• Nem Talált Eredményt

ON SOME INEQUALITIES FOR p-NORMS

N/A
N/A
Protected

Academic year: 2022

Ossza meg "ON SOME INEQUALITIES FOR p-NORMS"

Copied!
15
0
0

Teljes szövegt

(1)

Some Inequalities forp-Norms U.S. Kirmaci, M. Klariˇci´c Bakula, M. E. Özdemir and J. Peˇcari´c

vol. 9, iss. 1, art. 27, 2008

Title Page

Contents

JJ II

J I

Page1of 15 Go Back Full Screen

Close

ON SOME INEQUALITIES FOR p-NORMS

U.S. KIRMACI M. KLARI ˇCI ´C BAKULA

Atatürk University Department of Mathematics

K. K. Education Faculty Faculty of Natural Sciences, Mathematics and Education Department of Mathematics University of Split

25240 Kampüs, Erzurum, Turkey Teslina 12, 21000 Split, Croatia EMail:kirmaci@atauni.edu.tr EMail:milica@pmfst.hr

M. E. ÖZDEMIR J. PE ˇCARI ´C

Atatürk University Faculty of Textile Technology K. K. Education Faculty University of Zagreb Department of Mathematics Prilaz Baruna Filipovi´ca 30 25240 Kampüs, Erzurum, Turkey 10000 Zagreb, Croatia EMail:emos@atauni.edu.tr EMail:pecaric@hazu.hr

Received: 01 August, 2007

Accepted: 18 March, 2008

Communicated by: S.S. Dragomir 2000 AMS Sub. Class.: 26D15.

Key words: Convex functions,p-norm, Power means, Hölder’s integral inequality.

Abstract: In this paper we establish several new inequalities includingp-norms for func- tions whose absolute values aroused to thep-th power are convex functions.

(2)

Some Inequalities forp-Norms U.S. Kirmaci, M. Klariˇci´c Bakula, M. E. Özdemir and J. Peˇcari´c

vol. 9, iss. 1, art. 27, 2008

Title Page Contents

JJ II

J I

Page2of 15 Go Back Full Screen

Close

Contents

1 Introduction 3

2 Results 5

(3)

Some Inequalities forp-Norms U.S. Kirmaci, M. Klariˇci´c Bakula, M. E. Özdemir and J. Peˇcari´c

vol. 9, iss. 1, art. 27, 2008

Title Page Contents

JJ II

J I

Page3of 15 Go Back Full Screen

Close

1. Introduction

Integral inequalities have become a major tool in the analysis of integral equations, so it is not surprising that many of them appear in the literature (see for example [2], [5], [3] and [1]).

One of the most important inequalities in analysis is the integral Hölder’s inequal- ity which is stated as follows (for this variant see [3, p. 106]).

Theorem A. Letp, q ∈ R{0}be such that 1p + 1q = 1and let f, g : [a, b] → R, a < b,be such that|f(x)|pand|g(x)|qare integrable on[a, b].Ifp, q >0,then

(1.1)

Z b a

|f(x)g(x)|dx≤ Z b

a

|f(x)|pdx

1

pZ b

a

|g(x)|qdx

1 q

.

Ifp <0and additionallyf([a, b]) ⊆ R{0},orq < 0andg([a, b]) ⊆ R{0}, then the inequality in(1.1)is reversed.

The Hermite-Hadamard inequalities for convex functions is also well known.

This double inequality is stated as follows (see for example [3, p. 10]): Let f be a convex function on[a, b]⊂R,wherea6=b. Then

(1.2) f

a+b 2

≤ 1

b−a Z b

a

f(x)dx≤ f(a) +f(b)

2 .

To prove our main result we need comparison inequalities between the power

(4)

Some Inequalities forp-Norms U.S. Kirmaci, M. Klariˇci´c Bakula, M. E. Özdemir and J. Peˇcari´c

vol. 9, iss. 1, art. 27, 2008

Title Page Contents

JJ II

J I

Page4of 15 Go Back Full Screen

Close

means defined by

Mn[r](x;p) =

















1

Pn

Pn i=1pixri

1r

, r6=−∞,0,∞;

Qn

i=1xpii Pn1

, r= 0;

min (x1, . . . , xn), r=−∞;

max (x1, . . . , xn), r=∞, wherex, pare positive n-tuples and Pn = Pn

i=1pi. It is well known that for such means the following inequality holds:

(1.3) Mn[r](x;p)≤Mn[s](x;p) wheneverr < s(see for example [3, p. 15]).

