• Nem Talált Eredményt

JJ II

N/A
N/A
Protected

Academic year: 2022

Ossza meg "JJ II"

Copied!
8
0
0

Teljes szövegt

(1)

volume 7, issue 4, article 148, 2006.

Received 11 June, 2006;

accepted 15 October, 2006.

Communicated by:B. Yang

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

NEW INEQUALITIES ABOUT CONVEX FUNCTIONS

LAZHAR BOUGOFFA

Al-imam Muhammad Ibn Saud Islamic University Faculty of Computer Science

Department of Mathematics P.O. Box 84880, Riyadh 11681 Saudi Arabia.

EMail:bougoffa@hotmail.com

c

2000Victoria University ISSN (electronic): 1443-5756 166-06

(2)

New Inequalities About Convex Functions

Lazhar Bougoffa

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of8

J. Ineq. Pure and Appl. Math. 7(4) Art. 148, 2006

http://jipam.vu.edu.au

Abstract

Iffis a convex function andx1, . . . , xnora1, . . . , anlie in its domain the following inequalities are proved

n

X

i=1

f(xi)−f

x1+· · ·+xn n

≥n−1 n

f

x1+x2 2

+· · ·+f

xn−1+xn 2

+f

xn+x1 2

and

(n−1) [f(b1) +· · ·+f(bn)]≤n[f(a1) +· · ·+f(an)−f(a)], wherea=a1+···+an nandbi=na−an−1i, i= 1, . . . , n.

2000 Mathematics Subject Classification:26D15.

Key words: Jensen’s inequality, Convex functions.

Contents

1 Main Theorems . . . 3 References

(3)

New Inequalities About Convex Functions

Lazhar Bougoffa

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of8

J. Ineq. Pure and Appl. Math. 7(4) Art. 148, 2006

http://jipam.vu.edu.au

1. Main Theorems

The well-known Jensen’s inequality is given as follows [1]:

Theorem 1.1. Letf be a convex function on an interval I and letw1, . . . , wn be nonnegative real numbers whose sum is1. Then for allx1, . . . , xn∈I, (1.1) w1f(x1) +· · ·+wnf(xn)≥f(w1x1+· · ·+wnxn).

Recall that a functionf is said to be convex if for anyt∈[0,1]and anyx, y in the domain off,

(1.2) tf(x) + (1−t)f(y)≥f(tx+ (1−t)y).

The aim of the present note is to establish new inequalities similar to the following known inequalities:

(Via Titu Andreescu (see [2, p. 6])) f(x1) +f(x2) +f(x3) +f

x1+x2+x3 3

≥ 4 3

f

x1 +x2 2

+f

x2+x3 2

+f

x3+x1 2

, wheref is a convex function andx1, x2, x3 lie in its domain,

(Popoviciu inequality [3])

n

X

i=1

f(xi) + n n−2f

x1 +· · ·+xn n

≥ 2

n−2 X

i<j

f

xi+xj 2

,

(4)

New Inequalities About Convex Functions

Lazhar Bougoffa

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of8

J. Ineq. Pure and Appl. Math. 7(4) Art. 148, 2006

http://jipam.vu.edu.au

wheref is a convex function onI andx1, . . . , xn∈I,and (Generalized Popoviciu inequality)

(n−1) [f(b1) +· · ·+f(bn)]≤f(a1) +· · ·+f(an) +n(n−2)f(a), wherea= a1+···+an n andbi = na−an−1i, i = 1, . . . , n,anda1, . . . , an ∈I.

Our main results are given in the following theorems:

Theorem 1.2. Iffis a convex function andx1, x2, . . . , xnlie in its domain, then

(1.3)

n

X

i=1

f(xi)−f

x1+· · ·+xn n

≥ n−1 n

f

x1+x2 2

+· · ·+f

xn−1+xn 2

+f

xn+x1 2

.

Proof. Using (1.2) witht= 12, we obtain (1.4) f

x1+x2 2

+· · ·+f

xn−1+xn 2

+f

xn+x1 2

≤f(x1) +f(x2) +· · ·+f(xn).

In the summation on the right side of (1.4), the expressionPn

i=1f(xi)can be written as

n

X

i=1

f(xi) = n n−1

n

X

i=1

f(xi)− 1 n−1

n

X

i=1

f(xi),

n

X

i=1

f(xi) = n n−1

" n X

i=1

f(xi)−

n

X

i=1

1 nf(xi)

# .

(5)

New Inequalities About Convex Functions

Lazhar Bougoffa

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of8

J. Ineq. Pure and Appl. Math. 7(4) Art. 148, 2006

http://jipam.vu.edu.au

ReplacingPn

i=1f(xi)with the equivalent expression in (1.4), f

x1+x2 2

+· · ·+f

xn−1+xn 2

+f

xn+x1 2

≤ n

n−1

" n X

i=1

f(xi)−

n

X

i=1

1 nf(xi)

# . Hence, applying Jensen’s inequality (1.1) to the right hand side of the above resulting inequality we get

f

x1+x2 2

+· · ·+f

xn−1+xn 2

+f

xn+x1 2

≤ n

n−1

" n X

i=1

f(xi)−f Pn

i=1xi

n #

,

and this concludes the proof.

