• Nem Talált Eredményt

ON CLASS wF (p, r, q) OPERATORS AND QUASISIMILARITY

N/A
N/A
Protected

Academic year: 2022

Ossza meg "ON CLASS wF (p, r, q) OPERATORS AND QUASISIMILARITY"

Copied!
15
0
0

Teljes szövegt

(1)

ClasswF(p, r, q)Operators and Quasisimilarity Changsen Yang and Yuliang Zhao

vol. 8, iss. 3, art. 90, 2007

Title Page

Contents

JJ II

J I

Page1of 15 Go Back Full Screen

Close

ON CLASS wF (p, r, q) OPERATORS AND QUASISIMILARITY

CHANGSEN YANG YULIANG ZHAO

College of Mathematics and Information Science Department of Mathematics

Henan Normal University, Anyang Institute of Technology

Xinxiang 453007, Anyang City, Henan Province 455000

People’s Republic of China People’s Republic of China

EMail:yangchangsen117@yahoo.com.cn EMail:zhaoyuliang512@163.com

Received: 17 October, 2006

Accepted: 15 June, 2007

Communicated by: C.K. Li 2000 AMS Sub. Class.: 47B20, 47A30.

Key words: Class wF(p, r, q) operators, Fuglede-Putnam’s theorem, Property(β)ε, Sub- scalar, Subdecomposable.

Abstract: LetT be a bounded linear operator on a complex Hilbert spaceH. In this pa- per, we show that ifT belongs to classwF(p, r, q)operators, then we have (i) TX =XNwheneverT X=XNfor someX B(H), whereNis normal andXis injective with dense range. (ii)T satisfies the property(β)ε, i.e.,T is subscalar, moreover,Tis subdecomposable. (iii) Quasisimilar classwF(p, r, q) operators have the same spectra and essential spectra.

Acknowledgements: The authors are grateful to the referee for comments which improved the paper.

(2)

ClasswF(p, r, q)Operators and Quasisimilarity Changsen Yang and Yuliang Zhao

vol. 8, iss. 3, art. 90, 2007

Title Page Contents

JJ II

J I

Page2of 15 Go Back Full Screen

Close

Contents

1 Introduction 3

2 Preliminaries 5

3 Main Theorem 10

(3)

ClasswF(p, r, q)Operators and Quasisimilarity Changsen Yang and Yuliang Zhao

vol. 8, iss. 3, art. 90, 2007

Title Page Contents

JJ II

J I

Page3of 15 Go Back Full Screen

Close

1. Introduction

Let X denote a Banach space,T ∈ B(X) is said to be generalized scalar ([3]) if there exists a continuous algebra homomorphism (called a spectral distribution of T)Φ :ε(C)→B(X)withΦ(1) =IandΦ(z) =T, whereε(C)denotes the algebra of all infinitely differentiable functions on the complex plane C with the topology defined by uniform convergence of such functions and their derivatives ([2]). An operator similar to the restriction of a generalized scalar (decomposable) operator to one of its closed invariant subspaces is said to be subscalar (subdecomposable).

Subscalar operators are subdecomposable operators ([3]). Let H, K be complex Hilbert spaces and B(H), B(K) be the algebra of all bounded linear operators in HandK respectively,B(H, K)denotes the algebra of all bounded linear operators fromHtoK. A capital letter (such asT) means an element ofB(H). An operatorT is said to be positive (denoted byT ≥0) if(T x, x)≥0for anyx∈H. An operator T is said to bep−hyponormal if(TT)p ≥(T T)p,0< p≤1.

Definition 1.1 ([10]). Forp > 0, r ≥ 0,andq ≥1, an operatorT belongs to class wF(p, r, q)if

(|T|r|T|2p|T|r)1q ≥ |T|2(p+r)q and

|T|2(p+r)(1−1q)≥(|T|p|T|2r|T|p)1−1q. LetT =U|T|be the polar decomposition ofT. We define

Tep,r=|T|pU|T|r(p+r= 1).

The operator Tep,r is known as the generalized Aluthge transform of T. We define (Tep,r)(1)=Tep,r,(Tep,r)(n) =[(Te^p,r)(n−1)]p,r, wheren≥2.

(4)

ClasswF(p, r, q)Operators and Quasisimilarity Changsen Yang and Yuliang Zhao

vol. 8, iss. 3, art. 90, 2007

Title Page Contents

JJ II

J I

Page4of 15 Go Back Full Screen

Close

The following Fuglede-Putnam’s theorem is famous. We extend this theorem for classwF(p, r, q)operators.

