• Nem Talált Eredményt

JJ II

N/A
N/A
Protected

Academic year: 2022

Ossza meg "JJ II"

Copied!
12
0
0

Teljes szövegt

(1)

volume 7, issue 4, article 151, 2006.

Received 22 August, 2006;

accepted 28 August, 2006.

Communicated by:W.-S. Cheung

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

ON AN INEQUALITY OF OSTROWSKI TYPE

JOSIP PE ˇCARI ´C AND SIME UNGAR

Faculty of Textile Technology University of Zagreb Pierottijeva 6

10000 Zagreb, Croatia EMail:pecaric@hazu.hr Department of Mathematics University of Zagreb Pierottijeva 6

10000 Zagreb, Croatia EMail:ungar@math.hr

c

2000Victoria University ISSN (electronic): 1443-5756 225-06

(2)

On an Inequality of Ostrowski type

Josip Peˇcari´c and Sime Ungar

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of12

J. Ineq. Pure and Appl. Math. 7(4) Art. 151, 2006

http://jipam.vu.edu.au

Abstract

We prove an inequality of Ostrowski type forp-norm, generalizing a result of Dragomir [1].

2000 Mathematics Subject Classification:26D15, 26D10.

Key words: Ostrowski’s inequality,p-norm.

Contents

1 Introduction. . . 3 2 The Main Result . . . 4 3 The Weighted Case. . . 10

References

(3)

On an Inequality of Ostrowski type

Josip Peˇcari´c and Sime Ungar

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of12

J. Ineq. Pure and Appl. Math. 7(4) Art. 151, 2006

http://jipam.vu.edu.au

1. Introduction

For a differentiable function f: [a, b] → R, a · b > 0, Dragomir has in [1]

proved, using Pompeiu’s mean value theorem [3], the following Ostrowski type inequality:

(1.1)

a+b

2 · f(x)

x − 1

b−a Z b

a

f(t) dt

≤D(x)· kf −ι f0k,

whereι(t) = t,t∈[a, b], and

(1.2) D(x) = b−a

|x|

 1

4 + x− a+b2 b−a

!2

.

We are going to prove a general estimate with the p-norm, 1 ≤ p ≤ ∞, which will forp=∞give the Dragomir result.

(4)

On an Inequality of Ostrowski type

Josip Peˇcari´c and Sime Ungar

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of12

J. Ineq. Pure and Appl. Math. 7(4) Art. 151, 2006

http://jipam.vu.edu.au

2. The Main Result

Theorem 2.1. Let the functionf: [a, b]→Rbe continuous on[a, b]and differ- entiable on(a, b)with0< a < b. Then for1p +1q = 1, with1≤p, q ≤ ∞, and allx∈[a, b], the following inequality holds:

(2.1)

a+b

2 ·f(x)

x − 1

b−a Z b

a

f(t) dt

≤P U(x, p)· kf−ι f0kp

whereι(t) = t,t∈[a, b], and

(2.2) P U(x, p) = (b−a)1p−1·

"

a2−q−x2−q

(1−2q)(2−q)+ x2−q−a1+qx1−2q (1−2q)(1 +q)

1q

+

b2−q−x2−q

(1−2q)(2−q) +x2−q−b1+qx1−2q (1−2q)(1 +q)

1q# .

Note that in cases(p, q) = (1,∞),(∞,1), and(2,2)the constant P U(x, p) has to be taken as the limit asp→1,∞, and2, respectively.

Proof. Define F: [1/b,1/a] → R byF(t) := t f(1t). The function F is con- tinuous and is differentiable on (1/b,1/a), and for all x1, x2 ∈ [1/b,1/a]we have

F(x1)−F(x2) = Z x1

x2

F0(t) dt

= Z x1

x2

f 1

t

− 1 t f0

1 t

dt

u:= 1

t (2.3)

(5)

On an Inequality of Ostrowski type

Josip Peˇcari´c and Sime Ungar

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of12

J. Ineq. Pure and Appl. Math. 7(4) Art. 151, 2006

http://jipam.vu.edu.au

=− Z 1/x1

1/x2

(f(u)−uf0(u)) 1 u2 du . (2.4)

Denotex1 =: 1/xandx2 =: 1/t. Then for allx, t∈[a, b]from(2.4)we get 1

xf(x)− 1

t f(t) = Z t

x

(f(u)−uf0(u)) 1 u2 du, i.e.,

(2.5) tf(x)−xf(t) =x t Z t

x

(f(u)−uf0(u)) 1 u2 du . Integrating ontand dividing byx, we obtain

b2−a2

2 · f(x)

x −

Z b a

f(t) dt= Z b

a

t Z t

x

(f(u)−uf0(u)) 1 u2 du

dt ,

and therefore

b2−a2

2 · f(x)

x −

Z b a

f(t) dt (2.6)

≤ Z b

a

Z t x

(f(u)−uf0(u)) t u2

du

dt

= Z x

a

Z x t

(f(u)−uf0(u)) t u2

du

dt

+ Z b

x

Z t x

(f(u)−uf0(u)) t u2

du

dt .

