• Nem Talált Eredményt

Handling a mature clastic HC reservoir without seismic -trends,

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Handling a mature clastic HC reservoir without seismic -trends,"

Copied!
8
0
0

Teljes szövegt

(1)

Handling a mature clastic HC reservoir without seismic - trends, facies proportions and depositional zones

Szabolcs Borka

University of Szeged, Institute of Geography and Geology, Department of Geology and Paleontology borka.szabolcs(5> gmail.com

One can use net-to-gross, lithological or depositional facies to build a static reservoir model.

Considering the latter, it is hard to reveal and put them back to our 3D model in the absence of seismic data because of their existing trends and geometries. Thus, we should rely on the well data to define and visualize depositional facies. This article provides a useful method to handle the apparent lateral "blindness".

The area of the case study is located in the southern part of the Great Hungarian Plain (Algyo field, Hungary). The formation is a submarine fan system. The reservoir is well explored by 132 wells.

Well-logs (GR, RES, SP, Sand- and shale-content, porosity etc.) were used to determine a simplified channel-lobe-background (depositional facies) system. Core samples from 7 wells were also available. In each well the facies proportions were calculated and encoded (0-1) corresponding to the dominant facies in the wells. After applying a simple local B-spline interpolation algorithm on these codes, the facies trends were unfolded as a property map.

The truncated Gaussian simulation was a suitable method to make this information spatially robust regarding facies trends (channel/proximal part or lobe/distal part) and to obtain facies zones. These facies zones were incorporated as trends into a sequential indicator simulation algorithm, thereby establishing a consequent 3D reservoir model. In two parts of the reservoir, channel-dominated zones can be recognized with the surrounding terminal lobes.

Key words: depositional facies, facies proportion, trend, truncated gaussian simulation, sequential indicator simulation, submarine fan

1. I N T R O D U C T I O N

A s t a t i c c l a s t i c - r e s e r v o i r f a c i e s m o d e l c a n b e b u i l t i n t h r e e d i f f e r e n t w a y s u s i n g n e t - t o - g r o s s , l i t h o l o g i c a l o r d e p o s i t i o n a l f a c i e s u n i t s . D u e t o i t s g o o d l a t e r a l i n f o r m a t i o n r i c h n e s s , s e i s m i c d a t a m a y a i d a l l t h e t h r e e m e t h o d s . I n t h e c a s e o f

(2)

t h e l a t t e r i t i s p e r h a p s t h e m o s t i m p o r t a n t s o f t d a t a b e c a u s e i t c a n s h o w g e o m e t r i e s a s s o c i a t e d w i t h d e p o s i t i o n a l f a c i e s . T h e r e f o r e , i n t h e a b s e n c e o f s e i s m i c , w e m a y f e e l l o s t r e g a r d i n g a n y k i n d o f t r e n d , e s p e c i a l l y i f t h e r e a r e h u g e a m o u n t o f w e l l d a t a w a i t i n g t o b e p r o c e s s e d . A p u r e i n t e r p o l a t e d a v e r a g e p o r o s i t y m a p c a n o f t e n h e l p t o o b t a i n t r e n d s , b u t t h e r e a r e o t h e r w a y s t o r e v e a l t h e m . F o r e x a m p l e , v i s u a l i z a t i o n o f f a c i e s p r o p o r t i o n s i n e a c h w e l l c a n s h o w a c l e a r p i c t u r e a b o u t t h e d i s t r i b u t i o n s o f f a c i e s w h i c h c a n b e u s e d a s t r e n d s o r g u i d e s f o r f a c i e s m o d e l l i n g . T h e a i m o f t h i s s t u d y i s t o p r o v i d e a w o r k f l o w f o r d e p o s i t i o n a l f a c i e s m o d e l l i n g b a s e d o n f a c i e s p r o p o r t i o n s .

T h e c a s e s t u d y i s l o c a t e d i n t h e s o u t h e r n p a r t o f t h e G r e a t H u n g a r i a n P l a i n ( A l g y o H C f i e l d , H u n g a r y ) . I t i s a s u b m a r i n e f a n s y s t e m p e n e t r a t e d b y 1 3 2 w e l l s w i t h a l l w e l l s p o s s e s s i n g t h e m a i n w e l l - l o g s ( S P , G R , R E S , D E N , C N , C A L , S a n d - a n d S h a l e - c o n t e n t , p o r o s i t y , p e r m e a b i l i t y ) . C o r e s a m p l e s f r o m 7 w e l l s w e r e a l s o a v a i l a b l e t o o b t a i n t h e d e p o s i t i o n a l f a c i e s .

