• Nem Talált Eredményt

MEROMORPHIC FUNCTIONS SHARING THREE VALUES WITH WEIGHTS

N/A
N/A
Protected

Academic year: 2022

Ossza meg "MEROMORPHIC FUNCTIONS SHARING THREE VALUES WITH WEIGHTS"

Copied!
24
0
0

Teljes szövegt

(1)

Meromorphic Functions Junfan Chen, Shouhua Shen and

Weichuan Lin vol. 8, iss. 1, art. 19, 2007

Title Page

Contents

JJ II

J I

Page1of 24 Go Back Full Screen

Close

MEROMORPHIC FUNCTIONS SHARING THREE VALUES WITH WEIGHTS

JUNFAN CHEN

Department of Applied Mathematics, South China Agricultural University, Guangzhou 510642, P. R. China.

EMail:junfanchen@163.com

SHOUHUA SHEN AND WEICHUAN LIN

Department of Mathematics, Fujian Normal University, Fuzhou 350007, P. R. China.

Received: 04 July, 2006

Accepted: 04 January, 2007

Communicated by: H.M. Srivastava 2000 AMS Sub. Class.: 30D35.

Key words: Meromorphic functions, Weighted sharing of values, Uniqueness.

(2)

Meromorphic Functions Junfan Chen, Shouhua Shen and

Weichuan Lin vol. 8, iss. 1, art. 19, 2007

Title Page Contents

JJ II

J I

Page2of 24 Go Back Full Screen

Close Abstract: Using the idea of weighted sharing of values, we prove some uniqueness

theorems for meromorphic functions which improve some existing results.

Moreover, examples are provided to show that some results in this paper are sharp.

Acknowledgements: The authors wish to thank the referee for his thorough comments.

The research of the authors was supported by the National Natural Sci- ence Foundation of China (Grant No. 10671109) and the Youth Science Technology Foundation of Fujian Province (Grant No. 2003J006).

(3)

Meromorphic Functions Junfan Chen, Shouhua Shen and

Weichuan Lin vol. 8, iss. 1, art. 19, 2007

Title Page Contents

JJ II

J I

Page3of 24 Go Back Full Screen

Close

Contents

1 Introduction, Definitions and Results 4

2 Lemmas 10

3 Proofs of the Theorems and Corollaries 13

4 Final Remarks 18

5 Applications 20

(4)

Meromorphic Functions Junfan Chen, Shouhua Shen and

Weichuan Lin vol. 8, iss. 1, art. 19, 2007

Title Page Contents

JJ II

J I

Page4of 24 Go Back Full Screen

Close

1. Introduction, Definitions and Results

In this paper, a meromorphic function means meromorphic in the complex plane.

We use the usual notations of Nevanlinna theory of meromorphic functions as ex- plained in [3]. We denote by E (respectively, I) a set of finite (respectively, in- finite) linear measure, not necessarily the same at each occurence. For any non- constant meromorphic functionf(z), we denote byS(r, f) any quantity satisfying S(r, f) = o(T(r, f)) as r → ∞ except possibly for a set E of r of finite linear measure. Letk be a positive integer. We denote byNk)(r,1/(f −a))the counting function of the zeros off−awith multiplicity≤k, byN(k(r,1/(f−a))the count- ing function of the zeros off −awith multiplicity≥ k, and byNk)(r,1/(f −a)) andN(k(r,1/(f−a))the reduced form ofNk)(r,1/(f−a))andN(k(r,1/(f−a)), respectively (see [19]).

Letf andg be two nonconstant meromorphic functions. We denote byT(r)the maximum ofT(r, f)andT(r, g). For a complex numbera, if the zeros off−aand g−acoincide in locations and multiplicities, we say thatf andg share the valuea CM (counting multiplicities) and if we do not consider the multiplicities, thenf and gare said to share the valueaIM (ignoring multiplicities) (see [2]).

Nevanlinna [10], Ozawa [11], Ueda [12, 13], Brosch [1], Yi [14] – [18], Li [9], Zhang [20], Lahiri [4] – [8], and other authors (see [19]) dealt with the problems of uniqueness of meromorphic functions that share three distinct values. Without loss of generality, we may assume that0,1,∞are the shared values.

In 1976, Ozawa [11] proved the following result.

Theorem A ([11]). Let f andg be two entire functions of finite order such thatf andg share0,1CM. Ifδ(0, f)>1/2, then eitherf ≡g orf ·g ≡1.

In 1983, removing the order restriction in the above result Ueda [12] proved the following theorem.

