• Nem Talált Eredményt

INTEGRATION OF FREE FORM SURFACES INTO A VOLUMETRIC MODELLER

N/A
N/A
Protected

Academic year: 2022

Ossza meg "INTEGRATION OF FREE FORM SURFACES INTO A VOLUMETRIC MODELLER"

Copied!
184
0
0

Teljes szövegt

(1)
(2)
(3)

INTEGRATION OF FREE FORM SURFACES INTO A VOLUMETRIC MODELLER

dr Tamas Varady

Studies 171/1985

(4)

A kiadásért felelős:

Dr Vámos Tibor

Főosztályvezető:

Dr Nemes László

ISBN 963 311 1927 ISSN 0324-2951

A lf a prin t

(5)

Acknowledgements

N o tatio n s

Chapter I - In tro d u c tio n

1 . Synthesis o f free-fo rm su rfa ce s and s o l i d m odelling... 11

2 . Free-form s u rfa c e s in engineering d e s ig n ... 15

3 . The BUILD g e o m e t r i c m odeller and i t s fre e -frc m f a c i l i t i e s ... 17

4 . Content of th e t h e s i s ... 27

Chapter I I - B asic eq u atio n s and sim ple g eo m etric p ro p e rtie s of double- -q u a d ra tic curve segments and s u rfa c e patches 1 . In tro d u c tio n ... 3i

2 . The equation of a d o u b le-q u ad ratic segm ent... 34

3 . The c h a r a c t e r i s t i c polygon of a d o u b le-q u a d ratic curve segm ent... 40

4. Seme p r o p e r tie s of th e planar d o u b le-q u a d ratic curve segm ent... 43

4 .1 . C urvature, i n f le c t i o n , lo o p s... 43

4 .2 . Line and c i r c l e approxim ation... 50

5 . The eq u atio n of a d o u b le-q u ad ratic p a tc h ... 54

6 . The c h a r a c t e r i s t i c polyhedron of a d o u b le-q u a d ratic p a tc h ... 56

7 . Minimum - maximum v a lu e s of d o u b le-q u a d ratic curves and s u r f a c e p a tc h e s ... 59

8 . Conclusion... 61

- 3 «•

(6)

la p te r I I I - Geom etric in te r r o g a tio n s fo r d o u b le-q u a d ratic c u rv es and d o u b le-q u a d ratic s u rfa c e s

1. In tro d u c tio n ... ... 65

2. Notes on v e c to r-s u rfa c e and c u rv e -su rfa c e in te r r o g a tio n s ... 68

3. Notes on s u rfa c e -s u rfa c e i n te r s e c t i o n s ... 72

4. IWo operand geom etric in te r r o g a tio n s ... 76

5. Simple geom etric elem ents... 78

6. D ouble-quadratic cu rv es... 81

7 . D ouble-quadratic s u rfa c e s ... 84

8. Global t e s t s ... 89

9. Vector - dq -cu rv e in te r r o g a tio n ... 93

10. Curve - dq-curve in te r r o g a tio n ... 94

11. Plane - d q-curve and q u a d ric - dq-curve in te r r o g a tio n s ... 96

12. Vector - d q -su rfa c e in te r r o g a tio n ... 96

13. Curve - d q -su rfa c e in te r r o g a tio n s ... 99

14. Surface - d q -su rfa c e in te r r o g a tio n s ... 104

15. Conclusion... 109

Chapter IV - A sim p le adaptive c u r v e - f it t i n g alg o rith m for g e n eratin g i n te r s e c tio n curves in volum etric m odellers 1. In tro d u c tio n ... 113

2. The dq-curve f i t t i n g a lg o rith m ... 116

3. C o n c lu sio n ... 119

- 4 -

(7)

5. Appendix - 2 , The n e a re s t p o in t on a d o u b le-q u a d ratic segment... 124

6. Appendix - 3 , Numerical e v alu atio n of B spline and dq-curve f i t t i n g w ith d i f f e r e n t f it- p a r a m e te r s ... 127

7 . Appendix - 4, D ouble-quadratic in te r s e c tio n cu rv es... 128

C h ap ter V - Analogy b etw een g e n e r a tin g p la n a r in te r s e c tio n curves and s ilh o u e tte curves of (d o u b le-)q u ad ra tic su rfa c e s 1. In tro d u c tio n ... 133

2 . I n te r s e c tio n of a p lan e and a b iq u a d ra tic p atch ... ... 136

3. S ilh o u e tte curve g e n e ra tio n to a b iq u a d ra tic p a tc h ... 139

4. Further problems in connection w ith s ilh o u e tte curve g e n e r a t i o n .... 143

Chapter VI - Conclusions 1. Free-form BUILD o b je c ts - sane en g in eerin g examples... 151

2 . Suggestion fo r fu r th e r re s e a rc h ... 160

3 . Summary... 162

R eferen ces... 164

L is t of F ig u re s... 174

- 5 -

(8)
(9)

I am in d e b te d t o th e M ech an ical E n g in e e rin g A u to m atio n D iv is io n of th e Computer and Automation I n s t i t u t e , e s p e c ia lly to Joe Hatvány, László Nemes and J u liu s Hermann fo r th e ir sup p o rt and encouragement to conduct t h i s geom etric m odelling re se a rc h . The c re a tiv e atm osphere of th e FFS s u rfa c e m odelling group a t CAI helped me very much in th e c l a r i f i c a t i o n of th e sy n th e s is problem. Many thanks to Malcolm Sabin and Mike P r a t t fo r d ir e c tin g me to th e BUILD G eom etric M o d e llin g G r o u p , C a m b rid g e U n i v e r s i t y E n g in e e r in g D ep artm en t. I am p a r tic u la r ly g r a te f u l to a l l members of the BUILD Group fo r t h e ir h o s p i t a l i ty and c o l l a b o r a t i o n , w hich made i t p o s s ib l e t o become f a m i l i a r w ith th e fu n d a m e n ta ls o f BUILD and t o overcom e many p ro b le m s. I am p a r t i c u l a r l y indebted to th e head of th e group, Graham Ja red , who in v ite d me to Cambridge, played an im p o rtan t r o le in th e U.K.-Hungarian re s e a rc h c o lla b o ra tio n and made s ig n i f ic a n t c o n trib u tio n s to th e re s e a rc h d escrib ed in t h i s t h e s is , in clu d in g th e c o rre c tio n o f my H ungarian-English.

7

(10)

NOTATION

L = (x ,y ,z ) v ecto r q u a n titie s w i l l be denoted by u n d erlin in g than

r-] L2 or

^X-2

^ X l2

s c a la r product of n-j and r.2

v ecto r product o f r-j and jz2

th e ab so lu te value of £

^0 index 0 always means u n itv e c to r

a11 a12 a13 a14 a21 a22 a23 a24.

a31

a32

a33 ^34) a41 a42 a43 a44[

sign dependent m atrix - means depending on th e sign o f a c e r ta in param eter value (u) the t h ir d or th e fo u rth row o f th e m atrix w ill be taken

£ w ill be used fo r non equal

n ( t) v ecto r - s c a la r fu n ctio n

i t s d e riv a tiv e by param eter t

8

(11)

INTRODUCTION

(12)
(13)

1 .S y n th esis of fre e -fo rm s u rfa c e s and s o lid m odelling

Today's computer aid ed design system s employ a range of d i f f e r e n t methods fo r m o d e llin g com plex e n g in e e r in g o b j e c ts . The d a t a - s t r u c t u r e c r e a t e d by th e m o d e llin g s y s te m s makes i t p o s s ib l e to v i s u a l i z e th e o b j e c t s , draw t h e i r o r th o g o n a l and p e r s p e c t i v e v ie w s , g e n e r a te t o o l - p a t h s f o r NC m a c h in in g , analyze th e ir m echanical and thermodynamical c h a r a c t e r i s t i c s , and c a l c u l a t e t h e i r g e o m e tric and p h y s i c a l p r o p e r tie s . Two-dimensional draughting system s have obvious l im i ta t io n s fo r th e d e s c rip tio n of 3D shapes. While 3D w irefram e m o d ellers o ffe r a g re a te r p o te n tia l in t h i s re s p e c t, th e most advanced te c h ­ n iq u es, which a re l ik e l y to be b a sic in fu tu r e CAD/CAM system s, a re th o se of su rfa c e m odelling and v o lu m e tric m odelling.

