• Nem Talált Eredményt

am (m ∈ N) are arbitrary elements in G andf is a complex-valued function onG

N/A
N/A
Protected

Academic year: 2022

Ossza meg "am (m ∈ N) are arbitrary elements in G andf is a complex-valued function onG"

Copied!
8
0
0

Teljes szövegt

(1)

http://jipam.vu.edu.au/

Volume 5, Issue 2, Article 49, 2004

THE STABILITY OF SOME LINEAR FUNCTIONAL EQUATIONS

BELAID BOUIKHALENE DEPARTMENT OFMATHEMATICS

UNIVERSITY OFIBNTOFAIL

FACULTY OFSCIENCESBP 133 KENITRA14000, MOROCCO. bbouikhalene@yahoo.fr

Received 14 January, 2004; accepted 25 April, 2004 Communicated by K. Nikodem

ABSTRACT. In this note, we deal with the Baker’s superstability for the following linear func- tional equations

m

X

i=1

f(x+y+ai) =f(x)f(y), x, yG,

m

X

i=1

[f(x+y+ai) +f(xyai)] = 2f(x)f(y), x, yG,

whereG is an abelian group, a1, . . . , am (m N) are arbitrary elements in G andf is a complex-valued function onG.

Key words and phrases: Linear functional equations, Stability, Superstability.

2000 Mathematics Subject Classification. 39B72.

1. INTRODUCTION

LetGbe an abelian group. The main purpose of this paper is to generalize the results obtained in [4] and [5] for the linear functional equations

(1.1)

m

X

i=1

f(x+y+ai) =f(x)f(y), x, y ∈G,

(1.2)

m

X

i=1

[f(x+y+ai) +f(x−y−ai)] = 2f(x)f(y), x, y ∈G,

where a1, . . . , am (m ∈ N), are arbitrary elements in G and f is a complex-valued function on G. In the case where Gis a locally compact group, the form of L(G)solutions of (1.1) (resp. (1.2)) are determined in [2] (resp. [6]). Some particular cases of these linear functional equations are:

ISSN (electronic): 1443-5756

c 2004 Victoria University. All rights reserved.

012-04

(2)

• The linear functional equations

(1.3) f(x+y+a) =f(x)f(y), x, y ∈G,

(1.4) f(x+y+a) +f(x−y−a) = 2f(x)f(y), x, y ∈G,

(1.5) f(x+y+a)−f(x−y+a) = 2f(x)f(y), x, y ∈G,

(1.6) f(x+y+a) +f(x−y+a) = 2f(x)f(y), x, y ∈G, see [1], [2], [6], [7] and [8].

• Cauchy’s functional equation

(1.7) f(x+y) = f(x)f(y), x, y ∈G,

• D’Alembert’s functional equation

(1.8) f(x+y) +f(x+y) = 2f(x)f(y), x, y ∈G.

To complete our consideration, we give some applications.

We shall need the results below for later use.

2. GENERALPROPERTIES

Proposition 2.1. Letδ >0. LetGbe an abelian group and letf be a complex-valued function defined onGsuch that

(2.1)

m

X

i=1

f(x+y+ai)−f(x)f(y)

≤δ, x, y ∈G, then one of the assertions is satisfied

i) Iff is bounded, then

(2.2) |f(x)| ≤ m+√

m2+ 4δ

2 , x∈G.

ii) Iff is unbounded, then there exists a sequence (zn)n∈N inGsuch thatf(zn) 6= 0and limn|f(zn)|= +∞and that the convergence of the sequences of functions

(2.3) x→ 1

f(zn)

m

X

i=1

f(zn+x+ai), n ∈N, to the function

x→f(x),

(2.4) x→ 1

f(zn)

m

X

i=1

f(zn+x+y+aj+ai), n∈N, 1≤j ≤m, y∈G, to the function

x→f(x+y+aj), is uniform.