(5)

Meromorphic Functions Junfan Chen, Shouhua Shen and

Weichuan Lin vol. 8, iss. 1, art. 19, 2007

Title Page Contents

JJ II

J I

Page5of 24 Go Back Full Screen

Close

Theorem B ([12]). Letf andg be two meromorphic functions sharing0,1, and∞ CM. If

lim sup

r→∞

N(r, f) +N(r,1/f) T(r, f) < 1

2, then eitherf ≡gorf·g ≡1.

In 1998, Yi [17] proved the following theorem, which is an improvement of The- oremsAandB.

Theorem C ([17]). Letf andg be two meromorphic functions sharing0,1, and∞ CM. If

lim sup

r→∞

N1)(r, f) +N1)(r,1/f)−(1/2)m(r,1/(g−1))

T(r, f) < 1

2 forr ∈I, then eitherf ≡gorf·g ≡1.

We now explain the notion of weighted sharing as introduced in [4].

Definition 1.1 ([4]). Letk be a nonnegative integer or infinity. For a ∈ C∪ {∞}, we denote byEk(a, f)the set of alla-points off where ana-point of multiplicitym is countedmtimes ifm ≤k andk+ 1times ifm > k. IfEk(a, f) =Ek(a, g), we say thatf,g share the valueawith weightk.

The definition implies that iff,g share a valueawith weightk thenz0 is a zero off−awith multiplicitym(≤k)if and only if it is a zero ofg−awith multiplicity m(≤k)andz0is a zero off−awith multiplicitym(> k)if and only if it is a zero ofg−awith multiplicityn(> k)wheremis not necessarily equal ton.

We write f, g share (a, k) to mean that f, g share the value a with weight k.

Clearly iff,g share(a, k)thenf,g share(a, p)for all integersp,0≤ p < k. Also we note thatf,gshare a valueaIM or CM if and only iff,gshare(a,0)or(a,∞) respectively.

(6)

Meromorphic Functions Junfan Chen, Shouhua Shen and

Weichuan Lin vol. 8, iss. 1, art. 19, 2007

Title Page Contents

JJ II

J I

Page6of 24 Go Back Full Screen

Close

In 2001, Lahiri [4] proved the following theorems.

Theorem D ([4]). Let f andg be two nonconstant meromorphic functions sharing (0,1),(∞,0), and(1,∞). If

N1)

r, 1 f

+ 4N(r, f)<(λ+o(1))T(r, f) forr ∈Iand0< λ <1/2, then eitherf ≡g orf ·g ≡1.

Theorem E ([4]). Letf andg be two nonconstant meromorphic functions sharing (0,1),(∞,∞), and(1,∞). If

N1)

r, 1

f

+N1)(r, f)<(λ+o(1))T(r, f) forr ∈Iand0< λ <1/2, then eitherf ≡g orf ·g ≡1.

In 2003, improving TheoremsDandE, Yi [18] proved the following results.

Theorem F ([18]). Letf andg be two nonconstant meromorphic functions sharing (0,1),(∞,0), and(1,5). If

lim sup

r→∞

N1)(r,1/f) + 3N(r, f)−(1/2)m(r,1/(g−1))

T(r, f) < 1

2 forr ∈I, then eitherf ≡gorf·g ≡1.

Theorem G ([18]). Letf andgbe two nonconstant meromorphic functions sharing (0,1),(∞,0), and(1,3). If

lim sup

r→∞

N1)(r,1/f) + 4N(r, f)−(1/2)m(r,1/(g−1))

T(r, f) < 1

2 forr ∈I, then eitherf ≡gorf·g ≡1.

(7)

Meromorphic Functions Junfan Chen, Shouhua Shen and

Weichuan Lin vol. 8, iss. 1, art. 19, 2007

Title Page Contents

JJ II

J I

Page7of 24 Go Back Full Screen

Close

Theorem H ([18]). Letf andgbe two nonconstant meromorphic functions sharing (0,1),(∞,2), and(1,6). If

lim sup

r→∞

N1)(r,1/f) +N1)(r, f)−(1/2)m(r,1/(g−1))

T(r, f) < 1

2 forr ∈I, then eitherf ≡gorf·g ≡1.

In this paper, with the aid of the notion of weighted sharing of values, we shall improve the results in TheoremsF,G, andHand obtain the following theorems.