T h e w h o l e w o r k f l o w w a s e x e c u t e d i n R o x a r ' s I R A P R M S p l a t f o r m ( a c a d e m i c l i c e n s e ) .

2. M E T H O D S

2 . 1 . Defining t h e d e p o s i t i o n a l f a c i e s in t h e w e l l s

T h e v e r y f i r s t s t e p w a s t o i d e n t i f y t h e s e d i m e n t a r y f a c i e s i n a s i m p l i f i e d c h a n n e l ( f i n i n g - u p w a r d s e c t i o n s ) - l o b e ( c o a r s e n i n g - u p w a r d s e c t i o n s ) - b a c k g r o u n d ( f i n e - g r a i n e d s e c t i o n s ) s y s t e m i n t h e 1 3 2 w e l l s b y u s i n g m a i n l y t h e G R , S P , Vs an d , V s h a i e , p o r o s i t y a n d p e r m e a b i l i t y l o g s . C o n s i d e r i n g t h e c o r e s a m p l e s , t h e c h a n n e l s ( F U s e q u e n c e s ) c o n s i s t o f t h i c k ( m a x : 1 0 m , m e a n : 4 . 5 m e t r e s ( f r o m d e f i n e d c h a n n e l f a c i e s i n t h e w e l l s ) m a s s i v e , s t r u c t u r e l e s s s a n d s t o n e s a n d t h e y a r e a l w a y s f o l l o w e d b y t h i n p a r a l l e l - , c r o s s - b e d d e d a n d / o r l e n t i c u l a r b e d d e d f i n e - g r a i n e d p a r t s . I n t h e c a s e o f s u b m a r i n e f a n s , t h i s k i n d o f s e q u e n c e r e f e r s t o a c h a n n e l - l e v e e s y s t e m . O n t h e o t h e r h a n d , l o b e s e c t i o n s ( C U s e q u e n c e s ) c a n b e d e s c r i b e d b y a l s o m a s s i v e s a n d s t o n e s , b u t t h e y a r e f o l l o w e d b y t h e s u d d e n a p p e a r a n c e o f s e p a r a t i n g s h a l e s ( m u d s t o n e s , a r g i l l a c e o u s m a r l s t o n e ) w i t h a n a v e r a g e t h i c k n e s s o f 4 m e t r e s ( m a x : 1 4 m ) . T h e b a c k g r o u n d f a c i e s i s m a s s i v e o r p a r a l l e l - b e d d e d m u d s t o n e s o r a r g i l l a c e o u s m a r l s t o n e s .

(3)

B a s e d o n t h e s e i n f o r m a t i o n , t h e c o n c e p t u a l g e o l o g i c a l m o d e l i s a m u d - r i c h s u b m a r i n e f a n s y s t e m w i t h m e a n d e r i n g c h a n n e l - l e v e e s y s t e m s ( m i d - f a n ) a n d t e r m i n a l l o b e s o r s a n d s h e e t s ( l o w e r - f a n ) a c c o r d i n g t o R i c h a r d s a n d B o w m a n ' s m o d e l ( 1 9 9 8 ) .

I t w a s q u i t e o b v i o u s t h a t i n t h e n o r t h e r n p a r t o f t h e r e s e r v o i r , b o t h c h a n n e l - l e v e e s y s t e m s a n d t e r m i n a l l o b e s w e r e p r e s e n t i n a g e n e r a l s e q u e n c e : t h e p a r t o f l o b e s a r e f o l l o w e d b y t h e c h a n n e l - l e v e e s y s t e m s . S o u t h w a r d s t h e l a t t e r g r a d u a l l y d e c r e a s e s i n t h i c k n e s s , i n t h e s o u t h e r n m o s t p a r t o f t h e r e s e r v o i r i t i s c o m p l e t e l y m i s s i n g ( p i n c h e s o u t ) , w h i l e t h e l o b e s a r e p r e s e n t i n t h e w h o l e a r e a o f t h e r e s e r v o i r . T h i s s u g g e s t s a p r o g r a d i n g s y s t e m t o w a r d s s o u t h ( F i g u r e 1 ) .

