• Nem Talált Eredményt

Solutions of J´ ozsef Wildt International Mathematical Competition

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Solutions of J´ ozsef Wildt International Mathematical Competition"

Copied!
25
0
0

Teljes szövegt

(1)

Vol. 17, No.2, October 2009, pp 773-796 ISSN 1222-5657, ISBN 978-973-88255-5-0, www.hetfalu.ro/octogon

773

Solutions of J´ ozsef Wildt International Mathematical Competition

The Edition XIXth, 2009

Mih´aly Bencze and Zhao Chang Jian37

W1. Consider the functionf : (0,1)→R defined by f(x) = 1

xln

µ1 +x 1−x

Since f(x) = 2P

k=0 x2k

2k+1 for|x|<1, thenf0(x) = 4P

k=0 kx2k−1

2k+1 (|x|<1) and f00(x) = 4P

k=0

k(2k−1)x2k−2

2k+1 (|x|<1).. Therefore, f0(x)>0 and f00(x)>0 for allx∈(0,1), andf is increasing and convex.

Applying Jensen‘s inequality, we havef¡a+b+c

3

¢ f(a)+f(b)+f(c)3 or equivalently

3 a+b+cln

µ3 + (a+b+c) 3(a+b+c)

1 3

"

ln

µ1 +a 1−a

1/a + ln

µ1 +b 1−b

1/b + ln

µ1 +c 1−c

1/c#

Taking into account thata+b+c= 1 and the properties of logarithms, we get

3

sµ1 +a 1−a

1/a ln

µ1 +b 1−b

1/b ln

µ1 +c 1−c

1/c

8 (1)

37Received: 28.09.2009

2000Mathematics Subject Classification. 11-06 Key words and phrases. Contest

(2)

WLOG we can assume thata≥b≥c. We have, 1a 1b 1c and g(a)≥g(b)≥g(c),whereg is the increasing function defined by g(x) = ln

³1+x 1−x

´

.Applying rearragement‘s inequality, we get 1

bg(a) +1

cg(b) +1

ag(c) 1

ag(a) +1

bg(b) +1

cg(c) or µ1 +a

1−a

1/bµ 1 +b 1−b

1/cµ 1 +c 1−c

1/a

µ1 +a 1−a

1/aµ 1 +b 1−b

1/bµ 1 +c 1−c

1/c

From the preceeding and (1) we obtain

3

sµ1 +a b+c

1/aµ 1 +b c+a

1/bµ 1 +c a+b

1/c

=

= 3

sµ1 +a 1−a

1/bµ 1 +b 1−b

1/cµ 1 +c 1−c

1/a

3

sµ1 +a 1−a

1/aµ 1 +b 1−b

1/bµ 1 +c 1−c

1/c

8 Likewise, applying rearrangement‘s inequality again, we get

1

cg(a) +1

ag(b) +1

bg(c) 1

ag(a) + 1

bg(b) +1

cg(c) and

3

sµ1 +a b+c

1/cµ 1 +b c+a

1/aµ 1 +c a+b

1/b

= 3

sµ1 +a 1−a

1/cµ 1 +b 1−b

1/aµ 1 +c 1−c

1/b

3

sµ1 +a 1−a

1/aµ 1 +b 1−b

1/bµ 1 +c 1−c

1/c

8 Multiplying up the preceeding inequalities yields,

3

sµ 1 +a b+c

1

b+1c µ 1 +b c+a

1

c+1aµ 1 +c a+b

1

a+1b

64

from which the statement follows. Equality holds whena=b=c= 1/3, and we are done.