Theorem 1.1. Letfandgbe two nonconstant meromorphic functions sharing(0,1), (∞,0), and(1, m), wherem(≥2)is a positive integer or infinity. If

(1.1) lim sup

r→∞

N1)(r,1/f) +

2(m+1) m−1

N(r, f)− 12m

r,g−11

T(r, f) < 1

2 forr ∈I, then eitherf ≡gorf·g ≡1.

The following example shows that in Theorem 1.1 sharing (0,1) cannot be re- laxed to sharing(0,0).

Example 1.1. Letf = (ez−1)2andg =ez−1. Thenfandgshare(0,0),(∞,∞), and(1,∞). AlsoN1)(r,1/f)≡N(r, f)≡0but neitherf ≡g norf ·g ≡1.

Corollary 1.2. Let f and g be two nonconstant meromorphic functions sharing (0,1),(∞,0), and(1, m), wherem(≥2)is a positive integer or infinity. If

(1.2) N1)(r,1/f) + (2(m+ 1)/(m−1))N(r, f)<(λ+o(1))T(r, f) forr ∈Iand0< λ <1/2, then eitherf ≡g orf ·g ≡1.

(8)

Meromorphic Functions Junfan Chen, Shouhua Shen and

Weichuan Lin vol. 8, iss. 1, art. 19, 2007

Title Page Contents

JJ II

J I

Page8of 24 Go Back Full Screen

Close

Theorem 1.3. Letfandgbe two nonconstant meromorphic functions sharing(0,1), (∞, k), and (1, m), where k, m are positive integers or infinity satisfying (m − 1)(km−1)>(1 +m)2. If

(1.3) lim sup

r→∞

N1)(r,1/f) +N1)(r, f)−(1/2)m(r,1/(g−1))

T(r, f) < 1

2 forr ∈I, then eitherf ≡gorf·g ≡1.

Example1.1shows that in Theorem1.3sharing(0,1)cannot be relaxed to shar- ing(0,0), either. Also the following example shows that Theorem1.3does not hold when(m−1)(km−1) = (1 +m)2.

Example 1.2. Letf = 4ez/(1 +ez)2 andg = 2ez/(1 +ez), andm =k = 0. Then f andg share(0,∞), (∞, k), and(1, m). Also N1)(r,1/f) ≡ N1)(r, f) ≡ 0and (m−1)(km−1) = (1 +m)2 but neitherf ≡g norf ·g ≡1.

It is easily seen from the following examples that the condition(1.3)in Theorem 1.3is the best possible.

Example 1.3. Letf =e−z+ 1andg =ez+ 1.

Example 1.4. Letf =ez/(ez−1)andg = 1/(1−ez).

Corollary 1.4. Let f and g be two nonconstant meromorphic functions sharing (0,1), (∞, k), and (1, m), where k, m are positive integers or infinity satisfying (m−1)(km−1)>(1 +m)2. If

(1.4) N1)(r,1/f) +N1)(r, f)<(λ+o(1))T(r, f) forr ∈Iand0< λ <1/2, then eitherf ≡g orf ·g ≡1.

Example 1.5. Letf = 1/(ez(1−ez))andg =e2z/(ez−1).

(9)

Meromorphic Functions Junfan Chen, Shouhua Shen and

Weichuan Lin vol. 8, iss. 1, art. 19, 2007

Title Page Contents

JJ II

J I

Page9of 24 Go Back Full Screen

Close

It is easy to see, from Example1.5, that the condition(1.4)in Corollary1.4is the best possible.

Corollary 1.5. Theorem1.3 holds for any one of the following pairs of values ofk andm:

(i) k = 2, m= 6, (ii) k = 3, m= 4, (iii) k = 4, m= 3, (iv) k = 6, m= 2.

(10)

Meromorphic Functions Junfan Chen, Shouhua Shen and

Weichuan Lin vol. 8, iss. 1, art. 19, 2007

Title Page Contents

JJ II

J I

Page10of 24 Go Back Full Screen

Close

2. Lemmas

In this section we present some lemmas which will be needed in the sequel. Hence- forth we shall denote byHthe function

(2.1)

f00

f0 − 2f0 f−1

− g00

g0 − 2g0 g−1

.

Lemma 2.1. Letf andgbe two nonconstant meromorphic functions sharing(0,0), (∞,0), and(1,0). Then

T(r, f)≤3T(r, g) +S(r, f), T(r, g)≤3T(r, f) +S(r, g), S(r, f) =S(r, g) := S(r).

Proof. Note thatfandgshare(0,0),(∞,0), and(1,0). By the second fundamental theorem, we can easily obtain the conclusion of Lemma2.1.