Figure 1: A prograding system seems to appear in the reservoir through 3 wells.

Note that southwards the channel-dominated parts (proximal parts) are absent, only lobe-dominated parts (distal parts) are present

2.2. E s t a b l i s h i n g f a c i e s proportion m a p s a s m a i n g u i d e s

A f t e r d e f i n i n g t h e d e p o s i t i o n a l f a c i e s i n t h e w e l l s , i t w a s p o s s i b l e t o c a l c u l a t e t h e f a c i e s p r o p o r t i o n s r e g a r d i n g e a c h f a c i e s ( c h a n n e l , l o b e a n d b a c k g r o u n d ) . F o r i n s t a n c e , i n t h e c a s e o f ' c h a n n e l f r a c t i o n d o m i n a n c e ' , i f t h e c h a n n e l f a c i e s

(4)

d o m i n a t e d r e l a t i v e l y o v e r t h e t w o o t h e r s i n a w e l l , t h e n t h a t w e l l w a s g i v e n a p a r a m e t e r ' 1 ' , e l s e a p a r a m e t e r ' 0 ' ( t h e c l a s s i c a l ' I F - T H A N - E L S E - E N D I F ' l o g i c a l e x p r e s s i o n ) . T h e s a m e m e t h o d w a s f o l l o w e d i n t h e m a t t e r s o f t h e l o b e a n d b a c k g r o u n d t o o . B y a p p l y i n g a s i m p l e l o c a l B - s p l i n e i n t e r p o l a t i o n m e t h o d o f t h e s e f a c i e s c o d e s , t h e e s t i m a t e d f a c i e s t r e n d p r o p e r t y m a p s w e r e u n f o l d e d . U s i n g t h e w e l l d a t a a n d t h e s e p r o p e r t y m a p s a s g u i d e s , t h e s o - c a l l e d ' p r o x i m a l ' ( c h a n n e l - l e v e e d o m i n a t e d ) a n d ' d i s t a l ' ( l o b e a n d s h e e t s d o m i n a t e d ) v a r i a b l e s w e r e d e f i n e d i n e v e r y w e l l ( F i g u r e 1)

2.3. C r e a t i n g d e p o s i t i o n a l z o n e s f o r p o s s i b l e 3 D t r e n d s a n d t h e final f a c i e s m o d e l

I n R o x a r ' s I r a p R M S i t i s p o s s i b l e t o u s e t r u n c a t e d G a u s s i a n s i m u l a t i o n ( ' F a c i e s B e l t s ' m o d u l e , T G S ) t o m o d e l d e p o s i t i o n a l z o n e s o r b e l t s , w h i c h i n t e r f i n g e r w i t h e a c h o t h e r . T h e r e s u l t s o f t h i s m o d u l e a r e o f t e n u s e d a s a d d i t i o n a l 3 D t r e n d s f o r t h e s e q u e n t i a l i n d i c a t o r s i m u l a t i o n ( S I S ) .

T h e d e f i n e d p r o x i m a l a n d d i s t a l f a c i e s w e r e s u i t a b l e i n p u t d a t a f o r t h e T G S t o r e v e a l 3 D t r e n d s f o r S I S . T w o m a i n p a r a m e t e r s w e r e n e e d e d : t h e d e p o s i t i o n a l d i r e c t i o n a n d t h e s o - c a l l e d s t a c k i n g a n g l e ( t h i s d e s c r i b e s t h e a v e r a g e a n g l e o f c l i m b o f t h e f a c i e s b e l t s w i t h i n t h e g r i d m o d e l ) . T h e d e p o s i t i o n a l d i r e c t i o n c o u l d b e p r e d i c t e d f r o m t h e t h i c k n e s s m a p o f t h e p r o x i m a l z o n e . F u r t h e r m o r e , i t w a s p o s s i b l e t o c a l c u l a t e d i p a n g l e s i n d e g r e e s ( f r o m n o d e t o n o d e , c o r r e s p o n d i n g t o t h e t h i c k n e s s v a l u e s ) b a s e d o n t h e t h i c k n e s s m a p o f t h e p r o x i m a l z o n e . T h e o r e t i c a l l y , i f a z o n e g r a d u a l l y b e c o m e s t h i n n e r s t r i c t l y i n o n e d i r e c t i o n

( a z i m u t h , i n c a s e o f t h e r e s e r v o i r , n o r t h t o s o u t h ) , t h e m e a n o f t h e s e a n g l e s r e p r e s e n t s a p p r o x i m a t e l y t h e m a i n s t a c k i n g a n g l e o f t h e z o n e , b e c a u s e b o t h t h e m e a n a n g l e a n d t h e d i p a n g l e o f t h e z o n e a s w e l l a s t h e m a i n s t a c k i n g a n g l e a r e a l t e r n a t e i n t e r i o r a n g l e s . T h e t h e o r e t i c a l b a c k g r o u n d c a n b e s e e n o n F i g u r e 2.