(3)

W2. The function f(x) can be written in the form

f(x) =

¯¯

¯¯

¯¯

¯¯

¯

1 1 1 1

lnx lnx2 lnx3 lnx4 (lnx)2 ¡

lnx2¢2 ¡

lnx3¢2 ¡ lnx4¢2 (lnx)3 ¡

lnx2¢3 ¡

lnx3¢3 ¡ lnx3¢3

¯¯

¯¯

¯¯

¯¯

¯ Developing the Vandermonde‘s determinant, we get

f(x) = (lnx) 2 (lnx) 3 (lnx) (lnx) 2 (lnx) (lnx) = 12 (lnx)6 LetIn=R

(lnx)ndx, (n1).We have to computeI6.We will argue integrating by parts. Let

u= (lnx)6 du= 6x(lnx)5dx v=x dv=dx

¾

Then,

I6=x(lnx)66 Z

(lnx)5dx=x(lnx)66I5

Likewise,I5=x(lnx)55I4, I4=x(lnx)44I3, I3 =x(lnx)33I2, I2 =x(lnx)22I1 andI1=xlnx−x+K.Therefore,

Area(A) = Ze

1

f(x)dx= 12 Ze

1

(lnx)6dx=

= h

12x(lnx)672x(lnx)5+ 360x(lnx)41440x(lnx)3+ 4320x(lnx)2

−8640 (lnx) + 8640x]e1 '4.13 and we are done.

W3. We have ϕ(n)

n =Y

p|n

µ 1 1

p

and Ψ (n)

n =Y

p|n

µ 1 +1

p

,

wherep are the prime divisors ofn. This implies a well-known property, namely that forn≥3,ϕ(n) and Ψ (n) are even.

(4)

1). Let now nbe odd;n≥3.

Then asϕ(n) is even andn+ Ψ (n) odd;ϕ(n) dividesn+ Ψ (n) is impossible.

Forn= 1 the property is true, asϕ(1) = 1.Therefore,n= 1 is the single odd solution to the problem.

2). Let nbe even, and putn= 2kN,where N is odd. Then

ϕ(n) = 2k−1·ϕ(N) and n+Ψ (n) = 2kN+2k−1·3·Ψ (N) = 2k−1[2N + 3Ψ (N)]

Thus we should have also:

ϕ(N)|[2N+ 3Ψ (N)] (∗)

IfN = 1, then (*) holds true. Letn >1,N = Qr

i=1

paii (prime representation).

Then from (*) we get

Yr

i=1

paii−1(p11) divides

Yr

i=1

paii−1

"

2 Yr

i=1

pi+ 3 Yr

i=1

(pi+ 1)

# , which means that

Yr

i=1

(pi1)|

"

2 Yr

i=1

pi+ 3 Yr

i=1

(pi+ 1)

#

(∗∗) (thus, it is sufficient that in (*),N to be squarefree). Let r≥2. Then the left side of (**) is divisible by 4, but the left side is not (divisible only by 2).

Thusr = 1, which gives, withp1 =p:

p−1|[2p+ 3 (p+ 1)] = 5 (p1) + 8

Therefore, p−1|8. This is possible only forp= 3 and 5 implying that N = 3a orN = 5a.

This means that n= 2k1 or 2k3a or 2k5a.

In conclusion, all solutions to the problem aren= 1 orn= 2k,orn= 2k3a, orn= 2k·5a,wherek≥1, a1 are arbitrary positive integers.

W4. i). It is well-known that a|b⇒ ϕ(a)a ϕ(b)b .Letp be a prime. Since 2p+ 1 is always multiple of 3, we get

(5)

ϕ(2p+ 1)

2p+ 1 ϕ(3) 3 = 2

3

Thusϕ(2p+ 1) 23(2p+ 1)>2p−1,as 2·2p+ 2>3·2p−1 or equivalently 4·2p−1+ 2>3·2p−1.Thus for m=p, the second assertion follows.

ii). Let p1< p2 < ... < pn< ...be all primes p≡3 (mod 8). Note that for such primes p we have

p|2p−11 =

³

2p−12 1

´ ³

2p−12 + 1

´ ,

and p divides the second paranthesis and not the first (indeed, ifp divides the first, then since p−12 is odd, we would get that 2 is a quadratic residue mod p, false forp≡3 (mod 8) [see textbooks of Number Theory]).

Thusp divides 2p−12 + 1.

Now let nbe the smallest number such that µ

1 1 p1

¶ µ 1 1

p2

...

µ 1 1

pn

< 1 3 (this is true, since the left side tends to 0 asn→ ∞).

Put now

k=l.c.m.

·p11

2 , ...,pn1 2

¸

This numberkis odd as has the property that p1p2...pn|2k+ 1, so

ϕ¡

2k+ 1¢

2k+ 1 ϕ(p1...pn) p1...pn =

µ 1 1

p1

...