(3)

Proof. i) LetX = sup|f|, then for allx∈Gwe have

|f(x)f(x)| ≤mX+δ from which we obtain that

X2 −mX −δ≤0 hence

X ≤ m+√

m2+ 4δ

2 .

ii) Since f is unbounded then there exists a sequence (zn)n∈N inG such thatf(zn) 6= 0 andlimn|f(zn)|= +∞. Using (2.1) one has

1 f(zn)

m

X

i=1

f(zn+x+ai)−f(x)

≤ δ

|f(zn)|, x∈G, n∈N, by lettingn→ ∞, we obtain

limn

1 f(zn)

m

X

i=1

f(zn+x+ai) = f(x) and

limn

1 f(zn)

m

X

i=1

f(zn+x+y+aj+ai) =f(x+y+aj).

Proposition 2.2. Letδ >0. LetGbe an abelian group and letf be a complex-valued function defined onGsuch that

(2.5)

m

X

i=1

[f(x+y+ai) +f(x−y−ai)]−2f(x)f(y)

≤δ, x, y∈G, then one of the assertions is satisfied

i) Iff is bounded, then

(2.6) |f(x)| ≤ m+√

m2+ 2δ

2 , x∈G.

ii) Iff is unbounded, then there exists a sequence (zn)n∈N ∈ Gsuch thatf(zn) 6= 0and limn|f(zn)|= +∞and that the convergence of the sequences of functions

(2.7) x→ 1

f(zn)

m

X

i=1

[f(zn+x+ai) +f(zn−x−ai)], n∈N, to the function

x→2f(x),

(2.8) x→ 1 f(zn)

m

X

i=1

[f(zn+x+y+aj+ai) +f(zn−x−y−aj−ai)],

n ∈N, 1≤j ≤m, y ∈G, to the function

x→2f(x+y+aj),

(4)

(2.9) x→ 1 f(zn)

m

X

i=1

[f(zn+x−y−aj +ai) +f(zn−x+y+aj−ai)],

n ∈N, 1≤j ≤m, y ∈G, to the function

x→2f(x−y−aj) is uniform.

Proof. The proof is similar to the proof of Proposition 2.1.

i) LetX = sup|f|, then for allx∈Gwe have X2 −mX− δ

2 ≤0 hence

X ≤ m+√

m2+ 2δ

2 .

ii) Follows from the fact that

1 f(zn)

m

X

i=1

[f(zn+x+ai) +f(zn−x−ai)]−2f(x)

≤ δ

|f(zn)|, x∈G, n∈N. 3. THEMAIN RESULTS

The main results are the following theorems.

Theorem 3.1. Letδ > 0. LetGbe an abelian group and let f be a complex-valued function defined onGsuch that

(3.1)

m

X

i=1

f(x+y+ai)−f(x)f(y)

≤δ, x, y ∈G, then either

(3.2) |f(x)| ≤ m+√

m2+ 4δ

2 , x∈G, or

(3.3)

m

X

i=1

f(x+y+ai) =f(x)f(y), x, y ∈G.

Proof. The idea is inspired by the paper [3].

Iff is bounded, then from (2.2) we obtain the first case of the theorem. For the remainder, we get by using the assertion ii) in Proposition 2.1, for allx, y ∈G, n∈N

m

X

j=1

1 f(zn)

m

X

i=1

f(zn+x+y+aj+ai)−f(x) 1 f(zn)

m

X

j=1

f(zn+y+aj)

m

X

j=1

1 f(zn)

( m X

i=1

f(zn+x+y+aj +ai)−f(x)f(zn+y+aj) )

≤ mδ

|f(zn)|,

(5)

since the convergence is uniform, we have

m

X

i=1

f(x+y+ai)−f(x)f(y)

≤0.

i.e.f is a solution of the functional equation (1.1).