The two l a t t e r d i s c i p l i n e s have u n t i l r e c e n t l y been e v o lv in g s e p a r a t e l y . S c u lp tu r e d s u r f a c e m o d e llin g o r i g i n a t e d i n th e e a r l y s i x t i e s , when th e t h e o r e tic a l b a s is of piecew ise p aram etric su rfa c e s was developed by s e v e ra l w o rk e rs in c lu d in g Coons [23] , F erguson [33] , and B e z ie r [4] . V o lu m e tr ic m odelling s ta r te d in th e l a t e s i x t i e s by th e works of B raid [9] , V oelcker [79] , Okino [51] and o th e rs . I n i t i a l l y , th e only mode of c o n stru c tio n was th e use o f Boolean s e t o p e ra to rs on sim ple s o lid p r im itiv e s . The defin ed o b j e c ts w e re u s u a lly bounded by s im p le a n a l y t i c a l s u r f a c e s (p la n e s ,a n d q u a d r ic s ) d escrib e d by i m p l i c i t eq u atio n s.

Because of th e d iffe re n c e i n m athem atical su rfa c e fo rm u la tio n , th e two ty p e s o f sy ste m d e v e lo p e d l a r g e l y in d e p e n d e n tly . W hile p a r a m e t r ic e q u a tio n s a r e g e n e ra lly used to d e fin e bounded curve segments and su rfa c e reg io n s, i m p l i c i t

- 11

(14)

INTRODUCTION

e q u a tio n s s u g g e s t t h e use of i n f i n i t e h a l f - s p a c e s . D i f f e r e n t m a th e m a tic a l, a lg o rith m ic and com putational methods were ap p lied ; d i f f e r e n t design methods and user in te r f a c e s were created .

By th e l a t e s e v e n tie s , both d i s c ip l i n e s had s i g n if ic a n tly advanced and many co m m ercial s y s te m s w ere r e l e a s e d . At th e same tim e i t was r e c o g n is e d t h a t th e re a re many d e fic ie n c e s in bo th a re a s and t h a t many a p p lic a tio n s re q u ire th e sim ultaneous use of both tech n iq u es. Sculptured su rfa c e design system s had d i f f i c u l t i e s i n h a n d l i n g t o p o l o g y , i n d e f i n i n g c o m p o s ite s u r f a c e s , in c o r p o r a tin g i m p l i c i t s u r f a c e ty p e s and i n c r e a t i n g c lo s e d o b j e c t s . S o lid m odelling system s w ere not able t o d e sc rib e free-fo rm shapes, except by means of c o a r s e a p p ro x im a tio n s . They a l s o fa c e d th e pro b lem of a c c u r a t e l y re p re se n tin g i n te r s e c tio n curves, and blending s u rfa c e s , e tc ., which cannot be defined by sim ple a n a ly tic eq u atio n s.

From th e e a rly e ig h t i e s , in te n siv e re se a rc h work has been d ire c te d towards th e i n t e g r a t i o n o f f r e e - f o r m and s o l i d g eo m etry . T here a r e many g e o m e tric m odelling p r o je c ts , which a tta c k th e problem. J u s t a s h o rt l i s t of them, known t o th e a u th o r , and r e f e r e n c e s a r e g iv e n h e re : ALPHA-1 [21], [22]; BUILD [15],

[1] ; CATIA [3] ;COMPAC [66] , EUCLID [67]; EUKLID [31]; GBOMOD [44];GMSOLID [8] , MODIF/GBOMAP [41] ,[2 0 ], [45]; MEDUSA [37];ROMULUS [6] , [58]; REMUS [77] ; SYNTRAVISION [38]; TIPS [52]; IROREN [27]; UNIBLOCK [50]. D e ta ils can be found in th e a r t i c l e of P r a t t and Varady [55].

Some s i g n i f i c a n t r e s u l t s have b e e n p u b lis h e d . N e v e r th e le s s many q u e s tio n s s t i l l re m a in . In m o st c a s e s to a v o id p ro b lem s a c e r t a i n com prom ise m ust be made, which r e s u l t s i n t i g h t l i m i t a t i o n s on th e u se r of t h e s e advanced m o d ellers.

12

(15)

Some examples a re given as fo llo w s:

- New m ethods have been d ev elo p ed f o r c r e a t i n g f r e e - f o r m s o l i d s , b u t th ese cannot be combined using s e t o p e ra tio n s in a g en eral way.

- C ertain fre e -fo rm f a c i l i t i e s a re a v a ila b le in th e m o d eller, but th e s e a re i n s u f f ic ie n t to re p re se n t g e o m e tric a lly complex o b je c ts .

- The used s u rfa c e type i s a p p ro p ria te fo r d e scrib in g complex geometry (high d e g re e p o ly n o m ia ls ,a n d r a t i o n a l f u n c t i o n s ) , b u t t h e r e a r e r e s t r i c ti o n s fo r combining them, for example, free-fo rm s u rfa c e -s u rfa c e in te r s e c tio n i s not p e rm itte d , or th e com putation tim e i s unacceptable.

- The s u r f a c e s a r e r e p r e s e n te d o n ly a p p ro x im a te ly in f a c e t e d fo rm , c o n s e q u e n tly th e d i f f i c u l t i n t e r s e c t i o n p ro b lem i s a v o id e d , b u t t h e d a ta s tru c tu re may become in a c c u ra te , som etim es in c o n s is te n t.

- The su rfa c e s a re a c c u ra te ly re p re se n te d , b u t th e model, in clu d in g th e e d g e - c u r v e s a r e i m p l i c i t l y d e f i n e d , t h u s a t e a c h e v a l u a t i o n , com putationally expensive, m ostly num erical procedures must be ap p lied . The above l i s t e d geom etric m odelling system s, according to th e l a t e s t in f o r ­ m ation known to th e a u th o r, s u ffe r from one or more of th ese "diseases". The BUILD p r o j e c t (Cam bridge U n iv e r s ity E n g in e e rin g D epartm ent) a d o p te d a compromise on th e s e le c tio n of the su rfa ce ty p e, b u t ra is e d high req u irem en ts on th e g e n e ra lity of th e so lu tio n .

A new f r e e - f o r m c u rv e and s u r f a c e r e p r e s e n t a t i o n c a lle d d o u b le-q u a d ratic s (h e re a fte r ab b rev iated to dq-s) was chosen. The d q -s not only have m athem atical and com putational b e n e f its , but a ls o s u f f i c i e n t freedom in making th e f r e e ­ form co n tra s o lid s y n th e s is f le x ib le .

(16)

INTRODUCTION

The b a s i c id e a o f d o u b le - q u a d r a tic s i s t h a t i n s t e a d o f a c u b ic b le n d in g f u n c t i o n , two j o i n i n g p a r a m e tr ic q u a d r a t i c s a r e u se d . In t h i s way, a s u f f i c i e n t degree of freedom fo r designing a wide range of en g in eerin g o b je c ts i s p re s e r v e d , and s i g n i f i c a n t c o m p u ta tio n a l e f f i c i e n c y i s g a in e d , w hich c o m p en sates f o r t h e l o s s o f i n t e r n a l c u r v a t u r e c o n t i n u i t y . The g e o m e tric in te rro g a tio n s of dq-curves and s u rfa c e s can be solved m ostly by a n a ly tic and sim ple numerical methods. Comparing t h i s to o ther su rfa ce ty p es, t h i s lead s to ro b u st and e f f i c i e n t procedures, a p p r o p r i a te f o r b u i ld in g s o l i d s bounded by free -fo rm elem ents a s w ell.

BUILD uses a f u l ly evaluated boundary re p re s e n ta tio n . The edge curves, which l i e on th e s u rfa c e -s u rfa c e in te r s e c tio n curves a re a ls o e x p l i c i t l y sto re d . If th ese cannot be d e sc rib e d by sim p le a n a ly tic eq u atio n s, a very a cc u ra te f r e e ­ form a p p ro x im a tin g c u rv e , i . e . a d q -c u rv e i s g e n e ra te d . I t i s f i t t e d u s in g a s p e c ia l technique, and i t s accuracy can be c o n tro lle d by th e to le ra n c e of the model.

The g r e a t e s t power o f th e BUILD d q -im p le m e n ta tio n i s t h a t th e f r e e - f o r m g eo m etry i s h a n d le d e x a c tly i n th e same way a s th e c o n v e n tio n a l one.

