• Nem Talált Eredményt

Physical Chemistry I. practice

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Physical Chemistry I. practice"

Copied!
10
0
0

Teljes szövegt

(1)

Physical Chemistry I. practice

Gyula Samu

V.: Ideal mixtures

gysamu@mail.bme.hu

http://oktatas.ch.bme.hu/oktatas/konyvek/fizkem /PysChemBSC1/Requirements.pdf

http://oktatas.ch.bme.hu/oktatas/konyvek/fizkem /PysChemBSC1/Important dates.pdf

(2)

Pressure-composition diagram

2 components, 2 phases

Miscible components, ideal solution, vapor is ideal gas

z2: molar fraction of comp. 2 in the total system

x2: molar fraction of comp. 2 in the liquid phase (solution)

y2: molar fraction of comp. 2 in the

Dalton’s law:

p = p1 + p2, p1 = y1 · p, p2 = y2 · p Raoult’s law:

p1 = x1 · p1, p2 = x2 · p2

p1, p2: eq. vapor pressure of comp. 1 and 2

y2 = pp2 = x2·p

2

p

z1 + z2 = x1 + x2 = y1 + y2 = 1

(3)

Konovalov’s first law, lever rule

y2 = pp2 = x2·p

2

p

Konovalov’s first law for ideal mixtures:

if p1 < p2: p1 < p < p2pp2 > 1, y2 > x2

n1 = (ng + nl) · z1 = ng · y1 + nl · x1 ng · (z1 − y1) = nl · (x1 − z1)

Lever rule: nnl

g = xz1−y1

1−z1

We can also calculate ng and nl directly

n1 = ng · y1 + nl · x1 = ng · y1 + (n − ng) · x1 = n · x1 + ng · (y1 − x1)

→ ng = ny1−n·x1

1−x1 nl = nx1−n·y1

1−y1

(4)

Vapor composition

We have an ideal mixture of acetone (Ac) and acetonitrile (An) log(p

Ac

) = 9, 36457 −

237,50+T1279,87

log(p

An

) = 9, 36789 −

238,89+T1397,93

(p in P a, T in

C ; but no dimensions inside log!) T = 20

C x

Ac

= 0, 2

What is the vapor pressure? What is the composition of the vapor?

p = p

Ac

+ p

An

= x

Ac

· p

Ac

+ (1 − x

Ac

) · p

An

pAc xAc·pAc pAn (1−xAc)·pAn

(5)

Vapor composition

log(p

Ac

) = 9, 36457 −

237,50+201279,87

= 4, 39420

→ p

Ac

= 10

4,39420

P a = 24786 P a

log(p

An

) = 9, 36789 −

238,89+201397,93

= 3, 96818

→ p

An

= 10

3,96818

P a = 9294 P a

p = 0, 2 · 24786 P a + 0, 8 · 9294 P a = 12392 P a y

Ac

=

0,2·2478612392 P aP a

= 0, 4

y

An

=

0,8·929412392P a P aP a

= 0, 6

(6)

Solution composition

Reverse example: we know that

y

Ac

= 0, 4, p

Ac

= 24786 P a, and p

An

= 9294 P a What is the composition of the solution?

xAc = ppAc

Ac = ypAc·p Ac

→ xAc and p unknown:

we need another equation with p and xAc! p = xAc · pAc + (1 − xAc) · pAn

Expressing p from the first equation: p = xAc·p

Ac

yAc

From the two equations for p we have

xAc·pAc

= x · p + (1 − x ) · p

(7)

Solution composition

xAc·pAc

yAc

= x

Ac

· p

Ac

+ (1 − x

Ac

) · p

An

= x

Ac

· (p

Ac

− p

An

) + p

An

x

Ac

· [p

Ac

− y

Ac

· (p

Ac

− p

An

)] = p

An

· y

Ac

x

Ac

=

[24786 P a−0,4·(24786−9294)]24786 P a·0,4

= 0, 2

x

An

= 1 − x

Ac

= 0, 8

(8)

Composition of a certain boiling point

What is the composition of the ideal chlorobenzene (cb) - bromobenzene (bb) mixture that starts to boil at 100 kP a on T = 140

C ?

p

cb

= 125, 24 kP a p

bb

= 66, 10 kP a

Start of boiling: almost all of the mixture is liquid: z

cb

= x

cb

p = 100 kP a = x

cb

· p

cb

+ (1 − x

cb

) · p

bb

= x

cb

(p

cb

− p

bb

) + p

bb

→ x

cb

=

p−p

bb

pcb−pbb

=

100 kP a−66,10 kP a

125,24 kP a−66,10 kP a

= 0, 573

x = 1 − x = 0, 427

(9)

Composition of a certain boiling point

What is the composition of the vapor phase?

y

cb

=

ppcb

=

xcb·p

cb

p

=

0,573·125,24 kP a

100 kP a

= 0, 718

y

bb

= 1 − y

cb

= 0, 282

(10)

Amount of substance in phases

Let’s have 3 mol of the previous mixture at p = 95 kP a with z

cb

= 0, 63. What is the quantity of the solution and the vapor?

n

l

+ n

g

= 3 mol

nng

l

=

zycb−xcb

cb−zcb

=

3 mol−nng

g

x

cb

=

p−p

bb

pcb−pbb

= 0, 4887 y

cb

=

xcb·p

cb

p

= 0, 6443

ng

3 mol−ng

=

0,63−0,4887

0,6443−0,63

= 9, 8811 10, 8811 · n

g

= 29, 6434 mol

n

g

= 2, 7243 mol → n

l

= 0, 2757 mol

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

A kolloid rendszerek közé soroljuk ezeken kívül mindazokat, amelyekben legalább az egyik térbeli irányban kolloid méretű diszkontinuitás van (lamellák,

Department of Physical Chemistry and Materials Science, BME e-mail: zhorvolgyi@mail.bme.hu Consultant: Ádám Detrich.. email: adetrich@mail.bme.hu Department of Physical Chemistry

Mucoadhesive Materials and Drug Delivery Systems: John Wiley &amp; Sons, Ltd;

Designing hydrogels for controlled drug delivery... Méretskálák –

http://oktatas.ch.bme.hu/oktatas/konyvek/fizkem

The system reaches equilibrium without exchanging heat with the enviroment (adiabatic) and at constant pressure (1 bar )... Real systems: water

IV.: Phase transitions of ideal one-component

HOMO LUMO.. A gerjesztés történhet spin-megőrzéssel, vagy átfordulással.. Ultraibolya- és látható spektroszkópia.. Belső héjakon levő elektronok