Theorem 1.2 (Fuglede-Putnam’s Theorem [7]). LetAandB be normal operators andXbe an operator on a Hilbert space. Then the following hold and follow from each other:

(i) (Fuglede) IfAX =XA, thenAX =XA. (ii) (Putnam) IfAX =XB, thenAX =XB.

(5)

ClasswF(p, r, q)Operators and Quasisimilarity Changsen Yang and Yuliang Zhao

vol. 8, iss. 3, art. 90, 2007

Title Page Contents

JJ II

J I

Page5of 15 Go Back Full Screen

Close

2. Preliminaries

Lemma 2.1 ([9]). IfN is a normal operator onH, then we have

\

λ∈C

(N−λ)H ={0}.

Lemma 2.2 ([5]). Let T = U|T| be the polar decomposition of a p-hyponormal operator forp > 0. Then the following assertions hold:

(i) Tes,t = |T|sU|T|t is p+min(s,t)s+t -hyponormal for anys > 0and t > 0 such that max{s, t} ≥p.

(ii) Tes,t =|T|sU|T|tis hyponormal for anys >0andt >0such thatmax{s, t} ≤ p.

Lemma 2.3 ([8]). LetT ∈ B(H), D ∈ B(H)with0 ≤ D ≤ M(T −λ)(T −λ) for all λin C, where M is a positive real number. Then for every x ∈ D12H there exists a bounded functionf :C → Hsuch that(T −λ)f(λ)≡x.

Lemma 2.4 ([10]). If T ∈ wF(p, r, q), then Tep,r

2m

≥ |T|2m ≥ (Tep,r)

|2m, where m = minn

1

q,maxn

p

p+r,1−1qoo

, i.e., Tep,r = |T|pU|T|r is m-hyponormal operator.

Lemma 2.5 ([11]). LetA, B ≥0,α0, β0 >0and−β0 ≤δ≤α0,−β0 ≤δ¯≤α0, if 0≤δ ≤α0 and

Bβ20Aα0Bβ20αβ0+δ

0+β0

≥Bβ0, then

Bβ2AαBβ2α+ββ+δ

≥Bβ+δ,

(6)

ClasswF(p, r, q)Operators and Quasisimilarity Changsen Yang and Yuliang Zhao

vol. 8, iss. 3, art. 90, 2007

Title Page Contents

JJ II

J I

Page6of 15 Go Back Full Screen

Close

and

Aα−¯δ ≥ Aα2BβAα2

α−¯δ α+β

hold for eachα≥α0, β ≥β0and0≤δ¯≤α.

Lemma 2.6 ([6]). Let A ≥ 0, B ≥ 0, ifB12AB12 ≥ B2 and A12BA12 ≥ A2 then A=B.

Lemma 2.7. LetA, B ≥0,s, t≥ 0, ifBsA2tBs =B2s+2t,AtB2sAt=A2s+2tthen A=B.

Proof. We choosek > max{s, t. SinceBsA2tBs = B2s+2t, AtB2sAt = A2s+2t it follows from Lemma2.5that:

(BkA2kBk)2k+2t4k ≥B2k+2t, A2k−2t≥(AkB2kAk)2k−2t4k , and

(AkB2kAk)2k+2s4k ≥A2k+2s, B2k−2s ≥(BkA2kBk)2k−2s4k . So

AkB2kAk =A4k, BkA2kBk =B4k, by Lemma2.6

A=B.

Lemma 2.8 ([11]). Let T be a class wF(p, r, q) operator, if Tep,r = |T|pU|T|r is normal, thenT is normal.

(7)

ClasswF(p, r, q)Operators and Quasisimilarity Changsen Yang and Yuliang Zhao

vol. 8, iss. 3, art. 90, 2007

Title Page Contents

JJ II

J I

Page7of 15 Go Back Full Screen

Close

The following theorem have been shown by T. Huruya in [3], here we give a simple proof.

Theorem 2.9 (Furuta inequality [4]). IfA≥B ≥0, then for eachr >0, (i) Br2ApBr21q

≥ Br2BpBr21q and (ii) Ar2ApAr21q

≥ Ar2BpAr21q

hold forp≥0andq≥1with(1 +r)q ≥p+r.

Theorem 2.10. Let T be a p−hyponormal operator on H and let T = U|T| be the polar decomposition ofT, ifTes,t = |T|sU|T|t (s+t = 1)is normal, thenT is normal.