Theorem 3.2. Letδ > 0. LetGbe an abelian group and let f be a complex-valued function defined onGsuch that

(3.4)

m

X

i=1

[f(x+y+ai) +f(x−y−ai)]−2f(x)f(y)

≤δ, x, y∈G,

then either

(3.5) |f(x)| ≤ m+√

m2+ 2δ

2 , x∈G.

or

(3.6)

m

X

i=1

[f(x+y+ai) +f(x−y−ai)] = 2f(x)f(y), x, y ∈G.

Proof. By the assertion i) in Proposition 2.2 we get the first case of the theorem. For the second case we have by the inequality (3.4) that

m

X

j=1

1 f(zn)

( m X

i=1

[f(zn+x+y+aj+ai) +f(zn−x−y−aj −ai)]

)

+

m

X

j=1

1 f(zn)

( m X

i=1

[f(zn+x−y−aj+ai) +f(zn−x+y+aj −ai)]

)

−2f(x) 1 f(zn)

m

X

j=1

[f(zn+y+aj) +f(zn−y−aj)]

=

m

X

j=1

1 f(zn)

( m X

i=1

[f(zn+x+y+aj +ai) +f(zn−x+y+aj−ai)]

−2f(x)f(zn+y+aj)

+

m

X

j=1

1 f(zn)

( m X

i=1

[f(zn+x−y−aj+ai) +f(zn−x−y−aj−ai)]

−2f(x)f(zn−y−aj)

m

X

j=1

1 f(zn)

( m X

i=1

[f(zn+x+y+aj+ai) +f(zn−x+y+aj −ai) ]

−2f(x)f(zn+y+aj)

(6)

+

m

X

j=1

1 f(zn)

( m X

i=1

[f(zn+x−y−aj+ai) +f(zn−x−y−aj−ai)]

−2f(x)f(zn−y−aj)

≤ 2mδ

|f(zn)|,

since the convergence is uniform, we have

2

m

X

i=1

[f(x+y+ai) +f(x−y−ai)]−4f(x)f(y)

≤0.

i.e.f is a solution of the functional equation (1.2).

4. APPLICATIONS

From Theorems 3.1 and 3.2, we easily obtain .

Corollary 4.1. Letδ > 0. LetGbe an abelian group and letf be a complex-valued function defined onGsuch that

(4.1) |f(x+y+a)−f(x)f(y)| ≤δ, x, y∈G, then either

(4.2) |f(x)| ≤ 1 +√

1 + 4δ

2 , x∈G.

or

(4.3) f(x+y+a) = f(x)f(y) x, y ∈G.

Remark 4.2. Takinga = 0in Corollary 4.1, we find the result obtained in [4].

Corollary 4.3. Letδ > 0. LetGbe an abelian group and letf be a complex-valued function defined onGsuch that

(4.4) |f(x+y+a) +f(x−y−a)−2f(x)f(y)| ≤δ, x, y ∈G, then either

(4.5) |f(x)| ≤ 1 +√

1 + 2δ

2 , x∈G, or

(4.6) f(x+y+a) +f(x−y−a) = 2f(x)f(y), x, y ∈G.

Remark 4.4. Takinga = 0in Corollary 4.3, we find the result obtained in [5].

Corollary 4.5. Letδ > 0. LetGbe an abelian group and letf be a complex-valued function defined onGsuch that

(4.7)

m

X

i=1

[f(x+y+ai)−f(x−y+ai)]−2f(x)f(y)

≤δ, x, y∈G, then either

(4.8) |f(x)| ≤ m+√

m2+ 2δ

2 , x∈G,

(7)

or

(4.9)

m

X

i=1

[f(x+y+ai) +f(x−y−ai)] = 2f(x)f(y), x, y ∈G.

Proof. Let f be a complex-valued function defined on G which satisfies the inequality (4.7), then for allx, y ∈Gwe have

2|f(x)||f(y) +f(−y)|

=|2f(x)f(y) + 2f(x)f(−y)|

=

m

X

i=1

[f(x+y+ai)−f(x−y+ai)]

m

X

i=1

[f(x+y+ai)−f(x−y+ai)] + 2f(x)f(y) + 2f(x)f(−y)

2f(x)f(y)−

m

X

i=1

[f(x+y+ai)−f(x−y+ai)]

+

2f(x)f(−y)−

m

X

i=1

[f(x−y+ai)−f(x+y+ai)]

≤2δ.