U s i n g t h e s e i n p u t p a r a m e t e r s , t h e T G S m e t h o d w a s e x e c u t e d ( w i t h a l t o g e t h e r 5 0 r e a l i z a t i o n s ) . T h e r e s u l t i n g P50 ( e v a l u a t e d f r o m a l l t h e r e a l i z a t i o n s ) 3 D m o d e l r e g a r d i n g t h e p r o x i m a l z o n e w a s i n c o r p o r a t e d i n t o t h e S I S a s a 3 D t r e n d f o r t h e c h a n n e l f a c i e s .

(5)

C r o s s s e c t i o n of t h i c k n e s s m a p of p r o x i m a l z o n e Calculated dip angles

from nodes to nodes

N

Distribution of these angles

$

Mean ~ Angle 'A' ft

A n g l e ' A = A n g l e ' B '

They are alternate interior angles

A /

Proximal ^ Distal

Stacking angle for TGS

N-S c r o s s - s e c t i o n of the r e s e r v o i r

Figure 2 : The theoretical background for calculating the main stacking angle in the case of the proximal zone which gradually becomes thinner strictly in one direction.

I t i s i m p o r t a n t , t h a t t h e r e s u l t o f t h e d i s t a l z o n e w a s n o t u s e d a s a t r e n d f o r t h e l o b e f a d e s , a s t h e r e s u l t p e r t a i n s t o b o t h t h e t e r m i n a l l o b e a n d t h e b a c k g r o u n d f a c i e s o n t h e e d g e o f t h e r e s e r v o i r , w h i c h l a c k s h a r d w e l l d a t a ( F i g u r e 1 ) . I n s t e a d , t h e m o d e l l i n g o f t h e l o b e a n d b a c k g r o u n d f a c i e s r e l i e d o n t h e i r g l o b a l f a c i e s p r o p o r t i o n s c o m i n g f r o m t h e u p s c a l e d w e l l d a t a a n d t h e i r s e m i v a r i o g r a m s , r e s p e c t i v e l y T h e g e o l o g i c a l i n t e r p r e t a t i o n o f t h e u s e d s e m i v a r i o g r a m s w a s n e c e s s a r y i n t h e c a s e o f e v e r y f a c i e s ( G r i n g a r t e n a n d D e u t s c h , 2 0 0 1 ) . T a b l e 1 s h o w s t h e t r e n d p a r a m e t e r s o f S I S f o r t h e d e p o s i t i o n a l f a c i e s m o d e l . U s i n g t h e S I S 1 0 0 r e a l i z a t i o n s w e r e g e n e r a t e d , a n d t h e f i n a l f a c i e s m o d e l w a s t h e P s o c a s e c o m p u t e d f r o m t h e d i s t r i b u t i o n o f a l l r e a l i z a t i o n s .

Table 1: The used trend parameters of depositional facies

Depositional facies Trend Semivariogram

Channel 3D parameter trend coming

from TGS 'proximal zone' Yes Lobe Global proportion coming from

upscaled well data Yes

Background Global proportion coming from

upscaled well data Yes

3. R E S U L T S

A f t e r c a l c u l a t i n g t h e f a c i e s f r a c t i o n s i n e a c h w e l l , i t w a s p o s s i b l e t o v i s u a l i z e t h e m a s p i e c h a r t s ( F i g u r e 3 ) . A s m e n t i o n e d b e f o r e , f o r o v e r v i e w i n g a m a t u r e

(6)

f i e l d i t m a y b e b e t t e r t o p a r a m e t r i z e r e g a r d i n g e a c h f a c i e s i n e v e r y w e l l . T h e p r o p e r t y m a p s o f t h e c h a n n e l a n d l o b e d o m i n a n c e c a n b e s e e n o n F i g u r e 3 .