In this paper we also use the following result (see [5, p. 152]):

Theorem B. Letξ ∈[a, b]n,0< a < b,andp∈[0,∞)nbe twon-tuples such that

n

X

i=1

piξi ∈[a, b],

n

X

i=1

piξi ≥ξj, j = 1,2, . . . , n.

Iff : [a, b]→Ris such that the functionf(x)/xis decreasing, then

(1.4) f

n

X

i=1

piξi

!

n

X

i=1

pif(ξi).

Iff(x)/xis increasing, then the inequality in(1.4)is reversed.

Our goal is to establish several new inequalities for functions whose absolute values raised to some real powers are convex functions.

(5)

Some Inequalities forp-Norms U.S. Kirmaci, M. Klariˇci´c Bakula, M. E. Özdemir and J. Peˇcari´c

vol. 9, iss. 1, art. 27, 2008

Title Page Contents

JJ II

J I

Page5of 15 Go Back Full Screen

Close

2. Results

In the literature, the following definition is well known.

Letf : [a, b]→Randp∈R+.Thep-norm of the functionf on[a, b]is defined by

kfkp =



 Rb

a |f(x)|pdx1p

, 0< p <∞;

sup|f(x)|, p=∞,

andLp([a, b])is the set of all functionsf : [a, b]→Rsuch thatkfkp <∞.

Observe that if|f|p is convex (or concave) on[a, b]it is also integrable on[a, b], hence0≤ kfkp <∞,that is,f belongs toLp([a, b]).

Although p-norms are not defined for p < 0, for the sake of the simplicity we will use the same notationkfkp whenp∈R{0}.

In order to prove our results we need the following two lemmas.

Lemma 2.1. Letxandpbe twon-tuples such that

(2.1) xi >0, pi ≥1, i= 1,2, . . . , n.

Ifr < s <0or0< r < s,then (2.2)

n

X

i=1

pixsi

!1s

n

X

i=1

pixri

!1r ,

and ifr <0< s,then

n

X

i=1

pixri

!1r

n

X

i=1

pixsi

!1s .

If then-tuplexis only nonnegative, then(2.2)holds whenever0< r < s.

(6)

Some Inequalities forp-Norms U.S. Kirmaci, M. Klariˇci´c Bakula, M. E. Özdemir and J. Peˇcari´c

vol. 9, iss. 1, art. 27, 2008

Title Page Contents

JJ II

J I

Page6of 15 Go Back Full Screen

Close

Proof. Suppose thatx andp are such that the inequalities in (2.1)hold. It can be easily seen that in this case for anyq∈R

n

X

i=1

pixqi ≥xqj >0, j = 1,2, . . . , n.

To prove the lemma we must consider three cases:(i)r < s <0, (ii) 0< r < s and(iii) r <0< s.In case(i)we define the functionf :R+ →R+byf(x) =xsr. Since in this case we have(s−r)/r <0,the function

f(x)/x=xsr−1 =xs−rr

is decreasing. Applying TheoremBonf, ξ = (xr1, . . . , xrn)andpwe obtain

n

X

i=1

pixri

!sr

n

X

i=1

pi(xri)sr =

n

X

i=1

pixsi, i.e.,

n

X

i=1

pixri

!1r

n

X

i=1

pixsi

!1s

sincesis negative.

In case(ii)for the samef as in(i)we have(s−r)/r >0,so similarly as before from TheoremBwe obtain

n

X

i=1

pixri

!sr

n

X

i=1

pi(xri)sr =

n

X

i=1

pixsi, and sincesis positive,(2.2)immediately follows.

(7)

Some Inequalities forp-Norms U.S. Kirmaci, M. Klariˇci´c Bakula, M. E. Özdemir and J. Peˇcari´c

vol. 9, iss. 1, art. 27, 2008

Title Page Contents

JJ II

J I

Page7of 15 Go Back Full Screen

Close

And in the end, in case(iii)we have(s−r)/r <0,so using again TheoremB we obtain(2.2)reversed.

Remark 1. In this paper we will use Lemma 2.1 only in a special case when all weights are equal to1. Then forr < s <0or0< r < s,(2.2)becomes

(2.3)

n

X

i=1

xsi

!1s

n

X

i=1

xri

!1r

and forr <0< s,

n

X

i=1

xsi

!1s

n

X

i=1

xri

!1r . In the rest of the paper we denote

Cp =





21p, p≤ −1 or p≥1;

2, −1< p <0;

2−1, 0< p <1;

Cep =





2, p≤ −1;

21p, −1< p < 1, p6= 0;

2−1, p≥1.

.