µ 1 1

pn

< 1 3 Thusϕ¡

2k+ 1¢

< 2k2+1 <2k−1 fork≥k0. This proves the first assertion of the problem.

W5. From the given assumption the case whenp1= 2 and p2 = 2 is not considered. Thus we let p2 = 2x+ 1 forx∈N.Let us assume that the given equation accept at least one integer solution.

Then the equation

(6)

µp21 2

p1 +

µp21 2

p1

=an is written in the form

xp1 + (x+ 1)p1 =an (1) Since p1 is an odd integer, it follows that

an=xp1 + (x+ 1)p1 = [x+ (x+ 1)]A= (2x+ 1)A, A∈N Thus (2x+ 1)|an.However, 2x+ 1 is a prime number, therefore

(2x+ 1)|a Therefore

(2x+ 1)2|a2 Butn >1, therefore

(2x+ 1)2|an or (2x+ 1)2|xp1 + (x+ 1)p1 (2) We obtain

xp1+ (x+ 1)p1 =xp1+ [(2x+ 1)−x]p1 =xp1+ (2x+ 1)p1+

+ µp1

1

(2x+ 1)p1−1(−x) +...

µ p1 p11

(2x+ 1) (−x)p1−1+ (−x)p1 =

=xp1 + (2x+ 1)2B+ µ p1

p11

(2x+ 1)xp1−1−xp1 =

= µ p1

p11

(2x+ 1)xp1−1+ (2x+ 1)2B, B∈Z From the relation (2), it follows that

(2x+ 1)2| µ p1

p11

(2x+ 1)xp1−1 or (2x+ 1)|

µ p1 p11

xp1−1 or (2x+ 1)|p1xp1−1

(7)

Since the number 2x+ 1 is prime,it is implied that (2x+ 1)|p1 or (2x+ 1)|x.

The second case is not allowed since

2x+ 1> x k as (2x+ 1, x) = 1

Finally (2x+ 1)|p1,i.e. p1 = 2x+ 1, since p1 is a prime number.

Hence p1 =p2.However, we have assumed that the equation does not accept integer solutions forp1 =p2,therefore the equation (1) and thus the equation

µp21 2

p1 +

µp21 2

p1

=an does not accept integer solutions.

W6. It is evident that

p(n) =p01(n) +p02(n) +...+p0n(n) = 1 +p02(n) +...+p0n−1(n) + 1 (1) However for¥n

2

¦≤m≤nit holds.

Pm0 (n) =p(n−m), (2)

as it easily follows from the Ferrer‘s diagrams.

From (1) and (2) we get

p(n) = 2 + h

p02(n) +...+p0bnec−1(n) i

+ h

p0bn2c(n) +...+p0n−1(n) i

=

= 2 + h

p02(n) +...+p0bnec−1(n) i

+ h

p

³ n−

jn 2

+...+p(1) i

(3) Ifn is an even integer, then

n− jn

2 k

= 2k

¹2k 2

º

=k= jn

2 k

for somek∈N.

In the casen is an odd integer, it follows n−

jn 2 k

= (2k+ 1)

¹2k+ 1 2

º

= (2k+ 1)−k=k+ 1 = jn

2 k

+ 1,

(8)

which means that

n− jn

2 k

= jn

2 k

+χ1(n),

whereχ1(n) denotes the principal character Dirichlet modulo 2.

This is valid since

χ1(n) =

½ 1, if (n,2) = 1 0, if (n,2) = 0 Therefore from relation (3) we obtain the equality

p(n) = 2 + h

p02(n) +...+p0bn2c−1(n) i

+ h

p

³jn 2 k

+χ1(n)

´

+...+p(1) i

,

which coincides with the equality that we wished to prove.