T h erefore, once fre e -fo rm s u rfa c e s have been in co rp o rated in to s o lid models, no d i s t i n c t i o n i s made a f t e r w a r d s , f o r ex am p le, a r b i t r a r y two s o l i d s w ith f r e e - f o r m fa c e s c a n be added t o g e t h e r . A ll BUILD o p e r a t io n s a r e e x te n d ed to s o l i d s bounded by d o u b le - q u a d r a tic e le m e n ts . T h is t h e s i s d i s c u s s e s th e com putational geometry side of th e s y n th e s is , what problem s need to be solved fo r ensuring the u n ifo rm ity of free-fo rm and conventional elem en ts, and how th e d o u b le-q u ad ratic curves and su rfa c e s were in co rp o rated in to BUILD.

- 14

(17)

2. Free-form s u rfa c e s in en gineering design

The use of f r e e - f o r m s u r f a c e s in p r a c t i c a l e n g in e e r in g d e s ig n c a n be c a te g o rise d in to four types from the u se r's p o in t of view , a s was suggested by M.J. P r a t t and th e author in [55]. These a re , in order of in c re a sin g d egree of geom etric c o n s tr a in ts on th e su rfa ce being designed:

(i) A e sth e tic su rfa ce s

( i i ) G en eralised duct su rfa c e s ( i i i ) Blends and f i l l e t s

(iv) F unctional or f i t t e d su rfa ce s

The d is tin c tio n s a re by no means c le a r - c u t, and in many case s some o v e rla p may o ccu r.

In th e c a se of a e s t h e t i c s u r f a c e s , a p p e a re n c e i s th e m ain c r i t e r i o n f o r a c c e p t a b i l i t y . O fte n th e r e a r e few p r e c i s e g e o m e tric c o n s t r a i n t s fro m th e p o i n t of view of f u n c t i o n a l i t y of w hat i s b e in g d e s ig n e d . D uring th e d e s ig n p r o c e s s , m o d if i c a t io n s a r e made u n t i l th e a p p e a re n c e i s a c c e p ta b le t o th e d esig n er. Examples in clu d e many p l a s ti c mouldings such as casin g s of household e l e c t r i c a l a p p lia n c e s .

G en eralised duct su rfa c e s a re su rfa c e s, which a re s u b je c t to more g eo m etric c o n s tr a in ts , u su a lly a t th e ir boundaries. O ften the p re c is e s p e c if ic a tio n of th e su rfa ce i s of no g re a t im portance, provided th a t i t g iv e s a smooth blen d between th e s p e c if ie d boundary co n d itio n s, and th a t i t s g ro ss c h a r a c t e r i s t i c s a re under th e d e s ig n e r's c o n tro l. Examples in clu d e many autom otive components such a s suspension arms, exhaust m anifolds and other ty p es of ducting.

(18)

INTRODUCTION

B le n d s and f i l l e t s a r e r e q u i r e d t o p ro v id e sm ooth t r a n s i t i o n s b etw een n e ig h b o u rin g p r e v i o u s ly d e fin e d o b j e c t f a c e s . I n t h i s c a s e , th e g e o m e tric c o n s t r a i n t s a re c l e a r l y g r e a t e r . The d e s ig n e r may w ish to have c o n tr o l over th e e x p l i c i t r e p re s e n ta tio n of th e f i l l e t s u rfa c e , in which case he w ill have to p rovide some sm a ll amount of in fo rm a tio n to supplement th e requirem ents fo r tangency w ith th e fa c e s being blended. A lte rn a tiv e ly , he may w ish to model th e f i l l e t e x p lic itly , b u t w ill sim ply la b e l an o b je c t edge as being blended. Many g e n e ra l engineering o b je c ts e x h ib it blends and f i l l e t s of th e kind d escrib ed , and th e y a re p a r t i c u l a r l y u s e f u l i n th e d e s ig n o f m o u ld in g s, c a s t i n g s and fo rg in g s .

The fo u rth c la s s o f su rfa c e s i s t h a t of fu n c tio n a l or f i t t e d su rfa c e s. Here a h ig h d e g re e of g e o m e tr ic c o n s t r a i n t i s a p p lie d t o th e s u r f a c e a s a w h o le, which i s usually f i t t e d to a la r g e number of measured or precomputed p o in ts . Examples include tu r b in e blades and th e aerodynamic su rfa ce s of a i r c r a f t s ; in both c a se s, the s u rfa c e s are o r i g in a ll y defined by refe ren c e to p h y sical law s, and m ust s a tis f y c e r t a i n o p tim a lity c r i t e r i a . D ev iatio n s from th e c o n s tr a in ts im p o sed w i l l le a d t o l o s s o f p e rfo rm a n c e . F i t t e d s u r f a c e s a r e a ls o w id e ly used in th e autom otive in d u stry f o r sp ecify in g car body shapes. These might be th o u g h t to be o f 'a e s t h e t i c ' v a r i e t y , b u t i n m o st com panies t h e a e s t h e t i c c r i t e r i a a re im posed d u rin g t h e c r e a t i o n o f a c la y m o d el, from w hich subsequently d i g it i s e d p o in ts a re used in th e g e n e ra tio n of a 'f i t t e d ' su rfa c e .

- 16 -

(19)

3 . The BUILD., geom etric m odeller and i t s f r e e - to r n f a c i l i t i e s

To be a b le t o f u l l y u n d e rs ta n d th e s i g n i f i c a n c e o f th e fo llo w in g c h a p t e r s , f i r s t th e s o lid m odelling background and th e design techniques fo r c re a tin g fre e -fo rm s o lid s must be p resen ted .

The BUILD g e o m e tr ic m o d e lle r (Cambridge U n iv e rs ity Engineering Department) r e p r e s e n t s one of th e b a s i c a p p ro a c h e s i n s o l i d m o d e llin g [1] , [15]. A ll to p o lo g ic a l and g eo m etrical in fo rm atio n concerning th e boundary of th e o b je c t i s s t o r e d i n th e s o - c a l l e d boundary r e p r e s e n t a t i o n . The l i n k s b e tw e e n th e v e r t i c e s , edges and f a c e s a r e s to r e d , to g e th e r w ith th e e q u a tio n s o f c u rv e s and s u r f a c e s on w hich th e ed g es and f a c e s l i e . I n t h i s c ase , th e " h i s t o r y " of th e o b j e c t c a n n o t be deduced from th e d a t a - s t r u c t u r e , b u t a l l th e n e c e s s a r y boundary d ata i s a t hand fo r subsequent a p p lic a tio n s .

I t m u s t be n o te d t h a t t h e o t h e r a p p r o a c h , t h e s o - c a l l e d CSG (C onstructive S olid Geometry) fac es problem s in in co rp o ra tin g fre e -fo rm geometry, which co n v en tio n ally re q u ire s th e use of bounded s u rfa c e s . CSG m o d ellers re p re s e n t th e o b je c ts in nonevaluated form by a t r e e - s t r u c t u r e , whose l e a v e s a r e v o lu m e tr ic p r i m i t i v e s , o f t e n e x p re s s e d i n t e r m s o f i n f i n i t e h a lf-s p a c e s and whose nodes a re th e Boolean o p e ra tio n s perform ed on them . Thus e i t h e r th e b a s ic CSG h a l f - s p a c e c o n c e p t or th e c o n c e p t of th e bounded p a ra m etric su rfa c e s must be extended.

17 -

(20)

INTRODUCTION

The o b je c ts in BUILD-4 can be bounded by s t r a ig h t l i n e s , conic segments, dq- c u rv e s , p la n e s , g e n e r a l q u a d r i c s and d q - s u r f a c e s . S t a r t i n g from p r i m i t i v e s o lid s such as b lo ck s, c y lin d e rs , cones, and sp h eres, e tc ., th e o b je c ts can be m o d ifie d by t r a n s l a t i o n , r o t a t i o n and s c a l i n g , and a f t e r w a r d s com bined by s e t - o p e r a t i o n s - "o r" (add), " a n d " ," d i f f e r ence" ( s u b t r a c t ) , and "n e g a te ".

BUILD-4 h as q u i t e a w ide ra n g e o f l o c a l o p e r a t io n s [42], w hich p ro v id e a means of making d ir e c te d changes to o b je c ts. These p reserv e to p o lo g ic al and geom etric c o n sisten c y , moreover avoid the expense of the g lo b al access to the e n tir e p a rt of th e model th a t i s necessary in Boolean s e t o p e ra tio n s. Examples of such lo c a l o p e ra tio n s are th e blending or cham fering of edges, the glueing to g eth er of two juxtaposed fa c e s , and th e s e ttin g of a "draught angle" on th e v e r t i c a l faces of an o b je c t, which i s to be m anufactured by a c a s tin g process, e tc .