Lemma 2.2 ([18]). LetH be given by (2.1)and H 6≡ 0. If f and g share (0,1), (∞,0), and(1, m), wherem(≥1)is a positive integer or infinity, then

(2.2) N1)

r, 1 f −1

≤N(2

r, 1 f

+N(r, f) +N(m+1

r, 1 f −1

+N0

r, 1 f0

+N0

r, 1

g0

+S(r), whereN0(r,1/f0)denotes the counting function corresponding to the zeros off0that are not zeros off(f −1), N0(r,1/g0)denotes the counting function corresponding to the zeros ofg0that are not zeros ofg(g−1).

(11)

Meromorphic Functions Junfan Chen, Shouhua Shen and

Weichuan Lin vol. 8, iss. 1, art. 19, 2007

Title Page Contents

JJ II

J I

Page11of 24 Go Back Full Screen

Close

Lemma 2.3 ([18]). Letf andgbe two distinct nonconstant meromorphic functions sharing(0,1), (∞,0), and (1, m), wherem (≥ 2)is a positive integer or infinity.

Then

(2.3) N(2

r, 1

f

≤N(r, f) +N(m+1

r, 1 f −1

+S(r),

(2.4) N(m+1

r, 1

f−1

≤ 2

m−1N(r, f) +S(r).

Lemma 2.4 ([8]). Let f andg be two distinct nonconstant meromorphic functions sharing (0,1), (∞, k), and (1, m), where k, m are positive integers or infinities satisfying(m−1)(km−1)>(1 +m)2. Then

(2.5) N(2

r, 1

f

+N(2

r, 1 f −1

+N(2(r, f) =S(r).

Lemma 2.5. LetH be given by (2.1)andH 6≡ 0. If f andg share (0,1), (∞, k), and(1, m), wherek,mare positive integers or infinity satisfying(m−1)(km−1)>

(1 +m)2. Then

(2.6) N1)

r, 1 f −1

≤N(2

r, 1 f

+N(k+1(r, f) +N(m+1

r, 1 f −1

+N0

r, 1 f0

+N0

r, 1

g0

+S(r).

Proof. From the given condition it is clear that k ≥ 2 and m ≥ 2. Since f and g share (1, m), it follows that a simple 1-point of f is a simple 1-point of g and

(12)

Meromorphic Functions Junfan Chen, Shouhua Shen and

Weichuan Lin vol. 8, iss. 1, art. 19, 2007

Title Page Contents

JJ II

J I

Page12of 24 Go Back Full Screen

Close

conversely. Letz0be a simple 1-point off andg. Then in some neighborhood ofz0 we getH = (z−z0)α(z), whereαis analytic atz0. Thus

(2.7) N1)

r, 1

f −1

≤N

r, 1 H

≤N(r, H) +S(r).

Note thatf andgshare(0,1),(∞, k), and(1, m). We can deduce by(2.1)that (2.8) N(r, H)≤N(2

r, 1

f

+N(k+1(r, f) +N(m+1

r, 1 f−1

+N0

r, 1

f0

+N0

r, 1

g0

+S(r).

Combining(2.7)and(2.8), we obtain the conclusion of Lemma2.5.

(13)

Meromorphic Functions Junfan Chen, Shouhua Shen and

Weichuan Lin vol. 8, iss. 1, art. 19, 2007

Title Page Contents

JJ II

J I

Page13of 24 Go Back Full Screen

Close

3. Proofs of the Theorems and Corollaries

Proof of Theorem1.1. Note that sincef andg share(1, m), we have N

r, 1

f−1

+N

r, 1 g−1

+ (m−1)N(m+1

r, 1 f −1

(3.1)

≤N1)

r, 1 f−1

+N

r, 1

g−1

≤N1)

r, 1 f−1

+T(r, g)−m

r, 1 g−1

+O(1).

By the second fundamental theorem, we obtain (3.2) T(r, f)≤N

r, 1

f

+N(r, f) +N

r, 1 f −1

−N0

r, 1 f0

+S(r), and

(3.3) T(r, g)≤N

r,1 g

+N(r, g) +N

r, 1 g−1

−N0

r, 1 g0

+S(r).

Sincef andgshare(0,1),(∞, k), and(1, m), in view of(3.1)–(3.3)we get (3.4) T(r, f)

≤2N

r, 1 f

+ 2N(r, f) +N1)

r, 1 f −1

−(m−1)N(m+1

r, 1 f −1

−m

r, 1 g−1

−N0

r, 1

f0

−N0

r, 1

g0

+S(r).