Lemma 2.2. Letf : [a, b] → R, a < b. If|f|p is convex on [a, b] for somep > 0, then

f

a+b 2

≤(b−a)1pkfkp

|f(a)|p+|f(b)|p 2

1p

≤Cp(|f(a)|+|f(b)|), and if|f|p is concave on[a, b],then

Cep(|f(a)|+|f(b)|)≤

|f(a)|p +|f(b)|p 2

1p

≤(b−a)1pkfkp ≤ f

a+b 2

.

(8)

Some Inequalities forp-Norms U.S. Kirmaci, M. Klariˇci´c Bakula, M. E. Özdemir and J. Peˇcari´c

vol. 9, iss. 1, art. 27, 2008

Title Page Contents

JJ II

J I

Page8of 15 Go Back Full Screen

Close

Proof. Suppose first that|f|p is convex on[a, b]for somep > 0.We have kfkp =

Z b a

|f(x)|pdx

1 p

= (b−a)1p 1

b−a Z b

a

|f(x)|pdx

1 p

.

From(1.2)we obtain (2.4)

f

a+b 2

p

≤ 1

b−a Z b

a

|f(x)|pdx≤ |f(a)|p +|f(b)|p

2 ,

hence

f

a+b 2

≤(b−a)1pkfkp

|f(a)|p +|f(b)|p 2

1p .

Now we must consider two cases. Ifp≥1we can use(2.3)to obtain (|f(a)|p+|f(b)|p)1p ≤ |f(a)|+|f(b)|, hence

(2.5)

|f(a)|p+|f(b)|p 2

1p

≤Cp(|f(a)|+|f(b)|),

whereCp = 21p.

In the other case, when0< p <1,from(1.3)we have |f(a)|p+|f(b)|p

2

1p

≤ |f(a)|+|f(b)|

2 ,

so again we obtain(2.5),whereCp = 2−1. This completes the proof for|f|pconvex.

(9)

Some Inequalities forp-Norms U.S. Kirmaci, M. Klariˇci´c Bakula, M. E. Özdemir and J. Peˇcari´c

vol. 9, iss. 1, art. 27, 2008

Title Page Contents

JJ II

J I

Page9of 15 Go Back Full Screen

Close

Suppose now that|f|p is concave on[a, b]for somep > 0.In that case− |f|p is convex on[a, b],hence(1.2)implies

|f(a)|p+|f(b)|p

2 ≤ 1

b−a Z b

a

|f(x)|pdx≤ f

a+b 2

p

.

Ifp≥1from(1.3)we obtain

|f(a)|p+|f(b)|p 2

1p

≥ |f(a)|+|f(b)|

2 ,

hence

|f(a)|p+|f(b)|p 2

1p

≥Cep(|f(a)|+|f(b)|), whereCep = 2−1.

In the other case, when0< p <1,from(2.3)we have (|f(a)|p+|f(b)|p)1p ≥ |f(a)|+|f(b)|, hence

|f(a)|p+|f(b)|p 2

1p

≥Cep(|f(a)|+|f(b)|), whereCep = 21p.This completes the proof.

Lemma 2.3. Let f : [a, b] → R{0}, a < b. If|f|p is convex on[a, b]for some p <0,then

Cp |f(a)f(b)|

|f(a)|+|f(b)| ≤

|f(a)|p+|f(b)|p 2

1p

≤(b−a)1p kfkp ≤ f

a+b 2

(10)

Some Inequalities forp-Norms U.S. Kirmaci, M. Klariˇci´c Bakula, M. E. Özdemir and J. Peˇcari´c

vol. 9, iss. 1, art. 27, 2008

Title Page Contents

JJ II

J I

Page10of 15 Go Back Full Screen

Close

and if|f|p is concave on[a, b],then

f

a+b 2

≤(b−a)1pkfkp

|f(a)|p+|f(b)|p 2

1p

≤Cep |f(a)f(b)|

|f(a)|+|f(b)|. Proof. Suppose that|f|p is convex on[a, b]for somep < 0.From (2.4),using the fact thatp < 0,we obtain

|f(a)|p+|f(b)|p 2

1p

≤(b−a)p1 kfkp ≤ f

a+b 2

. Again we consider two cases. If−1< p <0,then from(1.3)we have

|f(a)|−1+|f(b)|−1 2

!−1

|f(a)|p+|f(b)|p 2

1p ,

hence

Cp |f(a)f(b)|

|f(a)|+|f(b)| ≤

|f(a)|p+|f(b)|p 2

p1 , whereCp = 2.