W7. If x= abt, dx=abt2dt, and after then we substitutet→x we give

I = Zb

a

¡x2−ab¢

lnxalnxbdx (x2+a2) (x2+b2) =

Zb

a

³¡ab

x

¢2

−ab

´

lnxb lnax

³¡ab

x

¢2

+a2´ ³¡ab

x

¢2 +b2

´abdx x2 = Zb

a

¡ab−x2¢

lnxalnxbdx

(x2+a2) (x2+b2) =−I, therefore I = 0 butx2¡a+b

2

¢2

< x2−ab which prove that Zb

a

³

x2¡a+b

x

¢2´

lnxalnxbdx (x2+a2) (x2+b2) >

Zb

a

¡x2−ab¢

lnxalnxbdx (x2+a2) (x2+b2) = 0

W8. The identity can be written in following form:

an= [n2] X

k=0

(−1)k µpn

k

¶µ(q−p)n n−2k

=

¡(p+q)n

n

¢

¡(p+q)n

pn

¢ Xn

k=0

(−1)k µn

k

¶µ(p+q−1)n pn−k

=bn From this we give

(9)

bn= Xn

k=0

(−1)k µpn

k

¶µ qn n−k

Denoteα the coefficient ofxn in the expressionf(x) = (1−x)pn(1 +x)qn, and

f(x) = µµpn

0

−x µpn

1

¶ +

µpn 2

x2−...

¶ µµqn 0

¶ +x

µqn 1

¶ +x2

µqn 2

¶ +...

therefore α=

µpn 0

¶µqn n

µpn

1

¶µ qn qn−1

¶ +

µpn 2

¶µ qn n−2

−...=

= Xn

k=0

(−1)k µpn

k

¶µ qn n−k

=bn In another way we obtain f(x) =¡

1−x2¢pn

(1−x)(q−p)n,and α=

µpn 0

¶µ(q−p)n n

µpn

1

¶µ(q−p)n n−2

+...=

= [n2] X

k=0

(−1)k µpn

k

¶µ(q−p)n n−2k

=an.

W9. If we consider the module series:

X

n≥0

|(1−x) (1−2x)...(1−nx)|

n! ,

and if we apply it Cauchy-d1Alembert criterion, we find:

n→∞lim

¯¯

¯¯an+1 an

¯¯

¯¯= lim

n→∞

|1−(n+ 1)x|

n+ 1 =|x|

IfP|x|<1 the initial series is convergent. Also, forx= 1, this series becomes

n≥0

0,so it is convergent to.

Ifx=−1,we obtain the series P

n≥0

(n+ 1),which is divergent.

We conclude that convergence set for the initial series is C= (−1,1].

(10)

In the following, we apply the binomial series for (1 +x)1/x,when α= x1, x6= 0 and x∈(−1,1).We have:

(1 +x)1/x= 1 +X

n≥1 1x

¡1

x ...¡1

x (n1)¢

n! nx=

= 1 +X

n≥1

(1−x) (1−2x)...(1(n1)x)

n! =X

n≥0

(1−x) (1−2x)...(1−nx) n!

Now, we conclude, X

n≥0

(1−x) (1−2x)...(1−nx)

n! =



(1 +x)1/x, x∈(−1,1)\ {0}

e, x= 0

0, x= 1

Surely lim

(n,x)→(∞,0)=e.

W10. i). Eliminatingkfixed points from 1,2, ..., n remainn−k points. So, we have (n−k)n−k functions g:{1,2, ..., n−k} → {1,2, ..., n−k}. Because kpoints from n, can be choosen in ¡n

k

¢posibilities, it occurs:

|F|= (n−k)n−k µn

k

ii). We shall use Stirling formula of the factorial n! =

³n e

´n

2πneθ/12n, θ (0,1) Ifn= 2k,we have:

µ2k k

= (2k)!

(k!)2 =

¡2k

e

¢2k

4πkeθ1/24k hk

e

2πkeθ2/12k i2 ,

whereθ1, θ2 (0,1). Therefore

µ2k k

= 22ke6k1

³θ1

4 −θ2

´

√πk <22ke1/24k, because θ41 −θ2 < 14 and 1

πk <1.

(11)

More, becausee1/24k < e, it occurs:

µ2k k

< e·22k Finally,

|F|=kk µ2k

k

< e(4k)k iii). Forn= 2k, the equation|F|= 540 becomes:

kk µ2k

k

= 540.

We notice that k= 3 is a unique solution, because by induction, kk¡2k

k

¢>540,(∀)k≥4.So,n= 6.