Figure 3 : A: average porosity map with the facies pie charts, B: property map of channel dominance, C: property map of lobe dominance

I n t h e c a s e o f t h e c h a n n e l f a c i e s , t w o s h a r p z o n e s a r e r e c o g n i z a b l e f r o m n o r t h t o s o u t h , a n d f r o m n o r t h t o s o u t h e a s t .

U s i n g t h e s e i n f o r m a t i o n , t h e p r o x i m a l a n d d i s t a l p a r t s w e r e d e f i n e d i n a l l w e l l s . T h e t h i c k n e s s m a p s o f t h e d i s t a l a n d p r o x i m a l z o n e s a s w e l l a s t h e c a l c u l a t e d d i p a n g l e s r e g a r d i n g a f i l t e r e d p r o x i m a l ( e x c l u d e d t h e p a r t s w i t h z e r o t h i c k n e s s - > s e d i m e n t a r y p i n c h i n g o u t ) z o n e c a n b e s e e n o n F i g u r e 4.

A B C

Figure 4 : A: thickness map of distal zone, B: thickness map of proximal zone with the filtering polygon, C: dip angles of the filtered proximal zone

(7)

T h e d i s t r i b u t i o n p a r a m e t e r s o f t h e c a l c u l a t e d d i p a n g l e s o f t h e f i l t e r e d p r o x i m a l z o n e s ( m a i n s t a c k i n g a n g l e ) a r e : m e a n = 0 . 9 8 , m i n = 0 . 0 1 , m a x = 8 . 5 1 , s t d . d e v . = 0 . 7 9 . T h e d e p o s i t i o n a l d i r e c t i o n i s a b o u t 1 6 0 a z i m u t h d e g r e e ( s t d . d e v . = 1 0 ) . A f i l t e r i n g p o l y g o n w a s a l s o u s e d t o d e n o t e t h e f a c i e s b o r d e r b e t w e e n t h e p r o x i m a l a n d d i s t a l d e p o s i t i o n a l z o n e s i n T G S . A s m e n t i o n e d b e f o r e , o n l y t h e P s o o f t h e p r o x i m a l z o n e w a s p r o v i d e d a s a 3 D t r e n d f o r t h e S I S .

T a b l e 2 s h o w s t h e s e m i v a r i o g r a m s ' p a r a m e t e r s a n d i n t e r p r e t a t i o n s c o r r e s p o n d i n g t o e a c h f a c i e s i n t h e S I S .

Table 2: The semivariogram parameters and their interpretations (SV: subvariogram, in the case of a nested semivariogram structure; *range: parallel to azimuth/normal

to azimuth)

C h a n n e l S V 1 C h a n n e l S V 2 L o b e S V 1 L o b e S V 2 B a c k g r o u n d

T y p e S p h e r i c a l E x p o n e n t i a l N u g g e t E x p o n e n t i a l E x p o n e n t i a l

F r a c t i o n o f

s i l l 0 . 7 0 . 3 0 . 2 5 0 . 7 5 1

A z i m u t h 1 5 / 1 9 5 1 5 0 / 3 3 0 - 1 3 0 / 3 1 0 1 0 0

R a n g e * 7 0 0 / 5 0 0 3 5 0 0 / 1 6 0 0 - 3 9 0 0 / 2 8 0 0 2 5 0 0 / 1 0 0 0

I n t e r p r e t a t i o n

R a p i d c h a n g e s d u e t o t h e m e a n d e r i n g p r o c e s s i t s e l f ( p r o b a b l y

r e p r e s e n t s a w a v e l e n g t h )

t h e m a i n c h a n n e l d i r e c t i o n ( s m o o t h e r , p e r s i s t e n t c h a n g e )

-

t e r m i n a l p a r t o f t h e d e p o s i t i o n a l p r o c e s s e s b u t c o v e r s a g r e a t e r a r e a

t e r m i n a l p a r t o f t h e d e p o s i t i o n a l p r o c e s s e s b u t

c o v e r s a g r e a t e r a r e a

A l a y e r ( l a y e r 4 ) o f t h e f i n a l P50 m o d e l o f t h e r e s e r v o i r u s i n g S I S ( e v a l u a t e d f r o m t h e 1 0 0 r e a l i z a t i o n s ) c a n b e s e e n o n F i g u r e 5, c o m p a r e d t o t h e s a m e l a y e r o f r e s u l t o f T G S .

