• Nem Talált Eredményt

PROPERTIES OF q−MEYER-KÖNIG-ZELLER DURRMEYER OPERATORS

N/A
N/A
Protected

Academic year: 2022

Ossza meg "PROPERTIES OF q−MEYER-KÖNIG-ZELLER DURRMEYER OPERATORS"

Copied!
21
0
0

Teljes szövegt

(1)

q−Meyer-König-Zeller Durrmeyer Operators

Honey Sharma vol. 10, iss. 4, art. 105, 2009

Title Page

Contents

JJ II

J I

Page1of 21 Go Back Full Screen

Close

PROPERTIES OF q−MEYER-KÖNIG-ZELLER DURRMEYER OPERATORS

HONEY SHARMA

Rayat & Bahra Institute of Pharmacy Village Sahauran Kharar Distt.

Mohali Punjab, India

EMail:pro.sharma.h@gmail.com

Received: 09 April, 2009

Accepted: 26 June, 2009

Communicated by: I. Gavrea 2000 AMS Sub. Class.: 41A25, 41A35.

Key words: q−integers, q−Meyer-König-Zeller Durrmeyer type operators, A-Statistical convergence, Weighted space, Weighted modulus of smoothness, Lipschitz class.

Abstract: We introduce aqanalogue of the Meyer-König-Zeller Durrmeyer type operators and investigate their rate of convergence.

Acknowledgements: The author would like to thank Dr Vijay Gupta, NSIT, New Delhi for his valuable suggestions and remarks during the preparation of this work.

(2)

q−Meyer-König-Zeller Durrmeyer Operators

Honey Sharma vol. 10, iss. 4, art. 105, 2009

Title Page Contents

JJ II

J I

Page2of 21 Go Back Full Screen

Close

Contents

1 Introduction 3

2 Moments 6

3 Weighted Statistical Approximation Properties 13

4 Order of Approximation 16

(3)

q−Meyer-König-Zeller Durrmeyer Operators

Honey Sharma vol. 10, iss. 4, art. 105, 2009

Title Page Contents

JJ II

J I

Page3of 21 Go Back Full Screen

Close

1. Introduction

Abel et al. [5] introduced the Meyer-Konig-Zeller Durrmeyer operators as (1.1) Mn(f;x) =

X

k=0

mn,k(x) Z 1

0

bn,k(t)f(t)dt, 0≤x <1, where

mn,k(x) =

n+k−1 k

xk(1−x)n and

bn,k(t) =n

n+k k

tk(1−t)n−1.

Very recently H. Wang [6], O. Dogru and V. Gupta [2], A. Altin, O. Dogru and M.A. Ozarslan [7] and T. Trif [3] studied theq-Meyer-Konig-Zeller operators. This motivated us to introduce theq analogue of the Meyer-Konig-Zeller Durrmeyer op- erators.

Before introducing the operators, we mention certain definitions based onq−integers;

details can be found in [10] and [12].

For each non-negative integer k, the q-integer[k]and the q-factorial[k]!are re- spectively defined by

[k] :=

( (1−qk)

(1−q), q 6= 1

k, q = 1

, and

[k]! :=

( [k] [k−1]· · ·[1], k ≥1

1, k = 0 .

(4)

q−Meyer-König-Zeller Durrmeyer Operators

Honey Sharma vol. 10, iss. 4, art. 105, 2009

Title Page Contents

JJ II

J I

Page4of 21 Go Back Full Screen

Close

For the integersn, k satisfyingn ≥ k ≥ 0, theq-binomial coefficients are defined by

hn k i

:= [n]!

[k]![n−k]! . We use the following notations

(a+b)nq =

n−1

Y

j=0

(a+qjb) = (a+b)(a+qb)· · ·(a+qn−1b) and

(t;q)0 = 1, (t;q)n=

n−1

Y

j=0

(1−qjt), (t;q)=

Y

j=0

(1−qjt).