(14)

Meromorphic Functions Junfan Chen, Shouhua Shen and

Weichuan Lin vol. 8, iss. 1, art. 19, 2007

Title Page Contents

JJ II

J I

Page14of 24 Go Back Full Screen

Close

LetH be given by(2.1). IfH 6≡0, then by Lemma2.2we have (3.5) N1)

r, 1

f −1

≤N(2

r, 1 f

+N(r, f) +N(m+1

r, 1 f −1

+N0

r, 1 f0

+N0

r, 1

g0

+S(r).

Substituting(3.5)into(3.4)we derive T(r, f)

(3.6)

≤2N

r, 1 f

+ 3N(r, f) +N(2

r, 1 f

−(2−m)N(m+1

r, 1 f−1

−m

r, 1 g−1

+S(r)

≤2N1)

r, 1 f

+ 3N(r, f) + 3N(2

r, 1 f

−(2−m)N(m+1

r, 1 f−1

−m

r, 1 g−1

+S(r).

Sincef andgshare(0,1),(∞,0), and(1, m), it follows by Lemma2.3that

(3.7) N(2

r, 1

f

≤N(r, f) +N(m+1

r, 1 f −1

+S(r),

(3.8) N(m+1

r, 1

f−1

≤ 2

m−1N(r, f) +S(r).

(15)

Meromorphic Functions Junfan Chen, Shouhua Shen and

Weichuan Lin vol. 8, iss. 1, art. 19, 2007

Title Page Contents

JJ II

J I

Page15of 24 Go Back Full Screen

Close

Substituting(3.7)and(3.8)into(3.6)we have T(r, f)≤2N1)

r, 1

f

+4(m+ 1)

m−1 N(r, f)−m

r, 1 g−1

+S(r), which contradicts(1.1). HenceH ≡0and so

(3.9) f0

(f −1)2 =A g0 (g−1)2,

whereAis a nonzero constant. Note thatfandgshare(0,1),(∞,0), and(1, m). We know from(3.9)thatf andgshare(0,∞),(∞,∞), and(1,∞). Again by Theorem C, we obtain the conclusion of Theorem1.1.

Proof of Corollary1.2. Let

(3.10) T(r, f) =

T(r, f), for r∈I1, T(r, g), for r∈I2, where

(3.11) I =I1∪I2.

Note thatI is a set of infinite linear measure of (0,∞). We can see by(3.11)that I1is a set of infinite linear measure of(0,∞)orI2 is a set of infinite linear measure of (0,∞). Without loss of generality, we assume that I1 is a set of infinite linear measure of(0,∞). Then it follows by(1.2)and(3.10)that

lim sup

r→∞

N1)(r,1/f) + (2(m+ 1)/(m−1))N(r, f)

T(r, f) < 1

2 forr ∈I. Again by Theorem1.1, we obtain the conclusion of Corollary1.2.

(16)

Meromorphic Functions Junfan Chen, Shouhua Shen and

Weichuan Lin vol. 8, iss. 1, art. 19, 2007

Title Page Contents

JJ II

J I

Page16of 24 Go Back Full Screen

Close

Proof of Theorem1.3. Sincef andg share(0,1), (∞, k), and(1, m), it follows by Lemma2.4that

(3.12) N(2

r, 1

f

+N(2

r, 1

f −1

+N(2(r, f) =S(r).

It is easily seen that N

r, 1

f −1

+N

r, 1 g−1

(3.13)

≤N1)

r, 1 f−1

+N

r, 1

g−1

≤N1)

r, 1 f−1

+T(r, g)−m

r, 1 g−1

+O(1).

Form(3.2),(3.3),(3.12), and(3.13), we obtain (3.14) T(r, f)≤2N1)

r, 1

f

+ 2N1)(r, f) +N1)

r, 1 f−1

−m

r, 1 g−1

−N0

r, 1 f0

−N0

r, 1 g0

+S(r).

LetHbe given by(2.1). IfH 6≡0, then by Lemma2.5and(3.12)we get in view of k ≥2andm≥2

(3.15) N1)

r, 1

f −1

≤N0

r, 1 f0

+N0

r, 1

g0

+S(r).

Substituting(3.15)into(3.14)we have T(r, f)≤2N1)

r, 1

f

+ 2N1)(r, f)−m

r, 1 g−1

+S(r),

(17)

Meromorphic Functions Junfan Chen, Shouhua Shen and

Weichuan Lin vol. 8, iss. 1, art. 19, 2007

Title Page Contents

JJ II

J I

Page17of 24 Go Back Full Screen

Close

which contradicts(1.3). HenceH ≡0and so

(3.16) f0

(f−1)2 =B g0 (g−1)2,

whereB is a nonzero constant. Note that f and g share(0,1), (∞, k), and (1, m).