Sincef is unbounded it follows thatf(−y) = −f(y), for all y ∈ G. Consequentlyf satisfies

the inequality (3.4) and one has the remainder.

Corollary 4.6. Letδ > 0. LetGbe an abelian group and letf be a complex-valued function defined onGsuch that

(4.10)

m

X

i=1

[f(x+y+ai) +f(x−y+ai)]−2f(x)f(y)

≤δ, x, y ∈G, then either

(4.11) |f(x)| ≤ m+√

m2+ 2δ

2 , x∈G, or

(4.12)

m

X

i=1

[f(x+y+ai) +f(x−y−ai)] = 2f(x)f(y) x, y ∈G.

Proof. Letf be a complex-valued function defined onGwhich satisfies the inequality (4.10), then for allx, y ∈Gwe have

2|f(x)||f(y)−f(−y)|=|2f(x)f(y)−2f(x)f(−y)|

=

m

X

i=1

[f(x+y+ai) +f(x−y+ai)]

m

X

i=1

[f(x+y+ai) +f(x−y+ai)]

+ 2f(x)f(y)−2f(x)f(−y)

(8)

m

X

i=1

[f(x−y+ai) +f(x+y+ai)]−2f(x)f(−y)

+

m

X

i=1

[f(x+y+ai) +f(x−y+ai)]−2f(x)f(y)

≤2δ.

Sincef is unbounded it follows thatf(−y) =f(y), for ally∈G. Consequentlyf satisfies the

inequality (3.4) and one has the remainder.

REFERENCES

[1] J. ACZÉL, Lectures on Functional Equations and their Applications, Academic Press, New York- Sain Francisco-London, 1966.

[2] R. BADORA, On a joint generalization of Cauchy’s and d’Alembert functional equations, Aequa- tions Math., 43 (1992), 72–89.

[3] R. BADORA, On Heyers-Ulam stability of Wilson’s functional equation, Aequations Math., 60 (2000), 211–218.

[4] J. BAKER, J. LAWRENCEANDF. ZORZITTO, The stability of the equationf(x+y) =f(x)f(y), Proc. Amer. Math. Soc., 74 (1979), 242–246.

[5] J. BAKER, The stability of the cosine equation, Proc. Amer. Math. Soc., 80(3) (1980), 411–416.

[6] Z. GAJDA, A generalization of d’Alembert’s functional equation, Funkcial. Evac., 33 (1990), 69–

77.

[7] B. NAGY, A sine functional equation in Banach algebras, Publ. Math. Debrecen, 24 (1977), 77–99.

[8] E.B. VAN VLECK, A functional equation for the sine, Ann. Math., 11 (1910), 161–165.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

21 Porras, Francisco: U n texto inédito para títeres, de Federico García Lorca, in: Títere, Madrid, n°. New York, Society o f Spanish and Spanish-American Studies,

E liason , Lyapunov type inequalities for certain second order functional differential equations, SIAM J... K ong , On the oscillation of differential equations with oscillatory

In theory of functional differential equations there are meth- ods based on the technique of functional differential inequalities, and used to estimate solutions of equations,

Burton, Stability and Periodic Solutions of Ordinary and Functional Differ- ential Equations, Academic Press, Orlando, Florida, 1985..

OWA, New applications of classes of analytic func- tions involving the S˘al˘agean Operator, Proceedings of the International Sympo- sium on Complex Function Theory and

Abstract: Given continuous functions M and N of two variables, it is shown that if in a continuous iteration semigroup with only (M, N )-convex or (M, N )-concave elements there are

TONG, Convex Functions, Partial Orderings, and Statis- tical Applications, Academic Press, San Diego, 1992.

TONG, Convex Functions, Partial Orderings and Statis- tical Applications, Academic Press, New