• Nem Talált Eredményt

JJ II

N/A
N/A
Protected

Academic year: 2022

Ossza meg "JJ II"

Copied!
11
0
0

Teljes szövegt

(1)

volume 7, issue 5, article 160, 2006.

Received 28 September, 2006;

accepted 06 November, 2006.

Communicated by:N.E. Cho

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

COEFFICIENT INEQUALITIES FOR CLASSES OF UNIFORMLY STARLIKE AND CONVEX FUNCTIONS

SHIGEYOSHI OWA, YA ¸SAR POLATO ˘GLU AND EMEL YAVUZ

Department of Mathematics Kinki University

Higashi-Osaka, Osaka 577-8502 Japan

EMail:owa@math.kindai.ac.jp

Department of Mathematics and Computer Science

˙Istanbul Kültür University Bakırköy 34156, ˙Istanbul, Turkey EMail:y.polatoglu@iku.edu.tr EMail:e.yavuz@iku.edu.tr

c

2000Victoria University ISSN (electronic): 1443-5756 246-06

(2)

Coefficient Inequalities for Classes of Uniformly Starlike

and Convex Functions

Shigeyoshi Owa, Ya¸sar Polato ˘glu and Emel Yavuz

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of11

J. Ineq. Pure and Appl. Math. 7(5) Art. 160, 2006

http://jipam.vu.edu.au

Abstract

In view of classes of uniformly starlike and convex functions in the open unit discUwhich was considered by S. Shams, S.R. Kulkarni and J.M. Jahangiri, some coefficient inequalities for functions are discussed.

2000 Mathematics Subject Classification:Primary 30C45.

Key words: Uniformly starlike, Uniformly convex.

Contents

1 Introduction. . . 3 2 Coefficient Inequalities. . . 5

References

(3)

Coefficient Inequalities for Classes of Uniformly Starlike

and Convex Functions

Shigeyoshi Owa, Ya¸sar Polato ˘glu and Emel Yavuz

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of11

J. Ineq. Pure and Appl. Math. 7(5) Art. 160, 2006

1. Introduction

LetAbe the class of functionsf(z)of the form

(1.1) f(z) =z+

X

n=2

anzn

which are analytic in the open unit discU={z ∈C| |z|<1}.

LetS(β)denote the subclass ofA consisting of functionsf(z)which sat- isfy

(1.2) Re

zf0(z) f(z)

> β (z ∈U)

for some β (0 5 β < 1). A function f(z) ∈ S(β) is said to be starlike of order β in U. Also let K(β) be the subclass of A consisting of all functions f(z)which satisfy

(1.3) Re

1 + zf00(z) f0(z)

> β (z ∈U)

for someβ (05β <1). A functionf(z)inK(β)is said to be convex of order β in U. In view of the class S(β), Shams, Kulkarni and Jahangiri [3] have introduced the subclassSD(α, β)ofAconsisting of functionsf(z)satisfying

(1.4) Re

zf0(z) f(z)

> α

zf0(z) f(z) −1

+β (z ∈U)

(4)

Coefficient Inequalities for Classes of Uniformly Starlike

and Convex Functions

Shigeyoshi Owa, Ya¸sar Polato ˘glu and Emel Yavuz

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of11

J. Ineq. Pure and Appl. Math. 7(5) Art. 160, 2006

http://jipam.vu.edu.au

for someα= 0andβ (05β < 1). We also denote byKD(α, β)the subclass ofAconsisting of all functionsf(z)which satisfy

(1.5) Re

1 + zf00(z) f0(z)

> α

zf00(z) f0(z)

+β (z ∈U)

for someα=0andβ(05β <1). Then we note thatf(z)∈ KD(α, β)if and only ifzf0(z)∈ SD(α, β). For such classesSD(α, β)andKD(α, β), Shams, Kulkarni and Jahangiri [3] have shown some sufficient conditions forf(z)to be in the classesSD(α, β)orKD(α, β).

(5)

Coefficient Inequalities for Classes of Uniformly Starlike

and Convex Functions

Shigeyoshi Owa, Ya¸sar Polato ˘glu and Emel Yavuz

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of11

J. Ineq. Pure and Appl. Math. 7(5) Art. 160, 2006

2. Coefficient Inequalities

Our first result is contained in

Theorem 2.1. Iff(z) ∈ SD(α, β)with 0 5 α 5 β orα > 1+β2 then f(z) ∈ S β−α1−α

.