W11. The idea is to order the given polynomial with respect the powers of m. It obtains the quadratic equation with the discriminant4=x4(x2)2 :

x4m2+ 3x3m

2x2+x−

= 0 or

¡mx2+x+ 1¢ ¡

mx2+ 2x

= 0 Thus

x12= −1±√ m+ 1

m , x34= −1±√ 14m m Case 1.

1−m

2m = −1 +√ m+ 1

m ⇒m1 = 52 5 Case 2.

1−m

2m = −1−√ m+ 1

m ⇒m2 = 5 + 2 5 Case 3.

1−m

2m = −1 +√ 14m

2m ⇒m34=±i√

3 are not real Case 4.

(12)

1−m

2m = −1−√ 14m

2m , no real solutions.

W12. The function g(x) = lnf(x) satisfies:

a). g(ax)≤ag(x)

b). g(x+y)≤g(x) +g(y)

Then, with the aid of a), we deduce that g(x) =g

µ x

x+y(x+y)

x

x+yg(x+y) and

g(y) =g µ y

x+y(x+y)

y

x+yg(x+y)

By addition, g(x) +g(y)≤g(x+y) and comparing with b) , we have g(x) +g(y) =g(x+y)

By a standard procedure,g(x) =λx, whereλ∈(0,∞)∩Q.

Finally, f(x) =eλx.

Remark that if continuiuty is a part of the contest programme, then (0,∞)∩Qcan be replaced by (0,∞).

W13. Ifa1 =a2 =...=an then the equality holds. Suppose that between ak, k= 1, n,are two different numbers. The functionf :R→R defined by

f(x) = Ã

1 n

Xn

k=1

axk

!1

x

is strictly increasing in this case. (see: P´olya-Szeg˝o) This implies that

à 1 n

Xn

k=1

a5k

!1

5

>

à 1 n

Xn

k=1

a4k

!1

4

which is equivalent to Ã

1 n

Xn

k=1

a5k

!4

>

à 1 n

Xn

k=1

a4k

!5

(1)

(13)

On the other hand the inequality holds:

Xn

k=1

a4k> 2 n−1

X

1≤q<l≤n

a2qa2l (2)

because it is equivalent to

X

1≤q<l≤n

¡a2q−a2l¢

>0.

Now inequalities (1) and (2) imply the desired inequality (**). We have proved the inequality and we shown that equality holds if and only if a1=a2 =...=an.

W14. We use the substitution x=ta+1a+2 and we get the equalities:

Z1

0

xa+1

f(x)dx = a+ 1 a+ 2

Z1

0

ta f

³ ta+1a+2

´dt= a+ 1 a+ 2

Z1

0

xa f

³ xa+1a+2

´dx (3)

Since f is an increasing function and xa+1a+2 0,(∀)x∈[0,1] the inequality follows: f

³ xa+1a+2

´

≥f(x),(∀)x∈[0,1]. Thus the following inequality holds;

a+ 1 a+ 2

Z1

0

xa f

³ xa+1a+2

´dx a+ 1 a+ 2

Z1

0

xa

f(x)dx (4)

Now (3) and (4) imply the result.

W15. Since

b+c= 2R(sinB+ sinC) = 4RsinB+C

2 cosB−C

2 =

= 4RcosA

2 cosB−C

2 4RcosA 2, it follows that

b+c≤4RcosA 2

In an analogous way, we havec+a≤4RcosB2;a+b≤4RcosC2.Therefore

(14)

xncosA

2 +yncosB

2 +zncosC 2 1

4R[xn(b+c) +yn(c+a) +zn(a+b)] =

= 1

4R[b(xn+zn) +c(yn+xn) +a(zn+yn)]

1 4R

³

2b(xz)n2 + 2c(xy)n2 + 2a(yz)n2

´

= (xy)n2 sinC+(yz)n2 sinA+(zx)n2 sinB.

Consequently, we obtain

xncosA

2 +yncosB

2 +zncosC

2 (xy)n2 sinC+ (yz)n2 sinA+ (zx)n2 sinB.