We can see by (3.16) that f and g share (0,∞), (∞,∞), and (1,∞). Again by TheoremC, we obtain the conclusion of Theorem1.3.

Proof of Corollary1.4. Using Theorem1.3and proceeding as in the proof of Corol- lary1.2, we can prove Corollary1.4.

(18)

Meromorphic Functions Junfan Chen, Shouhua Shen and

Weichuan Lin vol. 8, iss. 1, art. 19, 2007

Title Page Contents

JJ II

J I

Page18of 24 Go Back Full Screen

Close

4. Final Remarks

In 2003, Yi [18] proved the following theorem.

Theorem I ([18]). Letf andg be two nonconstant meromorphic functions sharing (0,0),(∞,1), and(1,5). If

lim sup

r→∞

3N(r,1/f) +N1)(r, f)−(1/2)m(r,1/(g−1))

T(r, f) < 1

2 forr ∈I, then eitherf ≡gorf·g ≡1.

From Theorem 1.1 we get the following theorem which is an improvement of TheoremI.

Theorem 4.1. Letfandgbe two nonconstant meromorphic functions sharing(0,0), (∞,1), and(1, m), wherem(≥2)is a positive integer or infinity. If

(4.1) lim sup

r→∞

N1)(r, f) +

2(m+1) m−1

N(r,1/f)− 12m

r,g−11

T(r, f) < 1

2 forr ∈I, then eitherf ≡gorf·g ≡1.

Proof. Let

(4.2) F = 1

f, G= 1 g. It is easily seen that

(4.3) T(r, f) =T(r, F) +O(1),

(19)

Meromorphic Functions Junfan Chen, Shouhua Shen and

Weichuan Lin vol. 8, iss. 1, art. 19, 2007

Title Page Contents

JJ II

J I

Page19of 24 Go Back Full Screen

Close

(4.4) m

r, 1

g−1

=m

r, 1 G−1

+O(1).

From(4.1)–(4.4), we get (4.5) lim sup

r→∞

N1)(r,1/F) +

2(m+1) m−1

N(r, F)− 12m r,G−11

T(r, F) < 1

2

forr ∈ I. Note thatf and g share (0,0), (∞,1), and(1, m). From (4.2), we see thatF and Gshare(0,1), (∞,0), and(1, m). By Theorem1.1, we getF ≡ G or F ·G≡1. From this, we deduce that Theorem4.1holds.

In 2003, Yi [18] proved the following result.

Theorem J ([18]). Letf andg be two nonconstant meromorphic functions sharing (0,2),(∞,1), and(1,6). If

lim sup

r→∞

N1)(r,1/f) +N1)(r, f)−(1/2)m(r,1/(g−1))

T(r, f) < 1

2 forr ∈I, then eitherf ≡gorf·g ≡1.

Using Theorem1.3and proceeding as in the proof of Theorem4.1, we can prove the following theorem, which is an improvement of TheoremJ.

Theorem 4.2. Letfandgbe two nonconstant meromorphic functions sharing(0, k), (∞,1), and (1, m), where k, m are positive integers or infinity satisfying (m − 1)(km−1)>(1 +m)2. If

(4.6) lim sup

r→∞

N1)(r,1/f) +N1)(r, f)−(1/2)m(r,1/(g−1))

T(r, f) < 1

2 forr ∈I, then eitherf ≡gorf·g ≡1.

(20)

Meromorphic Functions Junfan Chen, Shouhua Shen and

Weichuan Lin vol. 8, iss. 1, art. 19, 2007

Title Page Contents

JJ II

J I

Page20of 24 Go Back Full Screen

Close

5. Applications

In this section,f andgare two nonconstant meromorphic functions.

Definition 5.1. ForS⊂C∪ {∞}we defineEf(S, k)as Ef(S, k) = [

a∈S

Ek(a, f),

wherekis a nonnegative integer or infinity.

In 2003, Yi [18] proved the following theorem.

Theorem K ([18]). Let S1 = {a +b, a +bω, . . . , a +bωn−1}, S2 = {a}, and S3 = {∞}, where n (≥ 2) is an integer, a and b (6= 0) are constants, and ω = cos(2π/n) +isin(2π/n). If Ef(S1,6) = Eg(S1,6), Ef(S2,0) = Eg(S2,0), and Ef(S3,1) =Eg(S3,1), thenf−a ≡t(g−a), wheretn = 1, or(f−a)(g−a)≡s, wheresn=b2n.