(6)

On an Inequality of Ostrowski type

Josip Peˇcari´c and Sime Ungar

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of12

J. Ineq. Pure and Appl. Math. 7(4) Art. 151, 2006

http://jipam.vu.edu.au

First, consider the case 1 < p, q < ∞. Applying Hölder’s inequality, the sum in the last line of (2.5) is

≤ Z x

a

Z x t

|f(u)−uf0(u)|pdu

dt 1p

· Z x

a

Z x t

tq u2qdu

dt

1q (2.7)

+ Z b

x

Z t x

|f(u)−uf0(u)|pdu

dt 1p

· Z b

x

Z t x

tq u2qdu

dt

1q

≤ Z b

a

Z b a

|f(u)−uf0(u)|p du

dt 1p

×

"

Z x a

Z x t

tq u2q du

dt

1q +

Z b x

Z t x

tq u2q du

dt

1q# .

The first factor in(2.7)equals (2.8)

Z b a

Z b a

|f(u)−uf0(u)|p du

dt 1p

= (b−a)1pkf −ι f0kp,

and for the second factor, forp, q 6= 2, we get (2.9)

Z x a

Z x t

tq u2qdu

dt

1q +

Z b x

Z t x

tq u2q du

dt

1q

=

a2−q−x2−q

(1−2q)(2−q) +x2−q−a1+qx1−2q (1−2q)(1 +q)

1q

+

b2−q−x2−q

(1−2q)(2−q)+ x2−q−b1+qx1−2q (1−2q)(1 +q)

1q .

(7)

On an Inequality of Ostrowski type

Josip Peˇcari´c and Sime Ungar

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of12

J. Ineq. Pure and Appl. Math. 7(4) Art. 151, 2006

http://jipam.vu.edu.au

Putting (2.8) and (2.9) into (2.7) and dividing (2.6) and (2.7) by (b −a) gives the required inequality(2.1)in the case1< p, q < ∞,p, q 6= 2.

Forp=q = 2, instead of(2.9)we obtain

(2.10)

Z x a

Z x t

t2 u4 du

dt

12 +

Z b x

Z t x

t2 u4du

dt

12

= 1 3

lnx

a 3

+ a3 x3 −1

12 +

lnx

b 3

+ b3 x3 −1

12!

which is easily shown to be equal to the limit of the right hand side in(2.9)for q →2, i. e.

(2.11) lim

p→2P U(x, p)

= 1

3(b−a)12

lnx a

3

+ a3 x3 −1

12 +

lnx

b 3

+ b3 x3 −1

12! .

Now consider the casep=∞,q= 1. The last line in(2.6)is

≤ sup

a≤u≤b

|f(u)−u f0(u)|

(2.12)

× Z x

a

Z x t

t u2 du

dt+

Z b x

Z t x

t u2 du

dt

=kf−ι f0k·

a2+b2

2x +x−a−b

.

(8)

On an Inequality of Ostrowski type

Josip Peˇcari´c and Sime Ungar

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of12

J. Ineq. Pure and Appl. Math. 7(4) Art. 151, 2006

http://jipam.vu.edu.au

Putting(2.12)into(2.6)and dividing by(b−a)gives

a+b

2 · f(x)

x − 1

b−a Z b

a

f(t) dt

≤ 1 b−a

a2+b2

2x +x−a−b

· kf−ι f0k

which reproves the Dragomir’s result [1].

It is easy to see that 1 b−a

a2+b2

2x +x−a−b

= lim

p→∞P U(x, p)

proving(2.1)in the casep=∞,q = 1.

Finally consider the casep= 1,q =∞. In this case the last line of(2.6)is

≤ Z x

a

Z x t

|f(u)−uf0(u)| max

t≤u≤x a≤t≤x

t u2 du

(2.13) dt

+ Z b

x

Z t x

|f(u)−uf0(u)| max

x≤u≤t x≤t≤b

t u2 du

dt

≤ Z b

a

Z b a

|f(u)−u f0(u)| dudt· 1

a + b x2

= (b−a) 1

a + b x2

· kf−ι f0k1.

(9)

On an Inequality of Ostrowski type

Josip Peˇcari´c and Sime Ungar

Title Page Contents

JJ II

J I

Go Back Close

Quit Page9of12

J. Ineq. Pure and Appl. Math. 7(4) Art. 151, 2006

http://jipam.vu.edu.au

Appending(2.13)to(2.6)and dividing by(b−a)gives (2.14)

a+b

2 · f(x)

x − 1

b−a Z b

a

f(t) dt

≤ 1

a + b x2

· kf −ι f0k1.

It is not too difficult to show that

(2.15) lim

p→1P U(x, p) = 1 a + b

x2,

so(2.14)proves formula(2.1)forp= 1,q =∞, proving the theorem.

Remark 1. We have considered only the positive case,0 < a < b. In the case a < b < 0,a similar but more cumbersome formula holds, where mosta’s,b’s andx’s have to be replaced by their absolute values.