Also it can be seen that

(a;q)n= (a;q)

(aqn;q). Theq−Beta function is defined as

Bq(m, n) = Z 1

0

tm−1(1−qt)n−1q dqt form, n∈Nand we have

(1.2) Bq(m, n) = [m−1]![n−1]!

[m+n−1]! . It can be easily checked that

(1.3)

n−1

Y

j=0

(1−qjx)

X

k=0

n+k−1 k

xk = 1.

(5)

q−Meyer-König-Zeller Durrmeyer Operators

Honey Sharma vol. 10, iss. 4, art. 105, 2009

Title Page Contents

JJ II

J I

Page5of 21 Go Back Full Screen

Close

Now we introduce theq-Meyer-Konig-Zeller Durrmeyer operator as follows Mn,q(f;x) =

X

k=0

mn,k,q(x) Z 1

0

bn,k,q(t)f(qt)dqt, 0≤x <1 (1.4)

:=

X

k=0

mn,k,q(x)An,k,q(f), (1.5)

where0< q <1and

(1.6) mn,k,q(x) =Pn−1(x)

n+k−1 k

xk,

(1.7) bn,k,q(t) = [n+k]!

[k]![n−1]!tk(1−qt)n−1q . Here

Pn−1(x) =

n−1

Y

j=0

(1−qjx).

Remark 1. It can be seen that forq → 1, the q−Meyer-Konig-Zeller Durrmeyer operator becomes the operator studied in [4] forα = 1.

(6)

q−Meyer-König-Zeller Durrmeyer Operators

Honey Sharma vol. 10, iss. 4, art. 105, 2009

Title Page Contents

JJ II

J I

Page6of 21 Go Back Full Screen

Close

2. Moments

Lemma 2.1. Forgs(t) = ts,s = 0,1,2, . . ., we have (2.1)

Z 1

0

bn,k,q(t)gs(qt)dqt=qs[n+k]![k+s]!

[k]![k+s+n]!.

Proof. By using theq−Beta function (1.2), the above lemma can be proved easily.

Here, we introduce two lemmas proved in [8], as follows:

Lemma 2.2. Forr= 0,1,2, . . .andn > r, we have (2.2) Pn−1(x)

X

k=0

n+k−1 k

xk

[n+k−1]r = Qr

j=1(1−qn−jx) [n−1]r , where[n−1]r = [n−1][n−2]· · ·[n−r].

Lemma 2.3. The identity

(2.3) 1

[n+k+r] ≤ 1

qr+1[n+k−1], r≥0 holds.

Theorem 2.4. For allx∈[0,1],n∈Nandq ∈(0,1), we have Mn,q(e0;x) = 1,

(2.4)

Mn,q(e1;x)≤x+ (1−qn−1x) q[n−1] , (2.5)

Mn,q(e1;x)≥

1− (1 +qn−2) [n+ 1]

x+qn−2(1−q)x2, (2.6)

(7)

q−Meyer-König-Zeller Durrmeyer Operators

Honey Sharma vol. 10, iss. 4, art. 105, 2009

Title Page Contents

JJ II

J I

Page7of 21 Go Back Full Screen

Close

(2.7) Mn,q(e2;x)≤x2+(1 +q)2 q3

(1−qn−1x) [n−1] x

+(1 +q) q4

(1−qn−1x)(1−qn−2x) [n−1][n−2] . Proof. We have to estimate Mn,q(es;x) for s = 0,1,2. The result can be easily verified fors = 0. Using the above lemmas and equation (1.3), we obtain relations (2.5) and (2.6) as follows

Mn,q(e1, x) =qPn−1(x)

X

k=0

n+k−1 k

[k+ 1]

[n+k+ 1]xk

≤qPn−1(x)

X

k=0

n+k−1 k

q[k] + 1 q2[n+k−1]xk

=xPn−1(x)

X

k=0

n+k−1 k

xk +Pn−1(x)

q

X

k=0

n+k−1 k

xk [n+k−1]