The BUILD group h av e made many s i g n i f i c a n t c o n t r i b u t i o n s n o t o n ly to th e p r in c ip le s and b a s ic theory of g eo m etric m odelling [ 9 ] , [11], [12], but a ls o t o th e p r a c t i c a l a p p l i c a t i o n s i d e o f t h i s te c h n iq u e in th e a r e a of f i n i t e - - e le m e n t mesh g e n e r a tio n [8 0 ], a u to m a tic NC t o o l - p a t h g e n e r a tio n [53] , dim ensioning and to le ra n c in g [13], and fe a tu re -re c o g n itio n [46], e tc .

There i s a su b s y ste m in BUILD-4 c a l l e d " d esig n dq", f o r d e f i n i n g f r e e - f o r m e le m e n ts . F re e -fo rm s u r f a c e s c an be c r e a te d by d q - i n t e r p o l a t i o n or by q u a d r a t i c B - s p lin e a p p ro x im a tio n [69] ,[7 5 ]. (In b o th c a s e s d q -p a tc h e s a r e d e fin e d i n t e r n a l l y . ) In many p r a c t i c a l a p p l i c a t i o n s , s u r f a c e s a r e d e sig n e d based on c u rv e s or c u rv e - n e tw o r k s , s im p lif y in g th e w hole d e s ig n p ro c e d u re . W e ll-k n o w n t e c h n i q u e s su c h a s "sw eeping" ( t r a n s l a t i o n ) or "sw inging"

(ro tatio n ) a fre e -fo rm p r o f ile or c re a tin g a su rfa ce blended through a s e t of

18

(21)

s e c t i o n c u rv e s a r e a l s o a v a i l a b l e in th e c o u rs e of a " d e s ig n dq" s e s s io n . F in a l lo c a l adjustm ent of th e patches can be made by m odifying th e p o s itio n and th e ta n g e n t v e c t o r s o f th e s u r f a c e g r i d . The r e s u l t of th e " d e s ig n dq"

se ssio n i s an open or clo sed (at most one boundary) free -fo rm s u rfa c e , ready fo r fu rth e r use, th a t i s to be in co rp o rated in to a s o lid model.

A s e t of recommended o p e ra tio n s for s y n th e tiz in g free-fo rm s u rfa c e s and s o lid geometry are d escrib ed in th e a r t i c l e of P r a t t and Varady [55], Here only the m ost im p o r ta n t c a t e g o r i e s w i l l be o u t l i n e d . These o p e r a t io n s a r e under d ev elo p m en t i n BUILD. The f i r s t two g ro u p s a r e c o m p le te , th e " i n s e r t a new fa c e " and th e "ru b b er o b j e c t" o p e r a tio n s t o g e th e r w ith a l i m i t e d s u b s e t of autom atic blending a re planned to be com pleted in th e near fu tu re .

1. Surface - s o l i d o p e ra tio n s

Two o p eran d s - a f r e e - f o r m s u r f a c e and a p r e v io u s ly d e s ig n e d s o l i d - a re given. The r e s u l t i s a new s o lid w ith one or more faces ly in g on th e su rfa ce . Examples for th ese o p e ra tio n s a re shown in Fig.3.1. "SECTIONING" (b) c u ts o ff a c e r ta in p a r t of the s o lid , "SETSURF" (c) re p la c e s the geometry of a s e le c te d f a c e by th e f r e e - f o r m s u r f a c e , and "ADDSURF" (d) do es th e sam e, b u t only

"above" the s e le c te d fa c e . 2. Free-form p rim itiv e s

An open or c lo s e d f r e e - f o r m s u r f a c e i s g iv e n . Adding s t r a i g h t f o r w a r d g eo m etrical and to p o lo g ic a l e n t i t i e s according to d i f f e r e n t r u le s , p rim itiv e s o lid s can be c re ate d . T ypical examples a re th e follow ing as shown in Fig.3.2.

A DQPRISM (a) i s c r e a t e d by p r o j e c t i n g th e f r e e - f o r m s u r f a c e o n to a n o th e r s u r f a c e , and a DQCYLINDER (b) by a d d in g e n d - f a c e s t o a c lo s e d f r e e - f o r m su rfa ce . A DQOFFSET (d) s o lid i s made by th ick en in g th e free -fo rm s u rfa c e .

- 19

(22)

Figure 3.1

(23)
(24)

INTRODUCTION

3 . " I n s e r t a new face" o p e ra tio n

A s o l i d i s g iv e n . S p e c if y in g c o n s t r a i n t s f o r th e c o rn e r p o i n t s and th e boundaries of a s u rfa c e , a new - m o stly four sid ed - face can be added. E ither p o s i t i o n a l or t a n g e n t i a l c o n t i n u i t y can be s p e c i f i e d a c r o s s th e s u r f a c e boundaries in re s p e c t to the e x is tin g fa c e s. The in te r io r of th e su rfa c e can be a lte r e d as needed. The topology of th e s o lid i s lo c a lly changed depending on th e p o sitio n of th e boundaries and th e ir tangency. (See Fig. 3.3.)

4. "Rubber ob ject" o p e ra tio n s

C e r ta in p a r t s of t h e s o l i d - s p e c i f i e d by t o p o lo g i c a l e n t i t i e s , such as v e r tic e s , edges, ed g e-lo o p s, and fa c e s - can be converted to be e l a s t i c w ith or w ith o u t c o n s t r a i n t s c o n c e rn in g th e d e g re e s o f freedom f o r an e l a s t i c d e fo r m a tio n . As shown in F ig .3 .4 , th e e l a s t i c p ie c e s can be m o d ifie d or redesigned by using free -fo rm d esign tech n iq u es, w hile p reserv in g th e topology of th e o rig in a l s o lid .

5. Blending o p e ra tio n s

This o p eratio n i s of major im portance in en g in eerin g design. I t may be needed f o r a e s t h e t i c r e a s o n s , t o e n s u re m a c h i n a b i l i t y alo n g concave e d g es or to ensure d e sira b le m echanical p ro p e rtie s . Blending r e s u l ts in smooth tr a n s it i o n s u rfa c e s between f a c e s , rep la cin g sh arp co rn ers and edges of th e given so lid . I t can be " s u p e rfic ia l" named by B raid in [14], i.e . th e blends a re only glued t o th e body, or t o p o l o g i c a l , when th e b le n d s g e t e v a lu a te d and im p ly l o c a l changes in th e boundary d a ta s tr u c tu r e (see Fig. 3.5 and 3.6).

- 22

(25)

I NJCO

I

c

b

F ig u r e 3 ,3

NOiio

(26)

c Figure 3.4 d

NOIJDDQOHLNI

(27)

F i g u r e 3 -

(28)

INTRODUCTION

T h ere i s a g e n e r a l g e o m e tr ic i n t e r f a c e i n BUILD f o r a l l p o s s i b l e g e o m e tr ic in te rro g a tio n s and in te r s e c tio n s of a l l curves and s u rfa c e s . A ll Boolean s e t o p e r a t io n s , l o c a l o p e r a t io n s and th e above s p e c i a l f r e e - f o r m v s. s o l i d o p e ra tio n s are implemented p u rely in term s of g e n e ra lise d p o in ts , curves and s u rfa c e s . This h o ld s fo r the g rap h ic subsystem , th e NC p ro c e ss o r, the f i n i t e — e le m e n t g e n e r a to r , e t c . , a s w e l l. A ll d e t a i l e d know ledge of th e a c t u a l r e p r e s e n t a t i o n s u sed and t h e i r p r o p e r t i e s i s c o n fin e d t o a c e n t r a l i s e d

"geom etric package". Thus, fo r example, where a p a ir of fa c e s a re in te r s e c te d d u r in g a s e t - o p e r a t i o n on tw o o b j e c t s , th e a lg o r ith m t o p r o c e s s th e r e s u l t d e a l s i n a g e n e r a l m anner w ith a s e t o f i n t e r s e c t i o n c u r v e s , r a t h e r th a n examining th e two su rfa c e s involved, d isc o v erin g t h a t maybe they a re p lan ar and using p ro p e rtie s s p e c if ic to s t r a ig h t l i n e in te r s e c tio n curves.

In t h i s way, new curve and su rfa c e types can be g rad u a lly introduced by adding th e n e c e s s a ry r o u t i n e s t o th e c e n t r a l i s e d g e o m e tric p a c k a g e , a v o id in g th e necessary comprehensive re w ritin g of th e e n t i r e programme a t every stag e. This a p p lie s in the case of th e d o u b le-q u ad ratic curves and su rfa c e s .