Proof. SinceRe(w) 5 |w| for any complex numberw, f(z) ∈ SD(α, β)im- plies that

(2.1) Re

zf0(z) f(z)

> α Re

zf0(z) f(z) −1

+β,

or that

(2.2) Re

zf0(z) f(z)

> β−α

1−α (z ∈U).

If05α5β, then we have that

05 β−α 1−α <1,

and ifα > 1 +β

2 , then we have

−1< α−β α−1 50.

(6)

Coefficient Inequalities for Classes of Uniformly Starlike

and Convex Functions

Shigeyoshi Owa, Ya¸sar Polato ˘glu and Emel Yavuz

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of11

J. Ineq. Pure and Appl. Math. 7(5) Art. 160, 2006

http://jipam.vu.edu.au

Corollary 2.2. Iff(z)∈ KD(α, β)with05 α 5 βorα > 1+β2 , thenf(z)∈ K β−α1−α

.

Next we derive

Theorem 2.3. Iff(z)∈ SD(α, β), then

(2.3) |a2|5 2(1−β)

|1−α|

and

(2.4) |an|5 2(1−β) (n−1)|1−α|

n−2

Y

j=1

1 + 2(1−β) j|1−α|

(n =3).

Proof. Note that, forf(z)∈ SD(α, β),

Re

zf0(z) f(z)

> β−α

1−α (z ∈U).

If we define the functionp(z)by

(2.5) p(z) = (1−α)zff(z)0(z) −(β−α)

1−β (z ∈U),

then p(z) is analytic inU withp(0) = 1andRe(p(z)) > 0 (z ∈ U). Letting p(z) = 1 +p1z+p2z2+· · ·, we have

(2.6) zf0(z) =f(z) 1 + 1−β 1−α

X

n=1

pnzn

! .

(7)

Coefficient Inequalities for Classes of Uniformly Starlike

and Convex Functions

Shigeyoshi Owa, Ya¸sar Polato ˘glu and Emel Yavuz

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of11

J. Ineq. Pure and Appl. Math. 7(5) Art. 160, 2006

Therefore, (2.6) implies that (2.7) (n−1)an = 1−β

1−α(pn−1+a2pn−2+· · ·+an−1p1).

Applying the coefficient estimates such that |pn| 5 2 (n = 1) (see [1]) for Carathéodory functions, we obtain that

(2.8) |an|5 2(1−β)

(n−1)|1−α|(1 +|a2|+|a3|+· · ·+|an−1|).

Therefore, forn = 2,

|a2|5 2(1−β)

|1−α| , which proves (2.3), and, forn = 3,

|a3|5 2(1−β) 2|1−α|

1 + 2(1−β)

|1−α|

. Thus, (2.4) holds true forn = 3.

Supposing that (2.4) is true forn = 3,4,5, . . . , k, we see that

|ak+1|5 2(1−β) k|1−α|

1 + 2(1−β)

|1−α| +2(1−β) 2|1−α|

1 + 2(1−β)

|1−α|

+· · ·+ 2(1−β) (k−1)|1−α|

k−2

Y

j=1

1 + 2(1−β) j|1−α|

)

= 2(1−β) k|1−α|

k−1

Y

j=1

1 + 2(1−β) j|1−α|

.

(8)

Coefficient Inequalities for Classes of Uniformly Starlike

and Convex Functions

Shigeyoshi Owa, Ya¸sar Polato ˘glu and Emel Yavuz

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of11

J. Ineq. Pure and Appl. Math. 7(5) Art. 160, 2006

http://jipam.vu.edu.au

Consequently, using mathematical induction, we have proved that (2.4) holds true for anyn =3.

Remark 1. If we takeα= 0in Theorem2.3, then we have

|an|5 Qn

j=2(j−2β)

(n−1)! (n=2)

which was given by Robertson [2].

Sincef(z)∈ KD(α, β)if and only ifzf0(z)∈ SD(α, β), we have Corollary 2.4. Iff(z)∈ KD(α, β), then

(2.9) |a2|5 1−β

|1−α|

and

(2.10) |an|5 2(1−β) n(n−1)|1−α|

n−2

Y

j=1

1 + 2(1−β) j|1−α|

(n=3).

Remark 2. Lettingα= 0in Corollary2.4, we see that

|an|5 Qn

j=2(j −2β)

n! (n=2),

given by Robertson [2].