=x+ (1−qn−1x) q[n−1] . Also,

Mn,q(e1, x) =qPn−1(x)

X

k=1

n+k−2 k−1

[k+ 1]

[k]

[n+k−1]

[n+k+ 1]xk

≥Pn−1(x)

X

k=0

n+k−1 k

[n+k+ 1]−1 [n+k+ 2]

xk+1

(8)

q−Meyer-König-Zeller Durrmeyer Operators

Honey Sharma vol. 10, iss. 4, art. 105, 2009

Title Page Contents

JJ II

J I

Page8of 21 Go Back Full Screen

Close

≥Pn−1(x)

X

k=0

n+k−1 k

[n+k+ 1]

[n+k+ 2] − 1 [n+ 1]

xk+1

≥Pn−1(x)

X

k=0

n+k−1

k 1− qn+k+1

[n+k+ 2]

xk+1− 1 [n+ 1]x

≥Pn−1(x)

X

k=0

n+k−1

k 1− qn−2(1−(1−q)[k]) [n+k−1]

xk+1− 1 [n+ 1]x

=x− qn−2x

[n+ 1] +qn−2(1−q)x2Pn−1(x)

X

k=0

n+k−1 k

xk− 1 [n+ 1]x

=

1− (1 +qn−2) [n+ 1]

x+qn−2(1−q)x2. Similar calculations reveal the relation (2.7) as follows Mn,q(e2, x) =q2Pn−1(x)

X

k=0

n+k−1 k

[k+ 1][k+ 2]

[n+k+ 1][n+k+ 2]xk

≤ 1

q4Pn−1(x)

X

k=0

n+k−1 k

q3[k]2+ (2q+ 1)q[k] + (q+ 1) [n+k−1][n+k−2] xk

= Pn−1(x) q

X

k=0

[n+k−2]!

[k]![n−1]!(q[k] + 1)xk+1 + Pn−1(x)(2q+ 1)x

q3

X

k=0

n+k−1 k

xk [n+k−1]

(9)

q−Meyer-König-Zeller Durrmeyer Operators

Honey Sharma vol. 10, iss. 4, art. 105, 2009

Title Page Contents

JJ II

J I

Page9of 21 Go Back Full Screen

Close

+ Pn−1(x)(1 +q) q4

X

k=0

n+k−1 k

xk [n+k−1]2

=x2Pn−1(x)

X

k=0

n+k−1 k

xk +xPn−1(x)

q

X

k=0

n+k−1 k

xk

[n+k−1]+x(2q+ 1) q3

(1−qn−1x) [n−1]

+ (1 +q) q4

(1−qn−1x)(1−qn−2x) [n−1][n−2]

=x2+ (1 +q)2 q3

(1−qn−1x)

[n−1] x+ (1 +q) q4

(1−qn−1x)(1−qn−2x) [n−1][n−2] .

Remark 2. From Lemma2.3, it is observed that forq→1, we obtain Mn(e0;x) = 1,

Mn(e1;x)≤x+ (1−x) (n−1), Mn(e1;x)≥

1− 2

(n+ 1)

x, Mn(e2;x)≤x2+ 4x(1−x)

(n−1) + 2(1−x)2 (n−1)(n−2),

which are moments for a new generalization of the Meyer-Konig-Zeller operators forα= 1in [4].

(10)

q−Meyer-König-Zeller Durrmeyer Operators

Honey Sharma vol. 10, iss. 4, art. 105, 2009

Title Page Contents

JJ II

J I

Page10of 21 Go Back Full Screen

Close

Corollary 2.5. The central moments ofMn,q are Mn,q0;x) = 1,

Mn,q1;x)≤ (1−qn−1x) q[n−1] , Mn,q2;x)≤ (1 +q)2

q3

(1−qn−1x)

[n−1] x+ (1 +q) q4

(1−qn−1x)(1−qn−2x) [n−1][n−2]

+ 2(1 +qn−2) [n+ 1] x2, whereψi(x) = (t−x)i fori= 0,1,2.