Remark. In same way we obtain the following stronger inequality

xncosA

2+yncosB

2+zncosC 2

µy+z 2

n

sinA+

µz+x 2

n

sinB+

µx+y 2

n sinC

W16. We check the inequality forn= 1, so τ(1)1 = 1>√

21,which is true. We assume that the inequality holds forn. Hence we prove that the inequality is true and for n+ 1, thus:

n+1X

k=1

1 τ(k) =

Xn

k=1

1

τ(k)+ 1

τ(n+ 1) >√

n+ 11 + 1 τ(n+ 1), butτ(n)<2

n, for anyn≥1,so τ(n+1)1 > 21n+1,which means that

n+1X

k=1

1

τ(k) >√

n+ 11 + 1 2

n+ 1 >√

n+ 21 By the mathematical induction, the inequality is true for anyn≥1.

W17. Ifa=b=c= 1 then we have equality. We considerc= max{a, b, c}

and thenc≥1. We show that

(a+ 1) (b+ 1) (c+ 1)min{f(b), g(b)}

(15)

and similar result that

(a+ 1) (b+ 1) (c+ 1)min{f(a), f(b)}

We have a= bc1 and

(a+ 1) (b+ 1) (c+ 1) = µ1

bc+ 1

(b+c) (c+ 1) = 2 + 1

bc+bc+b+c+1 b+1

c

Ifh(c) = 2 +bc1 +bc+b+c+1b +1c,then h0(c) = (b+ 1)¡

bc2bc2 evidently

h: [1,+∞)(0,+∞). Ifb <1, then

c 1 1

b +∞

h0 − − − 0 + ++ + h 2(b+1)b 2 & (b+ 1)

³2 b + 1

´

% therefore h(c)≥g(b).Ifb≥1, then

c 1 +∞

h0 + + + ++ ++

h 2(b+1)b 2 %

therefore h(c)≥f(b). W18. We have

a2n+3+b2n+3 ≥a2n+2b+ab2n+2 (a−b)¡

a2n+1−b2n+1¢

0 By induction we get

a2n+1+b2n+1 (a+b) (ab)n therefore

ab

a2n+3+b2n+3+ab ab

a2n+2b+ab2n+2+ab = 1

a2n+1+b2n+1+ 1

(16)

1

(a+b) (ab)n+ 1 = 1

(a+b) (ab)n+ (abc)n = 1

(ab)n(a+b+cn) =

= cn

a+b+cn or

abc

a2n+3+b2n+3+ab cn+1

a+b+cn a+b+cn

a2n+3+b2n+3+ab ≤cn+1

X a+b+cn

a2n+3+b2n+3+ab X an+1

W19. We have

x21

¡1 +x21¢2 x21

1 +x21 = 1 1 1 +x21 and for k≥2

µ xk 1 +x21+...+x2k

2

x2k

¡1 +x21+...+x2k−1¢ ¡

1 +x21+...+x2k¢ =

= 1

1 +x21+...+x2k+1 1

1 +x21+...+x2k so

Xn

k=1

µ xk 1 +x21+...+x2k

2

µ x1

1 +x21

2 +

+ Xn

k=2

Ã

1

1 +x21+...+x2k−1 1

1 +x21+...+x2k

!

1 1

1 +x21 + 1 1 +x21

1 1 + Pn

k=1

x2k

= Pn k=1

x2k 1 + Pn

k=1

x2k

(17)

W20. 1). If z= cos 2x+isin 2x, then X

0≤j<k≤n

sin (2 (j+k)x) =Im

 X

0≤j<k≤n

zj+k

= 1 2

 Xn

j=0

zj

2

Xn

j=0

z2j

=

= 1 2Im

zn+1 z−1

2

z2n+21 z21

#

2).