Further applying Theorem2.3we derive:

(9)

Coefficient Inequalities for Classes of Uniformly Starlike

and Convex Functions

Shigeyoshi Owa, Ya¸sar Polato ˘glu and Emel Yavuz

Title Page Contents

JJ II

J I

Go Back Close

Quit Page9of11

J. Ineq. Pure and Appl. Math. 7(5) Art. 160, 2006

Theorem 2.5. Iff(z)∈ SD(α, β), then

max (

0,|z| −2(1−β)

|1−α| |z|2

X

n=3

2(1−β) (n−1)|1−α|

n−2

Y

j=1

1 + 2(1−β) j|1−α|

!

|z|n )

5|f(z)|5|z|+2(1−β)

|1−α| |z|2+

X

n=3

2(1−β) (n−1)|1−α|

n−2

Y

j=1

1 + 2(1−β) j|1−α|

!

|z|n

and

max (

0,1− 4(1−β)

|1−α| |z| −

X

n=3

2n(1−β) (n−1)|1−α|

n−2

Y

j=1

1 + 2(1−β) j|1−α|

!

|z|n−1 )

5|f0(z)|51+4(1−β)

|1−α| |z|+

X

n=3

2n(1−β) (n−1)|1−α|

n−2

Y

j=1

1 + 2(1−β) j|1−α|

!

|z|n−1.

Corollary 2.6. Iff(z)∈ KD(α, β), then

max (

0,|z| − 1−β

|1−α||z|2

X

n=3

2(1−β) n(n−1)|1−α|

n−2

Y

j=1

1 + 2(1−β) j|1−α|

!

|z|n )

5|f(z)|5|z|+ 1−β

|1−α||z|2+

X

n=3

2(1−β) n(n−1)|1−α|

n−2

Y

j=1

1 + 2(1−β) j|1−α|

!

|z|n

(10)

Coefficient Inequalities for Classes of Uniformly Starlike

and Convex Functions

Shigeyoshi Owa, Ya¸sar Polato ˘glu and Emel Yavuz

Title Page Contents

JJ II

J I

Go Back Close

Quit Page10of11

J. Ineq. Pure and Appl. Math. 7(5) Art. 160, 2006

http://jipam.vu.edu.au

and

max (

0,1− 2(1−β)

|1−α| |z| −

X

n=3

2(1−β) (n−1)|1−α|

n−1

Y

j=1

1 + 2(1−β) j|1−α|

!

|z|n−1 )

5|f0(z)|51+2(1−β)

|1−α| |z|+

X

n=3

2(1−β) (n−1)|1−α|

n−1

Y

j=1

1 + 2(1−β) j|1−α|

!

|z|n−1.

(11)

Coefficient Inequalities for Classes of Uniformly Starlike

and Convex Functions

Shigeyoshi Owa, Ya¸sar Polato ˘glu and Emel Yavuz

Title Page Contents

JJ II

J I

Go Back Close

Quit Page11of11

J. Ineq. Pure and Appl. Math. 7(5) Art. 160, 2006

References

[1] C. CARATHÉODORY, Über den variabilitätsbereich der Fourier’schen konstanten von possitiven harmonischen funktionen, Rend. Circ. Palermo, 32 (1911), 193–217.

[2] M.S. ROBERTSON, On the theory of univalent functions, Ann. Math., 37 (1936), 374–408.

[3] S. SHAMS, S.R. KULKARNI AND J.M. JAHANGIRI, Classes of uni- formly starlike and convex functions, Internat. J. Math. Math. Sci., 55 (2004), 2959–2961.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

PEARCE, Selected Topics on the Her- mite Hadamard Inequality and Applications, RGMIA Monographs, Victoria University, 2000.

PEARCE, Selected Topics on the Hermite Hadamard Inequality and Applications, RGMIA Monographs, Victoria University, 2000..

Education Faculty University of Zagreb Department of Mathematics Prilaz Baruna Filipovi´ca 30 25240 Kampüs, Erzurum, Turkey 10000 Zagreb, Croatia EMail: emos@atauni.edu.tr

Department of Mathematics, Kinki University Higashi-Osaka, Osaka 577-8502, Japan.. EMail: owa@math.kindai.ac.jp yayoi@math.kindai.ac.jp ha_ya_to112@hotmail.com Received: 18

Research Institute of Mathematical Inequality Theory Henan Polytechnic University.. Jiaozuo City, Henan Province, 454010, China

Department of Mathematics and Physics Henan University of Science and Technology Luoyang 471003, China.. EMail: ryb7945@sina.com.cn renjy03@lzu.edu.cn Received: 13

EMail: vinh@maths.unsw.edu.au School of Finance and Banking University of New South Wales Sydney 2052 NSW, Australia..

10000 Zagreb, Croatia EMail: pecaric@hazu.hr Department of Mathematics University of Zagreb Pierottijeva 6.. 10000 Zagreb, Croatia