Proof. First, consider the case max{s, t} ≥ p. Let A = |T|2p and B = |T|2p, p-hyponormality ofT ensuresA ≥ B ≥ 0. Applying Theorem2.9 toA≥ B ≥ 0, since

1 + t

p

s+t

p+ min(s, t) ≥ s p + t

p and s+t

p+ min(s, t) ≥1, we have

(Tes,t Tes,t)p+min(s,t)s+t = (|T|tU|T|2sU|T|t)p+min(s,t)s+t

= (UU|T|tU|T|2sU|T|tUU)p+min(s,t)s+t

= (U|T|t|T|2s|T|tU)p+min(s,t)s+t

=U(|T|t|T|2s|T|t)p+min(s,t)s+t U

=U(B2pt AspB2pt )p+min(s,t)s+t U

≥UBp+min(s,t)p U =U|T|2(p+min(s,t))U =|T|2(p+min(s,t)).

(8)

ClasswF(p, r, q)Operators and Quasisimilarity Changsen Yang and Yuliang Zhao

vol. 8, iss. 3, art. 90, 2007

Title Page Contents

JJ II

J I

Page8of 15 Go Back Full Screen

Close

Similarly, we also have

(Tes,tTes,t )p+min(s,t)s+t ≤ |T|2(p+min(s,t)). Therefore, we have

(Tes,t Tes,t)p+min(s,t)s+t ≥ |T|2(p+min(s,t))≥(Tes,tTes,t )p+min(s,t)s+t . If

Tes,t=|T|sU|T|t (s+t= 1) is normal, then

(Tes,t Tes,t)p+min(s,t)s+t =|T|2(p+min(s,t))= (Tes,tTes,t )p+min(s,t)s+t , which implies

|T|t|T|2s|T|t =|T|2(s+t) and |T|s|T|2t|T|s=|T|2(s+t),

then |T| = |T| by Lemma 2.7. Next, consider the case max{s, t} ≤ p. Firstly, p−hyponormality ofT ensures|T|2s≥ |T|2s and|T|2t≥ |T|2tformax{s, t} ≤p by the Löwner-Heinz theorem. Then we have

Tes,t Tes,t =|T|tU|T|2sU|T|t ≥ |T|tU|T|2sU|T|t

=|T|2(s+t)

Tes,tTes,t =|T|sU|T|2tU|T|s

≤ |T|2(s+t).

IfTes,t =|T|sU|T|t(s+t= 1)is normal, then

Tes,t Tes,t =|T|2((s+t)=Tes,tTes,t ,

(9)

ClasswF(p, r, q)Operators and Quasisimilarity Changsen Yang and Yuliang Zhao

vol. 8, iss. 3, art. 90, 2007

Title Page Contents

JJ II

J I

Page9of 15 Go Back Full Screen

Close

which implies

|T|t|T|2s|T|t =|T|2(s+t) and |T|s|T|2t|T|s=|T|2(s+t), then|T|=|T|by Lemma2.7.

(10)

ClasswF(p, r, q)Operators and Quasisimilarity Changsen Yang and Yuliang Zhao

vol. 8, iss. 3, art. 90, 2007

Title Page Contents

JJ II

J I

Page10of 15 Go Back Full Screen

Close

3. Main Theorem

Theorem 3.1. Assume thatT is a classwF(p, r, q)operator withKer(T)⊂Ker(T), andN is a normal operator onH andK respectively. IfX ∈ B(K, H)is injective with dense range which satisfiesT X =XN, thenTX =XN.

Proof. Ker(T) ⊂ Ker(T) implies Ker(T) reduces T. Also Ker(N) reduces N sinceN is normal. Using the orthogonal decompositionsH = Ran(|T|)L

Ker(T) andH = Ran(N)L

Ker(N), we can representT andN as follows.

T =

T1 0 0 0

,

N =

N1 0 0 0

,

whereT1 is an injective classwF(p, r, q) operator onRan(|T|)andN1 is injective normal on Ran(N). The assumptionT X = XN asserts that X mapsRan(N) to Ran(T)⊂Ran(|T|)andKer(N)toKer(T), henceXis of the form:

X =

X1 0 0 X2

,

whereX1 ∈B(Ran(N),Ran(|T|)),X2 ∈B(Ker(N),Ker(T)). SinceT X =XN, we have that T1X1 = X1N1. Since X is injective with dense range, X1 is also injective with dense range. PutW1 = |T1|pX1, thenW1 is also injective with dense range and satisfies(Tg1)p,rW1 =W1N. PutWn =

(Te1)(n)p,r

p

W(n−1), thenWnis also injective with dense range and satisfies(Te1)(n)p,rWn = WnN. From Lemma2.2 and Lemma2.4, if there is an integerα0such that(Te1)p,r0)is a hyponormal operator, then