- 26

(29)

4. Content of th e th e s is

T h is t h e s i s i s a r e s u l t of th e r e s e a r c h work co n d u cted i n th e M ech an ical Engineering Automation D ivision of the Computer and Automation I n s t i t u t e of th e H u n g arian Academy of S c ie n c e s in th e p e r io d betw een 197 6 and 1984. The resea rch on th e fre e -fo rm vs. s o lid s y n th e s is , th e in te r r o g a tio n alg o rith m s and th e a c tu a l im plem entation of the d o u b le-q u ad ratic so ftw a re in BUILD were c a r r i e d o u t d u rin g th e a u t h o r 's v i s i t s t o th e BUILD G roup a t th e Cam bridge U n iv ersity Engineering Department in th e sp rin g of 1982 and in th e academic year of 1983/84.

T h is t h e s i s o b v io u s ly c an n o t co v er a l l t h e t h e o r e t i c a l and c o m p u ta tio n a l problem s, w h ic h h a d t o be s o l v e d to accom plish th e p r o je c t. Only a sm all p a r t was e la b o ra te d by th e au th o r, and only a p a r t of t h i s i s d iscu ssed here.

The d o u b le-q u ad ratic curve and su rfa ce d esig n methods, th e a lg o rith m s of th e f r e e - f o r m v s. s o l i d s y n t h e s i s and some o th e r t o p ic s m u st be n e g le c te d , in o rd e r t o fo c u s on th e m ain p o i n t s of t h i s t h e s i s , t h a t i s th e p ro b lem s and r e a l i z a t i o n o f th e g e o m e tric a lg o r ith m s f o r th e p r e v i o u s ly d e s c r ib e d c e n tra liz e d geom etric package in BUILD.

B a s ic a lly , t h i s t h e s is c o n s is ts of four independent essay s (Chapter I I , I I I , IV, V), each o f them can s ta n d by th e m s e lv e s and co v er one w e l l- d e f in e d p ro b lem . (T his l e d t o some o v e r la p s a t c e r t a i n p la c e s . The f i g u r e s and th e m athem atical form ulas a re a ls o numbered by chapters.) The common ro o t i s t h a t each o f them d i s c u s s e s c o m p u ta tio n a l g e o m e try p ro b lem s r e l a t e d t o d o u b le - - q u a d r a t i c s . A fte r th e i n tr o d u c to r y c h a p t e r , w hich d e f i n e s and d e s c r i b e s d o u b le-q u ad ratic curves and su rfa c e s , s o lid m odelling problem s a re p resen ted .

- 27

(30)

INTRODUCTION

Based on th e ir m ath em atical background, new a lg o rith m s a re d e scrib e d to g eth er w ith t h e i r a d v a n ta g e s and d is a d v a n ta g e s com pared to th e o th e r m ethods p u b lis h e d in l i t e r a t u r e . The c o m p u ta tio n a l a s p e c t s a r e a l s o fo c u s e d on throughout the t h e s i s .

In Chapter II th e b a s ic equations and th e most im p o rtan t geom etric p ro p e r tie s o f d o u b le - q u a d r a tic s a r e p r e s e n te d . The d o u b le - q u a d r a tic c u rv e and s u r f a c e c l a s s , as i t i s s t a t e d h e re i s my own " in v e n tio n " . The p r e s e n te d g e o m e tric in v e tig a tio n s can be s im ila r to th o se of other s o r t s of curves and su rfa c e s.

In C hapter I I I t h e g e o m e tric i n t e r r o g a t i o n s and i n t e r s e c t i o n s o f d o u b le - - q u a d ra tic s are d isc u sse d . Apart from th e s im p le s t g lo b al t e s t s and geom etric

in te rro g a tio n s th e s e a lg o rith m s a re th e r e s u l t of my own re s e a rc h work.

In C hapter IV a v o l u m e t r i c m o d e lle r o r i e n t e d c u r v e - f i t t i n g a lg o r ith m i s p r e s e n te d , which u s e s d q -c u rv e s . In C h ap ter V th e problem o f v i s u a l i z i n g fre e -fo rm so lid s i s tac k le d . An alg o rith m i s given fo r g e n eratin g s ilh o u e tte c u r v e s of d o u b le - q u a d r a tic s u r f a c e s . The c u r v e - f i t t i n g and t h e s i l h o u e t t e alg o rith m s are a l s o my own re se a rc h developments.

In C hapter VI a c o n c lu s io n i s draw n. A fte r su m m arizin g t h e r e s u l t s some p r a c t i c a l , m echanical engineering o b je c ts a re shown to i l l u s t r a t e th e design f a c i l i t i e s of th e BUILD free-fo rm m odelling. Suggestions fo r f u r th e r work a re a ls o giv en .

The l i s t of re fe re n c e s and f ig u r e s conclude th e th e s is .

The p i c t u r e s of t h e s o l i d o b j e c t s i n t h i s d i s s e r t a t i o n w ere a l l draw n w ith lo c a l hidden-line removal by the BUILD geom etric m odeller.

28

(31)

OF DOUBLE-QUADRATIC CURVE SEGMENTS AND SURFACE PATCHES

29

(32)
(33)

1. Introduction

The use of p iecew ise p aram etric eq u atio n s in computer a id ed geom etric d esig n was f i r s t in tro d u ced by Ferguson [33]. Since then th e m athem atical th eo ry of free-fo rm curve segments and su rfa c e p atch es was thoroughly e la b o rated in th e w orks of Coons [2 2 ], B e zier [4] , F o r r e s t [3 4 ], S ab in [5 9 ], [61] and o t h e r s . S e v e ra l d i f f e r e n t c o m p o site d e s ig n te c h n iq u e s w ere d e v e lo p e d , w e ll known examples a re th e s p lin e , B ezier, and B -sp lin e, e tc ., curves and su rfa ce s [24],

[49] , [5] , [39] ).

A la r g e p a r t o f th e e x i s t i n g co m m erc ial and r e s e a r c h s c u lp tu r e d s u r f a c e systems uses cubic equations. This i s m ainly due to th e fundam ental f e a tu r e of c u b ic s , t h a t th e y have s u f f i c i e n t freedom to d e s ig n com plex e n g in e e r in g sh a p e s. In th e e q u a tio n of a c u b ic c u rv e seg m en t, t h e r e a r e fo u r v e c to r c o e f f ic ie n ts . A convenient way to d e scrib e t h i s segment i s to supply th e two e n d p o in ts and th e two ta n g e n t v e c t o r s t h e r e , w hich u n iq e ly d e f in e a l l fo u r v e c to r c o e f f i c i e n t s . A nother c h a r a c t e r i s t i c f e a t u r e o f c u b ic s i s t h a t cu rv atu re c o n tin u ity i s ensured w ith in a segment.

C o n s id e rin g s u r f a c e d e f i n i t i o n s , t h e s e a r e m ost f r e q u e n t l y based on th e s im p lifie d v e rs io n of Coons's p atch es, th e b icu b ic te n so r product p a tc h es [32], sin c e th e corner p o in ts and th e tan g en t v e cto rs along th e boundaries can be blended in a convenient and s tra ig h tfo rw a rd way by cu b ic polynom ials. (Four t w i s t v e c t o r s m u st a l s o be added t o make th e g iv en 16 v e c to r c o e f f i c i e n t s f u lly c o n stra in e d .)

- 31

(34)

BASIC EQUATIONS

Many r e s e a r c h e r s a l s o i n v e s t i g a t e d th e p r o p e r tie s of p a ra m etric q u a d ra tic s , see fo r example th e q u a d ra tic B ezier and B ^spline curves. Due to th e lack of d esign freedom they were g e n e ra lly neglected in p r a c t ic a l design system s. Only a l im ite d a p p lic a tio n of them has been p u b lish ed , a s o u tlin e d h ere. In 1975, C h a ik in proposed a f a s t a lg o r ith m fo r h ig h -s p e e d c u rv e g e n e r a tio n in [18], L a te r i t was p ro v en ( [57], [3 5 ]), t h a t th e a lg o r ith m d e f in e s q u a d r a t i c B- s p l i n e s . That te c h n iq u e was g e n e r a l i s e d t o t h e r e c u r s i v e s u b d iv is io n a lg o rith m s for sm oothing down i r r e g u la r ly shaped polyhedrons as d iscu ssed in Sabin and Doo's p a p ers [29], [30], S ta rtin g from th e approxim ating polyhedron, t h i s method g en erated a s e t of q u a d ra tic B ^spline patches. Where no n -fo u r- s id e d re g io n s w e re fo rm ed , th e s u b d iv is io n m u st have been r e p e a te d , w hich e v e n tu a lly c o n v erg ed t o a sm o o th , Cl c o n tin u o u s s u r f a c e . (A new t h e o r e t i c a l r e s u l t by Sabin i s t h a t in ste a d o f perform ing su b d iv isio n s, th e 3 and 5 sid ed reg io n s can be re p la c e d e x p l i c i t l y by 3 and 5 sid e d patches, which smoothly j o in th e surrounding ones [63].) This su b d iv isio n concept was implemented in th e REMUS system [7 7 ],however, i t turned out t h a t th e o b jec t d e f in itio n based on t h i s approxim ating scheme i s q u ite d i f f i c u l t from an engineering p o in t of view [78].