From Corollary1.5we can prove the following theorem.

Theorem 5.1. Let S1, S2, and S3 be defined as in Theorem K. If Ef(S1,2) = Eg(S1,2),Ef(S2,0) = Eg(S2,0), andEf(S3,1) =Eg(S3,1), thenf−a ≡t(g−a), wheretn= 1, or(f−a)(g−a)≡s, wheresn =b2n.

The following example shows that the assumption“n≥2”in Theorem5.1is the best possible.

Example 5.1. Letf =a+b(1−ez)3andg =a+3b(e−z−e−2z), and letS1 ={a+b}, S2 ={a}, andS3 ={∞}, whereaandb(6= 0)are constants.

The following example shows that the condition “Ef(S3,1) = Eg(S3,1)” in Theorem5.1is the best possible.

(21)

Meromorphic Functions Junfan Chen, Shouhua Shen and

Weichuan Lin vol. 8, iss. 1, art. 19, 2007

Title Page Contents

JJ II

J I

Page21of 24 Go Back Full Screen

Close

Example 5.2. Letf = (e2z+ 1)2/(2ez(e2z−1))andg = 2iez(e2z+ 1)/(e2z−1)2, and letS1 = {−1,1}, S2 = {0}, andS3 = {∞}. ThenEf(S1,∞) = Eg(S1,∞), Ef(S2,0) =Eg(S2,0), andEf(S3,0) = Eg(S3,0).

Proof of Theorem5.1. LetF = ((f−a)/b)nandG= ((g−a)/b)n. ThenF andG share(1,5), (0,1), and(∞,3). Since N1)(r,1/F) = N1)(r, F) = 0, it follows by (ii)in Corollary1.5 thatF ≡GorF ·G≡1. From this, we deduce that Theorem 5.1holds.

Similarly, from Corollary1.5we can prove the following theorem.

Theorem 5.2. Let S1, S2, and S3 be defined as in Theorem K. If Ef(S1,2) = Eg(S1,2),Ef(S2,1) = Eg(S2,1), andEf(S3,0) =Eg(S3,0), thenf−a ≡t(g−a), wheretn= 1, or(f−a)(g−a)≡s, wheresn =b2n.

It is obvious that Theorems5.1and5.2are improvements of TheoremK.

On the other hand, we can also obtain the following theorems.

Theorem 5.3. LetS1 ={a+b, a+bω, . . . , a+bωn−1},S2 ={a}, andS3 ={∞}, where n (≥ 3) is an integer, a and b (6= 0) are constants, and ω = cos(2π/n) + isin(2π/n). If Ef(S1,2) = Eg(S1,2), Ef(S2,0) = Eg(S2,0), and Ef(S3,0) = Eg(S3,0), then f −a ≡ t(g −a), where tn = 1, or (f −a)(g −a) ≡ s, where sn =b2n.

Proof. LetF = ((f −a)/b)nandG= ((g−a)/b)n. Note thatn ≥3. ThenF and Gshare(1,8),(0,2), and(∞,2). SinceN1)(r,1/F) =N1)(r, F) = 0, it follows by (i)in Corollary1.5 thatF ≡ GorF ·G≡ 1. From this, we deduce that Theorem 5.2holds.

Theorem 5.4. LetS1 ={a+b, a+bω, . . . , a+bωn−1},S2 ={a}, andS3 ={∞}, where n (≥ 3) is an integer, a and b (6= 0) are constants, and ω = cos(2π/n) +

(22)

Meromorphic Functions Junfan Chen, Shouhua Shen and

Weichuan Lin vol. 8, iss. 1, art. 19, 2007

Title Page Contents

JJ II

J I

Page22of 24 Go Back Full Screen

Close

isin(2π/n). If Ef(S1,1) = Eg(S1,1), Ef(S2,0) = Eg(S2,0), and Ef(S3,1) = Eg(S3,1), then f −a ≡ t(g −a), where tn = 1, or (f −a)(g −a) ≡ s, where sn =b2n.

Proof. LetF = ((f −a)/b)nandG= ((g−a)/b)n. Note thatn ≥3. ThenF and Gshare(1,5),(0,2), and(∞,3). SinceN1)(r,1/F) =N1)(r, F) = 0, it follows by (ii)in Corollary1.5 thatF ≡GorF ·G≡1. From this, we deduce that Theorem 5.3holds.