(10)

On an Inequality of Ostrowski type

Josip Peˇcari´c and Sime Ungar

Title Page Contents

JJ II

J I

Go Back Close

Quit Page10of12

J. Ineq. Pure and Appl. Math. 7(4) Art. 151, 2006

http://jipam.vu.edu.au

3. The Weighted Case

In the weighted case we have the following result:

Theorem 3.1. Let the function f: [a, b] → R be continuous on[a, b] and dif- ferentiable on (a, b)with0 < a < b, and letw: [a, b] → R be a nonnegative integrable function. Then for 1p +1q = 1, with1≤p, q ≤ ∞, and allx∈ [a, b], the following inequality holds:

(3.1)

f(x) x

Z b a

t w(t) dt− Z b

a

f(t)w(t) dt

≤ kf−ιf0kp· (b−a)1p (1−2q)1q

·

"

x1−2q

Z x a

tq (w(t))q dt− Z x

a

t1−q (w(t))q dt 1q

+ Z b

x

t1−q(w(t))q dt−x1−2q Z b

x

tq(w(t))q dt 1q#

.

Proof. Multiplying(2.5)byw(t)/xand integrating ont, we get f(x)

x Z b

a

t w(t) dt− Z b

a

f(t)w(t) dt

= Z b

a

t w(t) Z t

x

(f(u)−u f0(u)) 1 u2 du

dt ,

(11)

On an Inequality of Ostrowski type

Josip Peˇcari´c and Sime Ungar

Title Page Contents

JJ II

J I

Go Back Close

Quit Page11of12

J. Ineq. Pure and Appl. Math. 7(4) Art. 151, 2006

http://jipam.vu.edu.au

and as in the proof of Theorem2.1we have

f(x) x

Z b a

t w(t) dt− Z b

a

f(t)w(t) dt

≤ Z x

a

Z x t

(f(u)−uf0(u))t w(t) u2

du

dt

+ Z b

x

Z t x

(f(u)−uf0(u))t w(t) u2

du

dt

≤ Z x

a

Z x t

|f(u)−u f0(u)|p du

dt 1p

· Z x

a

Z x t

tq (w(t))q u2q du

dt

1q

+ Z b

x

Z t x

|f(u)−u f0(u)|p du

dt

1 p

· Z b

x

Z t x

tq (w(t))q u2q du

dt

1 q

≤ Z b

a

Z b a

|f(u)−u f0(u)|p du

dt 1p

·

"

Z x a

Z x t

tq (w(t))q u2q du

dt

1q +

Z b x

Z t x

tq (w(t))q u2q du

dt

1q#

which gives(3.1).

(12)

On an Inequality of Ostrowski type

Josip Peˇcari´c and Sime Ungar

Title Page Contents

JJ II

J I

Go Back Close

Quit Page12of12

J. Ineq. Pure and Appl. Math. 7(4) Art. 151, 2006

http://jipam.vu.edu.au

References

[1] S.S. DRAGOMIR, An inequality of Ostrowski type via Pompeiu’s mean value theorem, J. of Inequal. in Pure and Appl. Math., 6(3) (2005), Art. 83. [ONLINE: http://jipam.vu.edu.au/article.php?

sid=532].

[2] A. OSTROWSKI, Über die Absolutabweichung einer differentienbaren Funktionen von ihren Integralmittelwert, Comment. Math. Hel., 10 (1938), 226–227.

[3] D. POMPEIU, Sur une proposition analogue au théorème des accroisse- ments finis, Mathematica (Cluj, Romania), 22 (1946), 143–146.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

19.2% of respondents gave a rating of excellent to the bus station, while 38.3% of respondents gave a good assessment of the railway station, 3.8% of the respondents gave

Department of Physical Chemistry and Materials Science, BME e-mail: zhorvolgyi@mail.bme.hu Consultant: Ádám Detrich.. email: adetrich@mail.bme.hu Department of Physical Chemistry

MIPRO 2016 Convention was supported by many sponsors and patrons among which we had Ericsson Nikola Tesla Zagreb, T-Croatian Telecom Zagreb, Koncar-Electrical Industries Zagreb,

Imé szép vagy én mátkám, felötte igen szép vagy, az te szemeid ollyanok, mint az galambnak

Education Faculty University of Zagreb Department of Mathematics Prilaz Baruna Filipovi´ca 30 25240 Kampüs, Erzurum, Turkey 10000 Zagreb, Croatia EMail: emos@atauni.edu.tr

Department of Mathematics, Kinki University Higashi-Osaka, Osaka 577-8502, Japan.. EMail: owa@math.kindai.ac.jp yayoi@math.kindai.ac.jp ha_ya_to112@hotmail.com Received: 18

Department of Mathematics and Physics Henan University of Science and Technology Luoyang 471003, China.. EMail: ryb7945@sina.com.cn renjy03@lzu.edu.cn Received: 13

* University of Osijek, Croatia, ** University of Rijeka, Croatia, *** Óbuda University, Budapest, Hungary, § Babes-Bolyai University, Cluj-Napoca, Romania Mathematical