Remark 1. Now we consider the simplest case of Theorem 1.2 for n = 3 to obtain the following variant of via Titu Andreescu [2]:

f(x1) +f(x2) +f(x3)−f

x1+x2+x3 3

≥ 2 3

f

x1 +x2 2

+f

x2+x3 2

+f

x3+x1 2

. The variant of the generalized Popovicui inequality is given in the following theorem.

(6)

New Inequalities About Convex Functions

Lazhar Bougoffa

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of8

J. Ineq. Pure and Appl. Math. 7(4) Art. 148, 2006

http://jipam.vu.edu.au

Theorem 1.3. Iff is a convex function anda1, . . . , anlie in its domain, then (1.5) (n−1) [f(b1) +· · ·+f(bn)]≤n[f(a1) +· · ·+f(an)−f(a)], wherea= a1+···+an n andbi = na−an−1i, i= 1, . . . , n.

Proof. By using the Jensen inequality (1.1),

f(b1) +· · ·+f(bn)≤f(a1) +· · ·+f(an),

and so,

f(b1) +· · ·+f(bn)

≤ n

n−1[f(a1) +· · ·+f(an)]− 1

n−1[f(a1) +· · ·+f(an)], or

f(b1) +· · ·+f(bn)

≤ n

n−1[f(a1) +· · ·+f(an)]− n n−1

1

nf(a1) +· · ·+ 1 nf(an)

,

and so

(1.6) f(b1) +· · ·+f(bn)

≤ n

n−1

f(a1) +· · ·+f(an)− 1

nf(a1) +· · ·+ 1 nf(an)

.

(7)

New Inequalities About Convex Functions

Lazhar Bougoffa

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of8

J. Ineq. Pure and Appl. Math. 7(4) Art. 148, 2006

http://jipam.vu.edu.au

Hence, applying Jensen’s inequality (1.1) to the right hand side of (1.6) we get f(b1) +· · ·+f(bn)≤ n

n−1

f(a1) +· · ·+f(an)−f

a1+· · ·+an n

, and this concludes the proof.

(8)

New Inequalities About Convex Functions

Lazhar Bougoffa

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of8

J. Ineq. Pure and Appl. Math. 7(4) Art. 148, 2006

http://jipam.vu.edu.au

References

[1] D.S. MITRINOVI ´C, J.E. PE ˘CARI ´C ANDA.M. FINK, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht, 1993.

[2] KIRAN KEDLAYA, A<B (A is less than B), based on notes for the Math Olympiad Program (MOP) Version 1.0, last revised August 2, 1999.

[3] T. POPOVICIU, Sur certaines inégalitées qui caractérisent les fonctions convexes, An. Sti. Univ. Al. I. Cuza Ia¸si. I-a, Mat. (N.S), 1965.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Guillaume Damiand LIRIS, UMR5205, Université de Lyon, CNRS, Lyon, France Leila De Floriani Department of Computer Science, University of Genoa, Genoa, Italy. Alexandre Dupas Unit

We thank the School of Computer Science (Charles University, Faculty of Mathematics and Physics) and Center of Excellence - Institute for Theoretical Computer Science

1 Department of Anatomy, Histology and Embryology, Faculty of Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary.. 2 Department of

‡ Department of Mathematics and Statistics, Center for Computational Science, Mississippi State University, Mississippi State, MS 39762, USA, e-mail: shivaji@ra.msstate.edu..

Treatment and measurements were at Szent István University Faculty of Food Science, Department of Refrigeration and Livestock Products Technology and Dept, of

1 Brno University of Technology, Department of Mathematics and Descriptive Geometry, Faculty of Civil Engineering, 602 00 Brno, Czech Republic, and Brno University of

SATORU MURAKAMI † and TOSHIKI NAITO, NGUYEN VAN MINH ‡ Department of Applied Mathematics, Okayama University of Science,.. Okayama 700-0005, Japan

University Of Novi Sad, Faculty Of Technical Sciences, Department Of Environmental Engineering, TrgDositejaObradovića6, 21000 Novi Sad, Serbia 2 University Of Novi Sad, Faculty