R eturning to cu b ics - in s p ite of th e prev io u sly mentioned a t t r a c t i v e f e a tu r e s , many d i f f i c u l t i e s a r i s e when th e c o m p u ta tio n o f d i f f e r e n t g e o m e tr ic a l p r o p e r t i e s , i n t e r s e c t i o n s w ith o th e r g e o m e tric e le m e n ts , e tc ., a r e n eed ed , h o w e v er, in f a c t , th e s e a r e t h e m ost f r e q u e n t ta s k s in com puter a id e d g e o m e tr ic d e s ig n . G e n e r a lly , c o m p u ta tio n a lly e x p e n s iv e , n o t v e ry r o b u s t , i t e r a t i v e methods m ust be used. And here comes th e idea of d o u b le-q u a d ratic s.

Using two jo in in g p a ra m e tric q u a d ra tic eq u atio n s in s te a d of th e cubic one, th e com plexity, smoothness and the degrees of freedom of cubics can be re ta in e d .

- 32 -

(35)

M o reo v er, re d u c in g th e d e g re e o f th e used p o ly n o m ia ls , s i g n i f i c a n t com putational e ffic ie n c y can be gained to g eth er w ith o th er p r o p e r tie s , which emerged l a t e r when cubics and d o u b le-q u ad ratics were compared.

The " lo s s " i s c u r v a tu r e c o n t i n u i t y , w hich i s n o t n e c e s s a r i l y needed i n th e la rg e m a j o r it y of e n g in e e r in g a p p l i c a t i o n s . The s i m p l e s t exam ple i s an

"engineering" p iec e, where a plane and a c y lin d r ic a l s u rfa c e meet each o th e r, o b v io u s ly w ith c u r v a tu r e d i s c o n t i n u i t y . Another argument, however, i s t h a t cu b ics or th e higher order polynom ials ensure in te r n a l cu rv atu re c o n tin u ity , in most design system s, only ta n g e n tia l or normal c o n tin u ity a re s a t i s f i e d , when th e neighbouring patches a re a c tu a lly jo in e d to g e th e r.

T h e r e f o r e , i t was f e l t t h a t d o u b le - q u a d r a tic s re p re s e n t a good compromise between design freedom and com putational s i m p l i c i t y . F u r th e r i n v e s t i g a t i o n s w ere i n i t i a t e d in th e s e n s e t h a t n o t q u a d r a t i c s and c u b ic s , b u t d o u b le - -q u a d ra tic s and cubics were compared w ith each o th e r. This "double-thinking" , according to th e a u th o r's b e s t knowledge, has not been used in computer aided g e o m e tr ic d e s ig n . The o n ly s i m i l a r m ethod was th e u se o f b i a r c c u rv e s f o r c u r v e - f it t i n g [7 ]. Now, th e re i s a successor of th e d o u b le-q u ad ratic p atch es - th e s o - c a l l e d d o u b le - c y c l i d e s , d e s c r ib e d by d eP o n t i n h i s r e c e n t t h e s i s

[25] .

Double-quadratics (hereafter abbreviated to dq-s) were first tested in January 1981, as a part of the FFS (Free-Form Shapes) system [68], [36]. Since that time, a large project started in the BUILD geometric modelling Group, Cambridge University Engineering Department for integrating free-form surfaces into volumetric modelling. BUILD facilitates the design of complex

- 3 3 -

(36)

A S IC EQUATIONS

fre e -fo rm s o lid s bounded by d o u b le-q u a d ratic su rfa c e s b esid e th e conventional p lan ar and qu ad ric ones. D e ta ils can be found in [43],

In t h i s chapter, th e w e ll-k n o w n m eth o d s o f c r e a t i n g c o m p o s ite c u rv e s and s u r f a c e s a r e n o t d is c u s s e d . I t i s b e le iv e d t h a t t h e r e i s no s i n g l e b e s t technique fo r c re a tin g free-fo rm shapes, and d i f f e r e n t a p p lic a tio n s may need d i f f e r e n t methods, d i f f e r e n t in te r p o la tin g or approxim ating schemes. A wide v a r i e t y of them a r e d e s c r ib e d i n F a u x - P r a t t's book [32] . D esign w ith d q -s means th a t the b a sic c o n s titu tin g p ie c e s are dq-elem ents. In t h is in tro d u c to ry chapter we focus on th e b a s ic eq u atio n s of d o u b le-q u ad ratic curve segments and

su rfa c e patches to g e th e r w ith some sim ple p ro p e rtie s around them.

2 . The a5.uati.0iL .of a do u b le -q u a d ra tic curve segment

Given a curve segment, d efin ed by i t s endpoints xA, Xg and tangent v e c to rs x^, Xg, i t s p aram etric d e s c r ip tio n can be in te r p r e te d , t h a t th e curve re p re s e n ts th e p a th of a moving p o i n t , w hich ru n s from x_A to x.gr a s th e p a ra m e te r v a lu e r u n s a lo n g th e p a r a m e t r ic i n t e r v a l . The ta n g e n t v e c t o r s d e te r m in e th e d ir e c tio n and a ls o th e v e lo c ity of th e motion a t the endpoints.

Figure 2 .1 .

(37)

Since cubics and d o u b le-q u ad ratics a re very s im ila r to each o th e r, f i r s t l e t us s e e how a p a r a m e tr ic c u b ic e q u a tio n can s a t i s f y t h e above b o u n d a ry co n d itio n s. I t i s given in th e form of:

w here a q , i = 0 ,1 ,2 ,3 a r e th e v e c to r c o e f f i c i e n t s o f th e e q u a tio n , u i s th e p a ra m e te r. U s u a lly th e p a ra m e te r v a lu e s u=0 and u=l a r e a s s ig n e d t o th e e n d p o in ts , w ith 0 < u < 1 in betw een . The shape o f th e c u b ic se g m e n t i s uniquely defined by th e above four independent v ecto r q u a n ti t ie s , s in c e four degrees of freedom a re a v a ila b le .

S a tis fy in g th e end c o n d itio n s, th e fo llo w in g system of four equations can be o btained:

% + 2 ^ 2 + 3^3 = i ß

Solving t h i s fo r &q, aq, & 2' ^3 th0 fo llo w in g ex p ressio n s a re obtained:

* 0 =

(2.1)

(2.2)

^ 0 " ^A

+ a2 + ^3 = Lq

a- 1 =

(2.3)

* 1 = ^A

^ • 2 = 3 ^ ” -^-A )

a.3 = 2 ( Ia - I ß ) + Ía + Íb

- 3 5 -

(38)

BASIC EQUATIONS

For c o m p u ta tio n a l p u rp o s e s g e n e r a l l y th e w e ll-k n o w n b le n d in g f u n c tio n form alism i s used [32]. The b lending fu n c tio n s ensure th e appearence and the d is a p p e a re n c e of t h e g iv e n p o s i t i o n a l and t a n g e n t i a l c o n s t r a i n t s a s th e p a ra m etric v a ria b le ru n s along th e p a ra m e tric i n te r v a l. I f th e fg , f^ , g g , g^

blending fu n ctio n s s a t i s f y the fo llo w in g co n d itio n s

f 0(0) = 1, f 0 (l) = 0, f^O) = 0, ^ (1 ) = 1, (2.4) f0 '(0) = f0 *(l) = f i '( 0 ) = f i ( l ) = 0,

g0(°) = g0 d ) = 9i (0) = 9 i (l) =■ o,

g0 ' (0) = i f g0 ' (l) = 0 , g1 , (0) = u , ' (1 ) = l

then th e above s p e c if ie d curve-segm ent can be w r itte n in th e follow ing form:

(2.5) jl(u) = x& fo (u ) + Lq f x (u) + x& g(u) 0 + i ß 9 i(u ) • In th e cubic case, fo r example:

f0 (u) = 1 - 3u2 + 2u3 (2 .6 ) f i ( u ) = 3u2 - 2u3

gg(u) = u - 2u2 + u3 9 i(u ) = -u2 + u3

This lea d s us to th e commonly used m a trix -e q u atio n of cubic segments:

(2.7) X. = II £ S.

where

LL = [ 1 u u2 u3 ] ,

1 0 0 0

V

0 0 1 0 , S =

-3 3 -2 -1 Z-A

2 -2 1 1

zb

- 36

(39)

A param etric d o u b le-q u ad ratic curve segment i s defined in th e form of:

(2 .8 ) x = x(u) =

X (u) = ^ 2 “ + ^1 u + ^0 - 0 .5 <= u <= 0

X+ (u) = h.2 + kq u + &o 0 < u <= 0.5

where äq/kq; i = 0 ,1 , 2 are th e vector c o e f f ic ie n ts of th e eq u atio n , u i s th e param eter.