I t i s a p p a r e n t t h a t t h e m e t h o d p e r f o r m e d b e t t e r a t r e v e a l i n g t h e c h a n n e l c o m p a r e d t o t h e r e p r o d u c t i o n o f l o b e f e a t u r e s , p e r h a p s d u e t o t h e l a c k o f a 3 D t r e n d o f t h e l o b e i n t h e S I S .

(8)

Figure 5 : A: P5o result of SIS, layer 4; B: P5o result of TGS, layer 4; Note that in the case of 'A', two well visible main channels are recognizable

4. C O N C L U S I O N S

B a s e d o n t h e r e s u l t s , i t c a n b e s t a t e d t h a t i n c o n t r a s t w i t h t h e c o m m o n a s s u m p t i o n t h a t p i x e l - b a s e d ( e . g . S I S , T G S ) m e t h o d s a r e n o t a b l e t o r e p r o d u c e g e o m e t r i c a l i n f o r m a t i o n o f ( d e p o s i t i o n a l ) f a c i e s ( P y r c z a n d D e u t s c h , 2 0 1 4 ) , t h e u s e o f f a c i e s f r a c t i o n m a p s a n d d e p o s i t i o n a l z o n e s c a n a i d t h e s e m e t h o d s t o h o n o u r g e o m e t r i c a l f e a t u r e s . M o r e o v e r t h e y c a n s o l v e t h e l a t e r a l ' b l i n d n e s s ' c a u s e d b y t h e i n i t i a l c o n f u s i o n r e l a t e d t o d e n s e w e l l d a t a a n d b y t h e l a c k o f s e i s m i c d a t a .

A C K N O W L E D G E M E N T S

T h e w e l l l o g s a n d c o r e s a m p l e s w e r e p r o v i d e d b y M O L P i c . T h e a c a d e m i c l i c e n s e o f R o x a r I r a p R M S w a s p r o v i d e d b y E m e r s o n .

R E F E R E N C E S

G R I N G A R T E N , E . & D E U T S C H , C . V . ( 2 0 0 1 ) : T e a c h e r ' s a i d e - V a r i o g r a m i n t e r p r e t a t i o n a n d m o d e l l i n g , M a t h e m a t i c a l G e o l o g y , V o l . 3 3 , N o . 4 , 5 0 7 - 5 3 4 . P Y R C Z , M . J . & D E U T S C H , C . V . ( 2 0 1 4 ) : G e o s t a t i s t i c a l r e s e r v o i r m o d e l i n g - 2 n d e d i t i o n . O x f o r d U n i v e r s i t y P r i n t , U n i v e r s i t y o f O x f o r d , 4 4 8 p .

R I C H A R D S , M . & B O W M A N M . , ( 1 9 9 8 ) : S u b m a r i n e f a n s a n d r e l a t e d d e p o s i t i o n a l s y s t e m s I I : v a r i a b i l i t y i n r e s e r v o i r a r c h i t e c t u r e a n d w i r e l i n e l o g c h a r a c t e r , M a r i n e a n d P e t r o l e u m G e o l o g y , 1 5 , 8 2 1 - 8 3 9 .

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

If the selection from the space Y of the secondary phenomena belonging to different points of the Poisson process is serially independent and identically

vulpes has been described so far in a fox from Canada (Clancey et al., 2010), indicating the role of foxes as a reservoir for B. The geographical distribution of positive

In the present study, 223 foxes were collected from various localities in the northern part of the Republic of Serbia (Vojvodina province) and examined for in- testinal helminths..

Occurrence and abundance (%) of diatoms of the Coscinodiscophyceae recorded at 33 sampling points (Marmara River Catchment: 1- Ömerli Reservoir, 2- Terkos Reservoir, 3- Riva Stream,

Concisely, the purpose of our work is to assess the impact of the reservoir on the trans- mission dynamics of EVD by coupling a bat-to-bat model with a human-to-human model through

From the analysis of emergency storage experiences in Hungary it has been concluded further that an emergency reservoir situated at the confluence (‘delta’) of two rivers should

The time interval between the initial phase of oper- ations and the flood peak is variable: it is up to 2 days at the Szamos-Kraszna-közi reservoir, 4 days at the Cigándi reservoir,

For the wet surface temper- ature the MODIS pixel with the lowest mean annual T s value over the Harlan County reservoir in Nebraska was chosen, the reservoir representing the