(11)

ClasswF(p, r, q)Operators and Quasisimilarity Changsen Yang and Yuliang Zhao

vol. 8, iss. 3, art. 90, 2007

Title Page Contents

JJ II

J I

Page11of 15 Go Back Full Screen

Close

(Te1)(n)p,r is a hyponormal operator forn ≥ α0. It follows from Lemma 2.3that there exists a bounded functionf :C → Hsuch that

Te1

(n) p,r

−λ

f(λ)≡x, for every

x∈

Te1(n) p,r

Te1(n)

p,r

− Te1(n)

p,r

Te1(n)

p,r

12 H.

Hence

Wnx=Wn

Te1

(n) p,r

−λ

f(λ)

= (N1 −λ)Wnf(λ)∈Ran(N1−λ) for allλ∈ C

By Lemma2.1, we haveWnx = 0, and hencex = 0becauseWn is injective. This implies that(Te1)(n)p,r is normal. By Lemma 2.8 and Theorem 2.10, T1 is nomal and therefore T = T1L

0 is also normal. The assertion is immediate from Fuglede- Putnam’s theorem.

LetXbe aBanachspace,U be an open subset ofC.ε(U, X)denotes the Fréchet space of allX−valued C−functions, i.e., infinitely differentiable functions on U ([3]). T ∈ B(X)is said to satisfy property(β)ε if for each open subsetU ofC, the map

Tz :ε(U, X)→ε(U, X), f 7→(T −z)f

is a topological monomorphism, i.e.,Tzfn →0 (n → ∞)inε(U, X)impliesfn → 0 (n→ ∞)inε(U, X)([3]).

Lemma 3.2 ([1]). LetT ∈B(X). T is subscalar if and only ifT satisfies property (β)ε.

(12)

ClasswF(p, r, q)Operators and Quasisimilarity Changsen Yang and Yuliang Zhao

vol. 8, iss. 3, art. 90, 2007

Title Page Contents

JJ II

J I

Page12of 15 Go Back Full Screen

Close

Lemma 3.3. LetT ∈ B(X). T satisfies property(β)ε if and only if Tep,r satisfies property(β)ε.

Proof. First, we suppose that T satisfies property (β)ε, U is an open subset of C, fn ∈ε(U, X)and

(3.1) (Tep,r−z)fn →0 (n → ∞), inε(U, X), then

(T −z)U|T|rfn =U|T|r(Tep,r−z)fn→0 (n→ ∞).

SinceT satisfies property(β)ε, we haveU|T|rfn →0 (n→ ∞).and therefore

(3.2) Tep,rfn →0 (n→ ∞).

(3.1) and (3.2) imply that

(3.3) zfn =Tep,rfn−(Tep,r−z)fn→0 (n→ ∞)

inε(U, X). Notice that T = 0 is a subscalar operator and hence satisfies property (β)εby Lemma3.2. Now we have

(3.4) fn→0 (n→ ∞).

(3.1) and (3.4) imply that Tep,r satisfies property (β)ε. Next we suppose that Tep,r satisfies property(β)ε,U is an open subset ofC,fn∈ε(U, X)and

(3.5) (T −z)fn →0 (n → ∞),

inε(U, X). Then

(Tep,r−z)|T|pfn =|T|p(T −z)fn →0 (n → ∞).

(13)

ClasswF(p, r, q)Operators and Quasisimilarity Changsen Yang and Yuliang Zhao

vol. 8, iss. 3, art. 90, 2007

Title Page Contents

JJ II

J I

Page13of 15 Go Back Full Screen

Close

SinceTep,r satisfies property(β)ε, we have|T|pfn→0 (n → ∞),and therefore

(3.6) T fn→0 (n→ ∞).

(3.5) and (3.6) imply

zfn =T fn−(T −z)fn→0 (n→ ∞).

Sofn→0 (n → ∞).HenceT satisfies property(β)ε.

Lemma 3.4 ([1]). Suppose thatT is ap−hyponormal operator, thenT is subscalar.

Theorem 3.5. LetT ∈wF(p, r, q)andp+r = 1, thenT is subdecomposable.

Proof. If T ∈ wF(p, r, q), then Tep,r is a m-hyponormal operator by Lemma 2.4, and it follows from Lemma3.4 thatTep,r is subscalar. So we haveT is subscalar by Lemma3.2and Lemma3.3. It is well known that subscalar operators are subdecom- posable operators ([3]). HenceT is subdecomposable.