In the other case, whenp≤ −1,from(2.3)we have

|f(a)|−1 +|f(b)|−1−1

≤(|f(a)|p+|f(b)|p)1p , hence

Cp

|f(a)f(b)|

|f(a)|+|f(b)| ≤

|f(a)|p+|f(b)|p 2

p1 , whereCp = 21p.

In the other case, when |f|p is concave on [a, b] for some p < 0, the proof is similar.

(11)

Some Inequalities forp-Norms U.S. Kirmaci, M. Klariˇci´c Bakula, M. E. Özdemir and J. Peˇcari´c

vol. 9, iss. 1, art. 27, 2008

Title Page Contents

JJ II

J I

Page11of 15 Go Back Full Screen

Close

Theorem 2.4. Letp, q >0and letf, g : [a, b]→R, a < b,be such that (2.6) m(|g(a)|+|g(b)|)≤ |f(a)|+|f(b)| ≤M(|g(a)|+|g(b)|) for some0< m≤M.

If|f|pand|g|qare convex on[a, b],then (2.7) kfkp+kgkq

M

M + 1Cp(b−a)1p + 1

m+ 1Cq(b−a)1q

K(f, g), where

K(f, g) = |f(a)|+|f(b)|+|g(a)|+|g(b)|. If|f|pand|g|qare concave on[a, b],then

(2.8) kfkp+kgkq ≥ m

m+ 1Cep(b−a)1p + 1

M + 1Ceq(b−a)1q

K(f, g). Proof. Suppose that|f|p and|g|qare convex on[a, b]for some fixedp, q >0.From Lemma2.2we have that

kfkp+kgkq

b−a 2

1p

(|f(a)|p+|f(b)|p)1p +

b−a 2

1q

(|g(a)|q+|g(b)|q)1q

≤Cp(b−a)1p(|f(a)|+|f(b)|) +Cq(b−a)1q (|g(a)|+|g(b)|). (2.9)

Using(2.6)we can write

|f(a)|+|f(b)| ≤M(|f(a)|+|f(b)|+|g(a)|+|g(b)|)−M(|f(a)|+|f(b)|),

(12)

Some Inequalities forp-Norms U.S. Kirmaci, M. Klariˇci´c Bakula, M. E. Özdemir and J. Peˇcari´c

vol. 9, iss. 1, art. 27, 2008

Title Page Contents

JJ II

J I

Page12of 15 Go Back Full Screen

Close

i.e.,

|f(a)|+|f(b)| ≤ M

M + 1(|f(a)|+|f(b)|+|g(a)|+|g(b)|) (2.10)

= M

M + 1K(f, g), and analogously

(2.11) |g(a)|+|g(b)| ≤ 1

m+ 1K(f, g). Combining(2.10)and(2.11)with(2.9)we obtain(2.7).

Suppose now that|f|pand|g|qare concave on[a, b]for some fixedp, q >0.From Lemma2.2we have that

kfkp+kgkq ≥Cep(b−a)1p(|f(a)|+|f(b)|) +Ceq(b−a)1q (|g(a)|+|g(b)|). Using again(2.6)we can write

|f(a)|+|f(b)| ≥m(|f(a)|+|f(b)|+|g(a)|+|g(b)|)−m(|f(a)|+|f(b)|), i.e.,

|f(a)|+|f(b)| ≥ m

m+ 1K(f, g), and analogously

|g(a)|+|g(b)| ≥ 1

M + 1K(f, g), from which(2.8)easily follows.

Remark 2. A similar type of condition as in(2.6)was used in [1, Theorem 1.1] where a variant of the reversed Minkowski’s integral inequality forp >1was proved.

(13)

Some Inequalities forp-Norms U.S. Kirmaci, M. Klariˇci´c Bakula, M. E. Özdemir and J. Peˇcari´c

vol. 9, iss. 1, art. 27, 2008

Title Page Contents

JJ II

J I

Page13of 15 Go Back Full Screen

Close

Theorem 2.5. Letp, q <0and letf, g : [a, b]→R{0}, a < b,be such that m |g(a)g(b)|

|g(a)|+|g(b)| ≤ |f(a)f(b)|

|f(a)|+|f(b)| ≤M |g(a)g(b)|

|g(a)|+|g(b)|

for some0< m≤M.

If|f|pand|g|qare concave on[a, b],then kfkp+kgkq

M

M + 1Cep(b−a)1p + 1

m+ 1Ceq(b−a)1q

H(f, g), where

H(f, g) = |f(a)f(b)|

|f(a)|+|f(b)| + |g(a)g(b)|

|g(a)|+|g(b)|. If|f|pand|g|qare convex on[a, b],then

kfkp+kgkq ≥ m

m+ 1Cp(b−a)1p + 1

M + 1Cq(b−a)1q

H(f, g). Proof. Similar to that of Theorem2.4.