Proof. By the linearity ofMn,qand Theorem2.4, we directly get the first two central moments. Using simple computations, the third moment can be easily verified as follows

Mn,q2;x) = Mn,q(e2;x) +x2Mn,q(e0;x)−2xMn,q(e1;x)

≤ (1 +q)2 q3

(1−qn−1x)

[n−1] x+ (1 +q) q4

(1−qn−1x)(1−qn−2x) [n−1][n−2]

+

1− (1 +qn−2) [n+ 1]

x−qn−2(1−q)x2

≤ (1 +q)2 q3

(1−qn−1x)

[n−1] x+ (1 +q) q4

(1−qn−1x)(1−qn−2x) [n−1][n−2]

+ 2(1 +qn−2) [n+ 1] x2.

(11)

q−Meyer-König-Zeller Durrmeyer Operators

Honey Sharma vol. 10, iss. 4, art. 105, 2009

Title Page Contents

JJ II

J I

Page11of 21 Go Back Full Screen

Close

Remark 3. Forq →1, we get

Mn2;x)≤ 4x

n−1+ 2(1−x)2 (n−1)(n−2) which is similar to the result in [4].

Theorem 2.6. The sequenceMn,qn(f)converges tof uniformly onC[0,1]for each f ∈C[0,1]iffqn→1asn→ ∞.

Proof. By the Korovkin theorem (see [1]),Mn,qn(f;x)converges tof uniformly on [0,1]asn → ∞forf ∈C[0,1]iffMn,qn(ti;x)→xifori= 1,2uniformly on[0,1]

asn → ∞.

From the definition of Mn,q and Theorem 2.4, Mn,qn is a linear operator and reproduces constant functions.

Moreover, asqn→1, then[n]qn → ∞, therefore by Theorem2.4, we get Mn,qn(ti;x)→xi

fori= 0,1,2.

Hence,Mn,qn(f)converges tof uniformly onC[0,1].

Conversely, suppose that Mn,qn(f) converges to f uniformly onC[0,1] andqn does not tend to 1 as n → ∞. Then there exists a subsequence (qnk) of (qn) s.t.

qnk →q0(q0 6= 1)ask → ∞. Thus 1

[n]qnk = 1−qnk

1−qnkn →(1−q0).

Takingn=nkandq=qnk inMn,q(e2, x), we have Mn,qnk(e2;x)≤x+(1−qn−1n

k x)(1−q0) qnk 6=x

(12)

q−Meyer-König-Zeller Durrmeyer Operators

Honey Sharma vol. 10, iss. 4, art. 105, 2009

Title Page Contents

JJ II

J I

Page12of 21 Go Back Full Screen

Close

which is a contradiction. Henceqn→1. This completes the proof.

Remark 4. Similar results are proved for the q−Bernstein-Durrmeyer operator in [11].

(13)

q−Meyer-König-Zeller Durrmeyer Operators

Honey Sharma vol. 10, iss. 4, art. 105, 2009

Title Page Contents

JJ II

J I

Page13of 21 Go Back Full Screen

Close

3. Weighted Statistical Approximation Properties

In this section, we present the statistical approximation properties of the operator Mn,qby using a Bohman-Korovkin type theorem [9].

Firstly, we recall the concepts ofA-statistical convergence, weight functions and weighted spaces as considered in [9].

Let A = (ajn)j,n be a non-negative regular summability matrix. A sequence (xn)n is said to be A-statistically convergent to a number L if, for every ε > 0, limj

P

n:|xn−L|≥ε

ajn = 0. It is denoted bystA−lim

n xn =L. ForA :=C1, the Cesàro matrix of order one is defined as

cjn :=

( 1

j 1≤n≤j 0 n > j.

A-statistical convergence coincides with statistical convergence.

A weight function is a real continuous function ρ on R s.t. lim

|x|→∞ρ(x) = ∞, ρ(x)≥1for allx∈R.

