0

|I2f(z)|λdθ ≤ Z

0

|I2fj(z)|λdθ.

(28)

Integral Means for Starlike and Convex Functions with Negative

Coefficients

Shigeyoshi Owa, Mihai Pascu, Daisuke Yagi and Junichi Nishiwaki

Title Page Contents

JJ II

J I

Go Back Close

Quit Page28of29

Remark 7. Lettingk = 3, iff(z)satisfies,

(4.7)

X

n=2

an≥ 6 5

j(j+1)(j+2)(j+3)

2 −1

X

n=2

1− 2n

j(j+ 1)(j + 2)(j+ 3)

×(an−aj(j+1)(j+2)(j+3)−n) forj = 2,3,4, . . . ,then

(4.8)

Z 0

|I3f(z)|λdθ ≤ Z

0

|I3fj(z)|λdθ.

(29)

Integral Means for Starlike and Convex Functions with Negative

Coefficients

Shigeyoshi Owa, Mihai Pascu, Daisuke Yagi and Junichi Nishiwaki

Title Page Contents

JJ II

J I

Go Back Close

Quit Page29of29

References

[1] P.L. DUREN, Univalent Functions, Springer-Verlag, New York, 1983.

[2] J.E. LITTLEWOOD, On inequalities in the theory of functions, Proc. Lon- don Math. Soc., 23 (1925), 481–519.

[3] S. OWA AND T. SEKINE, Integral means of analytic functions, J. Math.

Anal. Appl. (in press).

[4] T. SEKINE, K. TSURUMI AND H.M. SRIVASTAVA, Integral means for generalized subclasses of analytic functions, Sci. Math. Jpon., 54 (2001), 489–501.

[5] T. SEKINE, K. TSURUMI, S. OWA AND H.M. SRIVASTAVA, Integral means inequalities for fractional derivatives of some general subclasses of analytic functions, J. Inequal. Pure Appl. Math., 3 (2002), Art. 66.

[6] H. SILVERMAN, Univalent functions with negative coefficients, Proc.

Amer. Math. Soc., 51 (1975), 109–116.

[7] H. SILVERMAN, Integral means for univalent functions with negative co- efficients, Houston J. Math., 23 (1997), 169–174.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

SRIVASTAVA, Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transform Spec.. DZIOK

SRIVASTAVA, Convolution and Hölder- type inequalities for a certain class of analytic functions, Math. OWA, On certain classes of p−valent functions with negative

SRIVASTAVA, Convolution and Hölder-type inequalities for a certain class of analytic functions, Math. OWA, On certain classes of p−valent functions with negative

SRIVASTAVA, Neighbor- hoods of certain classes of analytic functions of complex order, J. Pure

Key words and phrases: Analytic function, Hadamard product(or convolution), Dziok-Srivastava linear operator, Subordina- tion factor sequence, Characterization properties...

SRIVASTAVA, Some generalized convolution proper- ties associated with certain subclasses of analytic functions, J.. Some Properties for an

In this paper, using the methods of KKM-theory, see for example, Singh, Watson and Srivastava [17] and Yuan [20], we prove some results on simultaneous nonlin- ear inequalities..

In [5], Qi studied a very interesting integral inequality and proved the following result..