As th e eq u atio n shows, the segment i s composed of two q u a d ra tic s . P reserving th e u n i t p a r a m e t r ic le n g th , th e p a ra m e te r i s chosen t o ru n from -0 .5 t o 0.5 fo r symmetry reasons. We have gained four c o n s tra in ts a s p rev io u sly and six degrees of freedom , since th e re are six v ecto r c o e f f ic ie n ts to be determ ined in (2.8). The rem aining two a re fo r s a tis f y in g p o s itio n a l and f i r s t d e riv a tiv e c o n t i n u i t y a t u=0. A fte r s u b s t i t u t i o n th e f o llo w in g sy ste m of e q u a tio n s i s obtained:

0.25^2 “ 0 . 5 ^ + = x^q, (2.9) -& 2 + üq - Lfrr

0.25)22 + 0 .5 k q + ]2q = Xg, h 2 + ill = i ß

At th e m idpoint

(2.10) lim x (u) = lim x (u) ,

u —0 u-*0

lim x- (u) = lim x+ (u) ,

u - 0 u —0

th u s:

(2.11) = & 0 and aq = bq,

- 37

(40)

BA SIC EQUATIONS

N o te , t h a t äq, &q and a ^ , g iv e th e m id p o in t p o s i t i o n and ta n g e n t v e c t o r s r e s p e c t iv e ly . S o lv in g th e sy ste m of th e above s i x e q u a tio n s f o r a.^, we g ain th e so lu tio n below:

(2.1 2)

ao = bo = 0 .5 (1 * + Lq) + 0 .1 2 5 (£a - ig )

% = k l = " Z f ) - ° * 5 < 4 +

a2 = 2 (lß - jla ) - 0 .5 ( 3 ^ + iß ) = A l - i * t>2 = 2 ( i * - iß ) + 0 .5 ( i * + 3 iß ) = -J^! + i ß

The b le n d in g f u n c t i o n e q u a tio n h o ld s f o r d o u b le - q u a d r a tic s a s in c a s e o f c u b ic s, see (2.4). A ll d o u b le-q u ad ratic blending fu n c tio n s a re composed of two q u a d ra tic p ieces, a s follow s:

fg (u) = - 2 \ r - 2u + 0 .5 , (2.13) f f ( u ) = 2u2 + 2u + 0 .5 ,

f0+ (u) = 2u2 - 2u + 0 .5 , f^~*"(u) = —2u2 + 2u + 0 .5 , g0 (u) = - 1 .5 u2 - 0.5u + 0.125, gg+ (u) = 0.5u2 - 0.5u + 0.125, g1“ (u) = - 0 .5 u2 - 0.5u - 0.125, g-j + fu) = 1.5u2 - 0.5u - 0.125.

To be a b le to use t h e r e l a t i n g m a tr ix f o r m a lis m , we have t o in tr o d u c e th e n o ta tio n of sign-dependent c o e f f ic ie n ts . For example,

(2.14) xu =

5 8

m eans, t h a t d e p e n d in g on w h e th er a n o th e r v a r i a b l e , say u i s l e s s - e q u a l or g r e a t e r than z e r o , x u e q u a ls 5 o r 8 , r e s p e c t i v e l y . Going f u r t h e r , u s in g signdependent m a tr ic e s , the t h ir d or the fo u rth row must be tak en depending on th e sig n of another v a ria b le . In th e case of a d o u b le-q u ad ratic curve segment, th e equation can be given in th e form of :

- 38 -

(41)

(2.15) JL =

i

where

II = [ 1 u u2] ,

0.5 0.5 0.125 -0.125

2 - 0 .5 -0 .5

2 - 1 .5 -0 .5

- 2 0 .5 1.5

£ i s as in ( 2 .7 ) .

r

The s o -c a lle d f u lln e s s of d o u b le-q u ad ratic cur v e - segments can be a d ju ste d i n th e same way as in case of cu b ics. With fix ed e n d p o in ts, th e and ig ta n g e n t v e c to rs can be w r itte n in th e form below:

~ ^ ^AO'

(2.16) Lq = ß Lqq.

i.AQ and i_BQ d e f i n e s th e u n i t d i r e c t i o n v e c t o r s , «>< and ß d e f in e s t h e m agnitudes of the tan g en ts. Having fix e d the u n it v e c to rs , th e adjustm ent of c* and ß a l t e r s th e shape o f t h e segm ent, a s shown in F ig .2.2 and F ig .2 .3 .

- 3 9 -

(42)

BASIC EQUATIONS

This fe a tu re i s s ig n if ic a n t from th e design p o in t of view , t h a t i s when lo c a l shape m o d ifica tio n i s needed and a ls o for adequate curve f i t t i n g , where th e b e s t a lte r n a tiv e i s generated by t h i s s o rt of adjustm ent of f u lln e s s .

3. The c h a r a c t e r i s t i c polygon of a double-ciuadratic curve, segm ent

B e z ie r chose a s p e c i a l r e p r e s e n t a t i o n f o r d e f in in g c u r v e s [4] . From a m athem atical p o in t of view, th e cubic Bezier curve i s only a rearrangem ent of th e (2.5) e q u a tio n . In B e z ie r 's fo rm :

(3 . 1) jl(u) = (1- u ) 3 zq + 3u ( l - u ) 2l1 + 3u/ (] -u)i_2 + u3jl3 , where

*0 = lA'

(3.2) L-i = La + L f /3,

L-2 = Lq ~ Lq/ 3,

^3 = *B*

The s i g n i f i c a n c e o f t h i s f o r m u la ti o n i s t h a t by means o f th e above v e c t o r s , th e s o - c a l l e d c h a r a c t e r i s t i c p o ly g o n can be c o n s tr u c te d (F ig .3.1). In f a c t , t h e cu rv e i s c h a r a c t e r i z e d by t h i s p o ly g o n , s in c e i t p a s s e s th ro u g h th e e n d p o in ts and i t i s t a n g e n t i a l to th e (l - and ^ 3 " Lq) v e c t o r s , r e s p e c t i v e l y . The c h a r a c t e r i s t i c polygon i s n o t o n ly an a d e q u a te t o o l f o r a d ju s ti n g c u r v e s , b u t i t f a c i l i t a t e s th e u n d e rs ta n d in g o f many r e l a t i n g geom etric p r o p e r tie s [32]. These include th e convex h u ll p ro p erty and a ls o th e stra ig h tfo rw a rd geom etric i n te r p r e ta tio n of c u rv a tu re , p o in ts of in f le c tio n s , and lo o p s, e tc .

- 40

(43)

The c h a r a c t e r i s t i c polygon of d o u b le-q u ad ratics can be d eriv ed analogously (based on th e q u a d ra tic B ezier fo rm u la tio n ):

= L h '

(3 .3 ) = JLA + i . f / 4 , I_ 2 = l£. “

U nlike in equation (3.2) here we use o n e-fo u rth of the tan g en t v e c to rs. The p r o p e r t i e s o f th e c u b ic B e z ie r cu rv e can a l s o be g e n e r a liz e d fo r d o u b le ­ q u a d ra tic s . Moreover, c a lc u la tin g th e jl(u) and i(u ) v ecto rs a t th e m idpoint we

o b ta in :

(3.4) JL(0) = 0.5 ( jla + Xß) + 0.125 ( i A - i ^ ) , i ( 0) = 2 ( Iq - - 0 .5 ( iß + iß )

T h is means t h a t th e m id p o in t o f a d o u b le - q u a d r a tic segm ent i s e q u al t o th e m idpoint of the c h a r a c te r is tic polygon, th a t i s to the a rith m e tic mean of and i_2- F u rth e rm o re , th e d i f f e r e n c e v e c to r o f jl2 and r.^ i s t a n g e n t i a l t o th e curve t h e r e .