The weighted space of real-valued functionsf(denoted asBρ(R)) is defined onR with the property|f(x)| ≤Mfρ(x)for allx∈R, whereMf is a constant depending on the function f. We also consider the weighted subspace Cρ(R) ofBρ(R) given by

Cρ(R) := {f ∈Bρ(R) :f continuous onR}.

Bρ(R)andCρ(R)are Banach spaces with the normk·kρ, wherekfkρ:= sup

x∈R

|f(x)|

ρ(x) . We next present a Bohman-Korovkin type theorem ([9, Theorem 3]) as follows.

Theorem 3.1. LetA = (ajn)j,n be a non-negative regular summability matrix and let(Ln)nbe a sequence of positive linear operators fromCρ1(R)intoBρ2(R), where

(14)

q−Meyer-König-Zeller Durrmeyer Operators

Honey Sharma vol. 10, iss. 4, art. 105, 2009

Title Page Contents

JJ II

J I

Page14of 21 Go Back Full Screen

Close

ρ1andρ2satisfy

lim

|x|→∞

ρ1(x) ρ2(x) = 0.

Then

stA−lim

n kLnf −fkρ

2 = 0 for all f ∈Cρ1(R) if and only if

stA−lim

n kLnFv −Fvkρ

1 = 0, v = 0,1,2, whereFv(x) = xv1+xρ1(x)2 ,v = 0,1,2.

We next consider a sequence(qn)n,qn ∈(0,1), such that

(3.1) st−lim

n qn = 1.

Theorem 3.2. Let(qn)n be a sequence satisfying (3.1). Then for allf ∈ Cρ0(R+), we have

st−lim

n kMn,q(f;·)−fkρ

α = 0, α >0.

Proof. It is clear that

(3.2) st−lim

n kMn,qn(e0;·)−e0kρ

0 = 0.

Based on equation (2.5), we have

|Mn,qn(e1, x)−e1(x)|

1 +x2 ≤ke0 k 1 q2n[n−1]qn

≤ 1 [n−1]qn.

(15)

q−Meyer-König-Zeller Durrmeyer Operators

Honey Sharma vol. 10, iss. 4, art. 105, 2009

Title Page Contents

JJ II

J I

Page15of 21 Go Back Full Screen

Close

Sincest−lim

n qn= 1, we getst−lim

n 1

[n−1]qn = 0and thus

(3.3) st−lim

n kMn,qn(e1;·)−e1kρ

0 = 0.

By using (2.7), we have

|Mn,qn(e2, x)−e2(x)|

1 +x2 ≤ke0 k

1 [n−1]qn

+ 1

[n−1]qn[n−2]qn

≤ 1 [n−1]qn

+ 1

[n−2]2qn. Consequently,

(3.4) st−lim

n kKn,qn(e2;·)−e2kρ

0 = 0.

Finally, using (3.2), (3.3) and (3.4), the proof follows from Theorem3.1by choosing A = C1, the Cesàro matrix of order one and ρ1(x) = 1 +x2, ρ2(x) = 1 +x2+α, x∈R+,α >0.

(16)

q−Meyer-König-Zeller Durrmeyer Operators

Honey Sharma vol. 10, iss. 4, art. 105, 2009

Title Page Contents

JJ II

J I

Page16of 21 Go Back Full Screen

Close

4. Order of Approximation

We now recall the concept of modulus of continuity. The modulus of continuity of f(x)∈C[0, a], denoted byω(f, δ), is defined by

(4.1) ω(f, δ) = sup

|x−y|≤δ;x,y∈[0,a]

|f(x)−f(y)|.