Theorem 2.6. Letf, g : [a, b]→ R, a < b,be such that|f|p and|g|qare convex on [a, b]for some fixedp, q >1,where 1p + 1q = 1.Then

Z b a

f(x)g(x)dx

≤ b−a

2 (|f(a)|p+|f(b)|p)p1 (|g(a)|q+|g(b)|q)1q

≤ b−a

2 [M(f, g) +N(f, g)], where

M(f, g) =|f(a)| |g(a)|+|f(b)| |g(b)|, N(f, g) = |f(a)| |g(b)|+|f(b)| |g(a)|.

(14)

Some Inequalities forp-Norms U.S. Kirmaci, M. Klariˇci´c Bakula, M. E. Özdemir and J. Peˇcari´c

vol. 9, iss. 1, art. 27, 2008

Title Page Contents

JJ II

J I

Page14of 15 Go Back Full Screen

Close

Proof. First note that since|f|p and|g|q are convex on[a, b]we havef ∈ Lp([a, b]) andg ∈Lq([a, b]),and since 1p + 1q = 1 we know thatf g ∈ L1([a, b]),that is,f g is integrable on[a, b]. Using Hölder’s integral inequality(1.1)we obtain

Z b a

f(x)g(x)dx

≤ Z b

a

|f(x)g(x)|dx≤ kfkpkgkq. From Lemma2.3we have that

kfkp

b−a 2

1p

(|f(a)|p+|f(b)|p)1p

b−a 2

1p

(|f(a)|+|f(b)|) and

kgkq

b−a 2

1q

(|g(a)|q+|g(b)|q)1q

b−a 2

1q

(|g(a)|+|g(b)|), hence

Z b a

f(x)g(x)dx

≤ b−a

2 (|f(a)|p+|f(b)|p)p1 (|g(a)|q+|g(b)|q)1q

≤ b−a

2 (|f(a)|+|f(b)|) (|g(a)|+|g(b)|)

= b−a

2 [M(f, g) +N(f, g)].

(15)

Some Inequalities forp-Norms U.S. Kirmaci, M. Klariˇci´c Bakula, M. E. Özdemir and J. Peˇcari´c

vol. 9, iss. 1, art. 27, 2008

Title Page Contents

JJ II

J I

Page15of 15 Go Back Full Screen

Close

References

[1] L. BOUGOFFA, On Minkowski and Hardy integral inequalities, J. Inequal. in Pure and Appl. Math., 7(2) (2006), Art. 60. [ONLINE:http://jipam.vu.

edu.au/article.php?sid=677].

[2] G.H. HARDY, J.E. LITTLEWOOD AND G. PÓLYA, Inequalities, Cambridge Mathematical Library (1988).

[3] D.S. MITRINOVI ´C, J.E. PE ˇCARI ´C AND A.M. FINK, Classical and New In- equalities in Analysis, Kluwer Academic Publishers (1993).

[4] B.G. PACHPATTE, Inequalities for Differentiable and Integral Equations, Aca- demic Press Inc. (1997).

[5] J.E. PE ˇCARI ´C, F. PROSCHAN AND Y.L. TONG, Convex Functions, Partial Orderings, and Statistical Applications, Academic Press Inc. (1992).

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Department of Mathematics, Kinki University Higashi-Osaka, Osaka 577-8502, Japan.. EMail: owa@math.kindai.ac.jp yayoi@math.kindai.ac.jp ha_ya_to112@hotmail.com Received: 18

Research Institute of Mathematical Inequality Theory Henan Polytechnic University.. Jiaozuo City, Henan Province, 454010, China

Department of Mathematics and Physics Henan University of Science and Technology Luoyang 471003, China.. EMail: ryb7945@sina.com.cn renjy03@lzu.edu.cn Received: 13

EMail: vinh@maths.unsw.edu.au School of Finance and Banking University of New South Wales Sydney 2052 NSW, Australia..

Department of Mathematics and Computer Science Kuwait

Al-imam Muhammad Ibn Saud Islamic University Faculty of Computer Science.. Department of

10000 Zagreb, Croatia EMail: pecaric@hazu.hr Department of Mathematics University of Zagreb Pierottijeva 6.. 10000 Zagreb, Croatia

˙Istanbul Kültür University Bakırköy 34156, ˙Istanbul, Turkey EMail: y.polatoglu@iku.edu.tr EMail: e.yavuz@iku.edu.tr.. 2000 Victoria University ISSN (electronic):