X

0≤j<k≤n

cos (2 (j+k)x) = 1 2Re

zn+11 z−1

2

−z2n+21 z21

#

but

zn+11

z−1 = sin (n+ 1)x

sinx (cosnx+isinnx) so

X

0≤j<k≤n

sin (2 (j+k)x) = sinnxsin (n+ 1)xsin 2nx sinxsin 2x

and

X

0≤j<k≤n

cos (2 (j+k)x) = sinnxsin (n+ 1)xcos 2nx sinxsin 2x

and

 X

0≤j<k≤n

sin (2 (j+k)x)

2

+

 X

0≤j<k≤n

cos (2 (j+k)x)

2

=

= sin2nxsin2(n+ 1)x sin2xsin22x W21. We prove by induction the inequality

Xn

k=1

xk 1 +xk

Pn k=1

xk 1 + Pn

k=1

xk

(18)

It is true for n= 1, for n= 2 after computation we have (x1+x2)x1x2+ 2x1x2 0 true. We suppose true forn and we prove forn+ 1.

n+1X

k=1

xk 1 +xk =

Xn

k=1

xk

1 +xk + xn+1 1 +xn+1

Pn k=1

xk 1 + Pn

k=1

+ xn+1 1 +xn+1

n+1P

k=1

xk 1 +n+1P

k=1

xk

the last step is the case forn= 2.

Ifxk= k1s,then Pn

k=1

ks1+1

Pn k=1

1 ks

1+Pn

k=1 1 ks

.In this we taken→ ∞,and we obtain the desired inequality.

W22. Fork∈ {0,1} we have equality. Using the weighted AM-GM inequality we get

µa1 a2

k

+ k−1 k+n−1

õa2 a3

k

+...+ µan

a1

k!

nk

k+n−1·a1 a2 therefore

nk k+n−1

X µa1 a2

k

= X

cyclic

õa1 a2

k

+ k−1 k+n−1

õa2 a3

k

+...+ µan

a1

k!!

nk k+n−1

Xa1 a2 therefore

X µa1 a2

k

Xa1 a2

W23. Ifx, y∈R then

¡x2+xy+y2¢m

3m 2

¡x2m+y2m¢

(1)

(19)

Form= 1 is true. We suppose true for m, and we prove form+ 1.

¡x2−xy+y2¢m+1

3m 2

¡x2m+y2m¢ ¡

x2−xy+y2¢

3m+1 2

¡x2m+2+y2m+2¢ We have

¡x2m+y2m¢ ¡

x2−xy+y2¢

x2m+2+y2m+2¢

¡

x2m+1+y2m+1¢

(x+y) +¡

x2m−y2m¢ ¡

x2−y2¢

0 1). P

cyclic

¡x21−x1x2+x22¢m

P

cyclic 3m

2

¡x2m1 +x2m2 ¢

= 3m Pn

k=1

x2mk 2). Q

cyclic

¡x21−x1x2+x22¢m

¡3m

2

¢n Q

cyclic

¡x2m1 +x2m2 ¢

¡3m

2

¢nÃ

n1

P

cyclic

¡x2m1 +x2m2 ¢!n

3m

2

¢nµ

n2

Pn k=1

x2mk

n

3m

n

¢nµ Pn k=1

x2mk

n

W24. IfA(a), B(b), C(c), P(z), K¡a+b

2

¢, L¡b+c

2

¢, M¡c+a

2

¢and X ¯¯¯

¯z1−z2 z1+z2

¯¯

¯¯

¯¯

¯¯z1−z2

z1+z2 +z2−z3

z2+z3 +z3−z1 z3+z1

¯¯

¯¯=

=

¯¯

¯¯z1−z2

z1+z2 +z2−z3

z2+z3 −z1−z2

z3+z1 −z2−z3 z3+z1

¯¯

¯¯=

=

¯¯

¯¯(z1−z2) (z3−z2)

(z1+z2) (z3+z1) +(z1−z2) (z2−z3) (z2+z3) (z3+z1)

¯¯

¯¯=

¯¯

¯¯(z1−z2) (z2−z3) (z3−z1) (z1+z2) (z2+z3) (z3+z1)

¯¯

¯¯

Ifz1 =z−a, z2 =z−b, z3 =z−c,then X1

2

¯¯

¯¯

¯ a−b z−a+b2

¯¯

¯¯

¯ 1 8

¯¯

¯¯

¯

Y a−b z−a+b2

¯¯

¯¯

¯X AB P K 1

4

Y AB P K

W25. Ifx, y >0 and x2+y2= 1,then x+y+ 1

xy 2 +

2 (∗)

(20)

Proof. We have E =x+y+ 1

xy = (x+y)p

x2+y2+ 1

xy 2 xyp

2xy+ 1

xy = 2

2xy+ 1 xy.