The modulus of continuity possesses the following properties (see [9]):

(4.2) ω(f, λδ)≤(1 +λ)ω(f, δ)

and

ω(f, nδ)≤nω(f, δ), n∈N. Theorem 4.1. Let(qn)nbe a sequence satisfying (3.1). Then (4.3) |Mn,q(f;x)−f| ≤2ω(f,√

δn) for allf ∈C[0,1], where

(4.4) δn =Mn,q (qt−x)2;x

. Proof. By the linearity and monotonicity ofMn,q, we get

|Mn,q(f;x)−f| ≤Mn,q(|f(t)−f(x)|;x)

=

X

k=0

mn,k,q(x) Z 1

0

bn,k,q(t)|f(qt)−f(x)|dqt.

Also

(4.5) |f(qt)−f(x)| ≤

1 + (qt−x)2 δ2

ω(f, δ).

(17)

q−Meyer-König-Zeller Durrmeyer Operators

Honey Sharma vol. 10, iss. 4, art. 105, 2009

Title Page Contents

JJ II

J I

Page17of 21 Go Back Full Screen

Close

By using (4.5), we obtain

|Mn,q(f;x)−f| ≤

X

k=0

mn,k,q(x) Z 1

0

bn,k,q(t)

1 + (qt−x)2 δ2

ω(f, δ)dqt

=

Mn,q(e0;x) + 1

δ2Mn,q (qt−x)2;x

ω(f, δ) and

Mn,q (qt−x)2;x

=q2Mn,q(e2;x) +x2Mn,q(e0;x)−2qxMn,q(e1;x)

≤(1−q)2x2+ (1 +q)2 q

(1−qn−1x) [n−1] x + (1 +q)

q2

(1−qn−1x)(1−qn−2x) [n−1][n−2]

+ 2xq2

(1 +qn−2) [n+ 1]

−2qn−1(1−q)x3. By (3.1) and the above equation, we get

(4.6) lim

n→∞,qn→1Mn,q (qt−x)2;x

= 0.

So, lettingδn=Mn,q((qt−x)2;x)and takingδ=√

δn, we finally obtain

|Mn,q(f;x)−f| ≤2ω(f,√ δn).

As usual, a functionf ∈LipM(α), (M >0and0< α≤1), if the inequality

(4.7) |f(t)−f(x)| ≤M|t−x|α

for allt, x∈[0,1].

(18)

q−Meyer-König-Zeller Durrmeyer Operators

Honey Sharma vol. 10, iss. 4, art. 105, 2009

Title Page Contents

JJ II

J I

Page18of 21 Go Back Full Screen

Close

Theorem 4.2. For allf ∈LipM(α)andx∈[0,1], we have (4.8) |Mn,q(f;x)−f| ≤M δα/2n , whereδn =Mn,q2;x).

Proof. Using inequality (4.7) and Hölder’s inequality withp= α2,q = 2−α2 , we get

|Mn,q(f;x)−f| ≤Mn,q(|f(t)−f(x)|;x)

≤M Mn,q(|t−x|α;x)

≤M Mn,q(|t−x|2;x)α/2. Takingδn =Mn,q2;x), we get

|Mn,q(f;x)−f| ≤M δα/2n .

Theorem 4.3. For allf ∈C[0,1]andf(1) = 0, we have

(4.9) |An,k,q(f)| ≤An,k,q(|f|)≤ω(f, qn)(1 +q−n), (0≤k ≤n).

Proof. Clearly

|f(qt)|=|f(qt)−f(1)|

≤ω(f, qn(1−qt))

≤ω(f, qn)

1 + (1−qt) qn

.

(19)

q−Meyer-König-Zeller Durrmeyer Operators

Honey Sharma vol. 10, iss. 4, art. 105, 2009

Title Page Contents

JJ II

J I

Page19of 21 Go Back Full Screen

Close

Thus by using Lemma2.1, we get

|An,k,q(f)| ≤An,k,q(|f|)

= Z 1

0

bn,k,q(t)|f(qt)|dqt

≤ω(f, qn) Z 1

0

bn,k,q(t)

1 + (1−qt) qn

dqt

=ω(f, qn)

1 + 1 qn

Z 1

0

bn,k,q(t)dqt− 1 qn

Z 1

0

bn,k,q(t)(qt)dqt

=ω(f, qn)

1 + 1 qn

− 1 qn−1

[k+ 1]

[k+n+ 1]

≤ω(f, qn)(1 +q−n).