(3.5) 1.(0) = 0.5(12 + jl2) f 1.(0) = 2 (i 2 - Iq) •

41

(44)

BASIC EQUATIONS

To sum i t up , t h e c h a r a c t e r i s t i c polygon o f d o u b l e - q u a d r a t ic s g iv e s a m ore c o n v e n ie n t t o o l f o r l o c a l a d ju s tm e n t th a n t h a t of c u b ic s . C o n s tr u c tin g th e c h a r a c te r is tic poly g o n , one can im m ediately see the behaviour of th e cu rv e, sin c e not only th e endpoints, b u t th e m idpoint and the corresponding ta n g e n t v ecto r become " v is ib le " in t h i s way.

D o u b le -q u a d ra tic c u rv e -s e g m e n ts can r e p r e s e n t t w i s t e d 3D c u rv e s a s w e l l , in s p ite of t h a t they are made up of p la n a r p ie c e s , a s shown in F i g .3.2 b elo w . The t w i s t i s alw ay s a t t h e m id p o in t, u n lik e c u b ic s , w here i t c h an g e s continuously along the segment.

I b(u=0.5)

The midpoint of th e cubic segment can be expressed by s u b s titu tin g u=0.5 in to th e (2.5) eq u atio n .

(3.7) 1.(0.5) = 0.5Qla + Lq) + 0.125(£A - j^)

- 4 2 -

(45)

S u rp ris in g ly , t h i s i s th e same fo r the d o u b le-q u ad ratic segment w ith th e same e n d - c o n d itio n s . T h is i s one m ore argum ent f o r th e p r e v io u s ly m e n tio n e d s i m i l a r i t y (see F ig . 3 .3 ), i . e . th e two d i f f e r e n t ty p e s o f cu rv e se g m e n ts b e s id e b eh av in g s i m i l a r l y i n th e v i c i n i t y o f th e e n d p o in ts , go th ro u g h th e sam e m id p o in t a t th e p a r a m e tr ic h a l f . I t m ust a l s o be n o te d t h a t s i n c e th e c h a r a c t e r i s t i c polygon of dq-s i s th e 3 /4 -th of cu b ics, more e f f i c ie n t convex h u ll t e s t s can be perform ed on them.

4. Some p ro p e rtie s of th e planar d o u b le-c u ad ra tic curve segment

4.1. Cmvature> in flectio n , loops

Examining th e shape of a p a ra m etric curve segm ent, one may wonder whether i t has got a p o in t of in f le c tio n or i t i s looping. Having th e given p o s itio n and ta n g e n t v e c t o r s , th e s e q u e s t io n s can be e a s i l y an sw ered by means o f th e c h a r a c t e r i s t i c polygon or by a lg e b ra ic a n a ly s is of the c u rv a tu re. We fo llo w th e geom etric in te r p r e ta tio n .

The c u rv a tu re of a p a ra m etric curve i s c h a ra c te riz e d by th e vector K^u) B(u), w here kf (u) i s th e r e c i p r o c a l v a lu e of th e r a d i u s of th e o s c u l a t i n g c i r c l e , B.(u) denotes th e s o -c a lle d binormal u n it v e c to r.

D en o tin g th e ta n g e n t and n o rm al u n i t v e c t o r s of th e c u rv e by 2 and N, re s p e c tiv e ly , we can w rite :

Ijl(u) X £(u) I £(u) X £(u)

(4.1) IC(u) =

li.(u) X £(u)

(4.2) H = B X 2 .

- 43

(46)

BA SIC EQUATIONS

In th e case of p lan ar curves,B i s alw ays p erp en d icu lar to th e plane, where th e curve and the corresponding T, N v e c to rs l i e . N always p o in ts to the c e n tre of th e o s c u la tin g c i r c l e . The s ig n o f th e jl(u) X £(u) v e c to r p ro d u c t t e l l s us i n which side of th e curve th is c e n tre l i e s . Whenever the B u n it vector changes i t s s ig n , a p o i n t o f i n f l e c t i o n o c c u rs , su p p o sin g £(u) / 0 . T h is l a s t c o n d itio n holds in th e p r a c tic a l c a se s, o th erw ise we g et cusps as in F ig .4.1.

Expressing the c u rv a tu re by the s c a la r c o e f f ic ie n ts of a dq curve-segm ent, we o b ta in :

- 2

Figure 4.1 Figure 4.2

a2yalx " a2xaly I

I 13 - 0 .5 <= u <= 0

(4.3) K*(u)

^2y^lx ^2x*3ly

0 < u <= 0.5

44

(47)

t h a t i s th e sig n of th e c u rv a tu re i s co n stan t w ith in one q u a d ra tic p ie c e , and can change only a t th e m idpoint. This means t h a t a d o u b le-q u ad ratic segment h a s a p o i n t o f i n f l e c t i o n i f and o n ly i f th e s ig n of th e above e x p r e s s io n s d i f f e r . I t can be se en t h a t th e two p i e c e s e i t h e r j o i n each o th e r w ith c u rv a tu re c o n tin u ity , i f th e two num erators a re equal, or th e re i s a jump in K"(u), i f n o t.

One s tra ig h tfo rw a rd way of d e sc rib in g c u rv a tu re s i s using th e v e cto rs of the B e z i e r - l i k e c h a r a c t e r i s t i c p o ly g o n .U sin g th e e q u a tio n s (2.8) and (3.3) we o b ta in :

£ ( - 0 . 5 ) = 4(x.1 - Xq)

(4.4) £ ( - 0 . 5 ) = 8(1^ - x.-j_) + 4 (x_2 - JLX)

£ ( 0 .5) = 4 ( 1 3 - ^

£ ( 0 .5 ) = 8(jl2 - JL3 ) + 4(jl1 - jl2)

Consequently

(4.5) ( - 0 .5 ) = [ t q - xo) X (jl2 - j ^ ) ] / 4 1 ^ - j ^ l 3 K (0.5) = [ (n3 - jl2 ) X (£]_ - jl2 )] / 4 |jl3 - JL2 13

Since th e c u rv a tu re does not change i t s sign w ith in one q u a d ra tic p ie c e , th e c e n tre of th e o sc u la tin g c i r c l e in the f i r s t h a lf " d ire c ts " towards th e chord PqP2, in th e second tow ards P^P^. As was shown, the sig n s of the c u rv a tu re a t th e e n d p o in ts a r e d e fin e d by th e v e c t o r s of th e c h a r a c t e r i s t i c p o ly g o n , and th e s e determ ine th e cu rv atu re in th e whole segment. C onsidering th e s t r a i g h t l i n e , w hich g oes th ro u g h P^ and P2 , i f PQ and P3 l i e in t h e same s id e o f th e l i n e , then:

(4.6) £ (-0 .5 ) = £ ( 0 . 5 ) ,

Ábra

Figure  4 .6 .  F igure  4 .7 .
FIGURE  1. fitted  curve a c tu a l intersection curve FIGURE  2. 115
Figure 1.3OCCLUSIONS

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Cultivation of microalgae in wastewater or related substrates is a prominent field inspiring the scientific community (8-10), because they can be used as nutrient sources

More precisely, we prove a structure theorem that decom- poses graphs excluding H as a topological subgraph into almost bounded-degree parts and into H ′ -minor free parts (for

The university textbooks show clearly the integration of polymer science and engineering into the materials science as a whole, treating metals, polymers, ceramics

In this context, the method provides for each project an execution time, expressed in an interval form, allowing the operator to be aware of its uncertainty and of the

In conclusion, from a biochemical perspective it is most likely that the integration of both denitri fi cation and aerobic respiration into a respiratory chain started with the

Free-floating species such as Riccia flutans, Spirodela polyrrhiza, Lemna trisulca, Salvinia natans, Marsilea quadrifolia form facies in certain relevés..

After that, relying on press sources, the paper gains insight into how the University took root between the two world wars at the site where it is currently operating...

instance in polynomial time using the algorithm for Large K i,j -free +Cluster IS ,