But 1 = x2 +y2 2xy, xy = t t 12 and t≤ 1

2 E = 2

2t+1t 2 +

2 2 2t2

¡2 +

t+ 10¡

t−12¢ ³ t−1

2

´

0

In triangleABD we take (1)

x= AD

BD, y= AB BD

(∗) AD+AB

BD + BD2

AD·AB 2 + 2 In triangleBCD we take

(2)

x= BC

BD, y= DC BD

(∗) BC+CD

BD + BD2

BC·CD 2 + 2 Adding (1) and (2) we get

1

BD(AB+BC+CD+DA) +BD2

µ 1

AB·AD+ 1 CB·CD

2

³ 2 +

2

´

W26. We have 1 = Pn

i=1

aki ≥nn sQn

i=1

aki if Qn

i=1

ai=t⇒1≥n√n

tk⇒t≤nnk ≤n−1+k1,becausek≤n+ 1, therefore Xn

i=1

ai+ 1 Qn i=1

ai

= Ã n

X

i=1

ai

! Ã n X

i=1

aki

!n−1

k

+ 1

Qn i=1

ai

≥nn vu utYn

i=1

nn vu utYn

i=1

aki

n−1 k

+ 1

Qn i=1

ai

=nn−1k +1 Yn

i=1

ai+ 1 Qn i=1

ai

=nn−1k +1t+1 t

(21)

≥n1−1k+nnk ⇔nn−1k +1t2

³

n1−1k +nnk

´

t+1≥0

³

nnkt−1

´ ³

n1−k1t−1

´

0 true

W27. It is a known fact that for every perfect number mit holds X

d|m

1 d = 2.

Therefore

X

d|an

1 d = 2.

Assume that

an=pk11pk22...pkµµ

is the unique prime factorization of the number an.It is obvious that 1

pk11 + 1

pk22 +...+ 1

pkµµ <2 (1)

From Cauchy‘s arithmetic-geometric mean inequality it follows

µ

q

pk11pk22...pkµµ µ

1 pk11 + 1

pk22 +...+ 1

pµ

1

pk22 +...+ 1

pkµµ µ

µ

q

pk11pk22...pkµµ Therefore

1 pk11 + 1

pk22 +...+ 1 pkµµ

µ

an/µ (2)

From (1) and (2) it follows that 2> µ

an/µ ⇔an/µ> µ 2 W28. Sety= 0 in (1). Then

°°

°2f

³x 2

´

−f(x)

°°

°Y ≤θkxkpX

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Associate professor PhD., &#34;Dimitrie Cantemir&#34; Christian University Bucharest, Faculty o f Management in Tourism and Commerce Timisoara LUIZA CARAIVAN,.. Associate

Associate professor PhD., &#34;Dimitrie Cantemir&#34; Christian University Bucharest, Faculty o f Management in Tourism and Commerce Timiçoara LUIZA CARAIVAN,.. Associate

&#34;Dimitrie Cantemir&#34; Christian University Faculty of Management in Tourism and Commerce Timişoara ADRIAN MATEIA, PhD., Drăgan University, Lugoj, Romania. CHISTINA

PATKÓ Gyula, Ph.D., University of Miskolc, Hungary PÁY Gábor, PhD., University of Nyíregyháza, Hungary POP-SITAR Petricà, Ph.D., Technical University Cluj Napoca,

Associate professor PhD., &#34;Dimitrie Cantemir&#34; Christian University Bucharest, Faculty o f Management in Tourism and Commerce Timisoara LUIZA CARAIVAN,.. Associate

Theorem 6 No online algorithm exists which is Cn + D-competitive in the trace model for proper or cf-coloring with rejection for hypergraphs containing n vertices and some constants

Associate professor PhD., &#34;Dimitrie Cantemir&#34; Christian University Bucharest, Faculty of Management in Tourism and Commerce Timişoara..

Harmony within Nature (eds: M. Iriki et al.), International Society of Biometeorology, Tokyo, Japan. Pongrácz R, Bartholy J, Kis Zs, Törő K, Dunay Gy, Keller É. Analysis of sudden