It is easy to see that Example 5.2 also shows that the assumption “n ≥ 3” in Theorems5.3and5.4is the best possible.

(23)

Meromorphic Functions Junfan Chen, Shouhua Shen and

Weichuan Lin vol. 8, iss. 1, art. 19, 2007

Title Page Contents

JJ II

J I

Page23of 24 Go Back Full Screen

Close

References

[1] G. BROSCH, Eindeutigkeitss¨atze f¨ur meromorphe funktionen, Thesis, Techni- cal University of Aachen, 1989.

[2] G.G. GUNDENSEN, Meromorphic functions that share three or four values, J.

London Math. Soc., 20 (1979), 457-466.

[3] W.K. HAYMAN, Meromorphic Functions, Claredon Press, Oxford, 1964.

[4] I. LAHIRI, Weighted sharing and uniqueness of meromorphic functions, Nagoya Math. J., 161 (2001), 193–206.

[5] I. LAHIRI, Weighted sharing of three values and uniqueness of meromorphic functions, Kodai Math. J., 24 (2001), 421–435.

[6] I. LAHIRI, Weighted value sharing and uniqueness of meromorphic functions, Complex Variables Theory Appl., 46 (2001), 241–253.

[7] I. LAHIRI, On a result of Ozawa concerning uniqueness of meromorphic func- tions, J. Math. Anal. Appl., 271 (2002), 206–216.

[8] I. LAHIRI, On a result of Ozawa concerning uniqueness of meromorphic func- tions II, J. Math. Anal. Appl., 283 (2003), 66–76.

[9] P. LI, Meromorphic functions sharing three values or sets CM, Kodai Math. J., 21 (1998), 138–152.

[10] R. NEVANLINNA, Le Théorème de Picard-Borel et la Théorie Des Functions Méromorphes, Gauthiers-Villars, Paris, 1929.

[11] M. OZAWA, Unicity theorems for entire functions, J. D’Anal. Math., 30 (1976), 411–420.

(24)

Meromorphic Functions Junfan Chen, Shouhua Shen and

Weichuan Lin vol. 8, iss. 1, art. 19, 2007

Title Page Contents

JJ II

J I

Page24of 24 Go Back Full Screen

Close

[12] H. UEDA, Unicity theorems for meromorphic or entire functions II, Kodai Math. J., 6 (1983), 26–36.

[13] H. UEDA, On the zero-one-pole set of a meromorphic function II, Kodai Math.

J., 13 (1990), 134–142.

[14] H.X. YI, Meromorphic functions sharing three values, Chinese Ann. Math. Ser.

A, 9 (1988), 433–440.

[15] H.X. YI, Meromorphic functions that share two or three values, Kodai Math.

J., 13 (1990), 363–372.

[16] H.X. YI, Unicity theorems for meromorphic functions that share three values, Kodai Math. J., 18 (1995), 300–314.

[17] H.X. YI, Meromorphic functions that share three values, Bull. Hong Kong Math. Soc., 2 (1998), 55–64.

[18] H.X. YI, On some results of Lahiri, J. Math. Anal. Appl., 284 (2003), 481–495.

[19] H.X. YI AND C.C. YANG, Uniqueness Theory of Meromorphic Functions (Chinese), Science Press, Beijing, 1995.

[20] Q.C. ZHANG, Meromorphic functions sharing three values, Indian J. Pure Appl. Math., 30 (1999), 667–682.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

The research of the sec- ond author was supported by the National Natural Science Foundation of China (Grant No. 10671109) and the Youth Science Technology Foundation of

In this paper we prove some uniqueness theorems of meromorphic functions which improve a result of Tohge and answer a question given by him. Furthermore, an example shows that

In this paper, we deal with the problems of uniqueness of meromorphic func- tions that share one finite value with their derivatives and obtain some results that improve the

In this paper we establish some results concerning the partial sums of mero- morphic p-valent starlike functions and meromorphic p-valent convex functions.. 2000 Mathematics

INAYAT NOOR, Inclusion properties for certain classes of meromorphic functions associated with Choi-Saigo-Srivastava operator, J. SAIGO

Key words and phrases: Meromorphic functions, Functions with positive real part, Convolution, Integral operator, Functions with bounded boundary and bounded radius

Key words: Partial sums, Meromorphic functions, Integral operators, Meromorphic starlike functions, Meromorphic convex functions, Meromorphic close to convex

Key words and phrases: Partial sums, Meromorphic functions, Integral operators, Meromorphic starlike functions, Meromor- phic convex functions, Meromorphic close to convex