(20)

q−Meyer-König-Zeller Durrmeyer Operators

Honey Sharma vol. 10, iss. 4, art. 105, 2009

Title Page Contents

JJ II

J I

Page20of 21 Go Back Full Screen

Close

References

[1] G.G. LORENTZ, Bernstein Polynomials, Mathematical Expositions, Univer- sity of Toronto Press, Toronto, 8 (1953).

[2] O. DOGRU AND V. GUPTA, Korovkin-type approximation properties of bi- variateq−Meyer-Konig and Zeller operators, Calcolo, 43(1) (2006), 51–63.

[3] T. TRIF, Meyer-Konig and Zeller operators based on q integers, Revue d’Analysis Numerique et de Theorie de l’ Approximation, 29(2) (2000), 221–

229.

[4] V. GUPTA, On new types of Meyer Konig and Zeller operators, J. Inequal.

Pure and Appl. Math., 3(4) (2002), Art. 57.

[5] U. ABEL, M. IVAN AND V. GUPTA, On the rate of convergence of a Dur- rmeyer variant of Meyer Konig and Zeller operators, Archives Inequal. Appl., (2003), 1–9.

[6] H. WANG, Properties of convergence forq−Meyer Konig and Zeller operators, J. Math. Anal. Appl., in press.

[7] A. ALTIN, O. DOGRU AND M.A. OZARSLAN, Rate of convergence of Meyer-Konig and Zeller operators based on q integer, WSEAS Transactions on Mathematics, 4(4) (2005), 313–318.

[8] V. GUPTA AND H. SHARMA, Statistical approximation by q integrated Meyer-Konig-Zeller and Kantrovich operators, Creative Mathematics and In- formatics, in press.

[9] O. DUMANANDC.O. RHAN, Statistical approximation by positve linear op- erators, Studia Math., 161(2) (2006), 187–197.

(21)

q−Meyer-König-Zeller Durrmeyer Operators

Honey Sharma vol. 10, iss. 4, art. 105, 2009

Title Page Contents

JJ II

J I

Page21of 21 Go Back Full Screen

Close

[10] T. ERNST, The history ofq-calculus and a new method, Department of Math- ematics, Uppsala University, 16 U.U.D.M. Report, (2000).

[11] V. GUPTAANDW. HEPING, The rate of convergence ofq−Durrmeyer oper- ators for0< q <1,Math. Meth. Appl. Sci., (2008).

[12] V. KACANDP. CHEUNG, Quantum Calculus, Universitext, Springer-Verlag, NewYork, (2002).

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Abstract: In this paper, we give new Turán-type inequalities for some q-special functions, using a q- analogue of a generalization of the Schwarz inequality.... Turán-Type

Key words: Szász-Mirakyan operator, Polynomial weight space, Order of approximation, Voronovskaya type theorem.. Abstract: We introduce the modified Szász-Mirakyan operators S

Key words and phrases: q−integers, q−Meyer-König-Zeller Durrmeyer type operators, A-Statistical convergence, Weighted space, Weighted modulus of smoothness, Lipschitz class..

In this work, we study the convergence properties of these operators in the weighted spaces of continuous functions on positive semi-axis with the help of a weighted Korovkin

Class wF (p, r, q) Operators and Quasisimilarity Changsen Yang and Yuliang

Key words: Parametric Marcinkiewicz operators, rough kernels, Fourier transforms, Para- metric maximal functions.. Abstract: In this paper, we study the L p boundedness of a class

Key words: Linear positive operators, Summation-integral type operators, Rate of convergence, Asymptotic formula, Error estimate, Local direct results, K-functional, Modulus

Key words and phrases: Linear positive operators, Summation-integral type operators, Rate of convergence, Asymptotic for- mula, Error estimate, Local direct results,