Recall that an operatorX ∈ B(H)is called a quasiaffinity ifX is injective and has dense range. ForT1, T2 ∈ B(H), if there exist quasiaffinities X ∈ B(H2, H1) andY ∈B(H1, H2)such thatT1X =XT2andY T1 =T2Y then we say thatT1 and T2 are quasisimilar.

Lemma 3.6 ([2]). Let S ∈ B(H) be subdecomposable, T ∈ B(H). If X ∈ B(K, H) is injective with dense range which satisfies XT = SX, then σ(S) ⊂ σ(T); ifT andS are quasisimilar, thenσe(S)⊆σe(T).

Theorem 3.7. LetT1, T2 ∈ wF(p, r, q). IfT1andT2 are quasisimilar thenσ(T1) = σ(T2)andσe(T1) = σe(T2).

Proof. Obvious from Theorem3.5and Lemma3.6.

(14)

ClasswF(p, r, q)Operators and Quasisimilarity Changsen Yang and Yuliang Zhao

vol. 8, iss. 3, art. 90, 2007

Title Page Contents

JJ II

J I

Page14of 15 Go Back Full Screen

Close

References

[1] L. CHEN, R. YINGBIN AND Y. ZIKUN, w-Hyponormal operators are sub- scalar, Integr. Equat. Oper. Th., 50 (2004), 165–168.

[2] L. CHENANDY. ZIKUN, Bishop’s property(β)and essential spectra of qua- sisimilar operators, Proc. Amer. Math. Soc., 128 (2000), 485–493.

[3] I. COLOJOAR ¯A AND C. FOIAS, Theory of Generalized Spectral Operators, New York, Gordon and Breach, 1968.

[4] T. FURUTA, Invitation to Linear Operators – From Matrices to Bounded Lin- ear Operators on a Hilbert Space, London: Taylor & Francis, 2001.

[5] T. HURUYA, A note onp−hyponormal operators, Proc. Amer. Math. Soc., 125 (1997), 3617–3624.

[6] M. ITO AND T. YAMAZAKI, Relations between two inequalities Br2ApBr2p+rr

≥ Br and Ap2BrAp2p+rp

≤ Ap and its applications, Integr.

Equat. Oper. Th., 44 (2002), 442–450.

[7] C.R. PUTNAM, On normal operators in Hilbert space, Amer. J. Math., 73 (1951), 357–362.

[8] C.R. PUTNAM, Hyponormal contractions and strong power convergence, Pa- cific J. Math., 57 (1975), 531–538.

[9] C.R. PUTNAM, Ranges of normal and subnormal operators, Michigan Math.

J., 18 (1971) 33–36.

[10] C. YANGANDJ. YUAN, Spectrum of classwF(p, r, q)operators forp+r≤1 andq≥1, Acta. Sci. Math. (Szeged), 71 (2005), 767–779.

(15)

ClasswF(p, r, q)Operators and Quasisimilarity Changsen Yang and Yuliang Zhao

vol. 8, iss. 3, art. 90, 2007

Title Page Contents

JJ II

J I

Page15of 15 Go Back Full Screen

Close

[11] C. YANGANDJ. YUAN, On classwF(p, r, q)operators, preprint.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

most of the rationality principles (Grice’s coopera- tive principle, Kasher’s rationality principle, Horn’s Q- and R-principles, Levinson’s minimization principle, Levinson’s

SRIVASTAVA, A certain subclass of analytic functions associated with operators of fractional calculus, Comput. RAINA, On certain class of analytic functions and applications

Key words: Banach lattice, Cohen p-nuclear operators, Pietsch’s domination theorem, Strongly p-summing operators, Sublinear operators.. Abstract: Let SB(X, Y ) be the set of all

Key words and phrases: Banach lattice, Cohen p-nuclear operators, Pietsch’s domination theorem, Strongly p-summing oper- ators, Sublinear operators.. 2000 Mathematics

Key words: q−integers, q−Meyer-König-Zeller Durrmeyer type operators, A-Statistical convergence, Weighted space, Weighted modulus of smoothness, Lipschitz class.. Abstract: We

Key words and phrases: q−integers, q−Meyer-König-Zeller Durrmeyer type operators, A-Statistical convergence, Weighted space, Weighted modulus of smoothness, Lipschitz class..

Making use of a linear operator, which is defined here by means of the Hadamard product (or convolution), we introduce a class Q p (a, c; h) of analytic and multivalent functions in

Abstract: Using convolution transform theory boundedness results for the wavelet trans- form are obtained in the Triebel space-L Ω,k p , Hörmander space-B p,q ( R n ) and