• Nem Talált Eredményt

JJ II

N/A
N/A
Protected

Academic year: 2022

Ossza meg "JJ II"

Copied!
18
0
0

Teljes szövegt

(1)

volume 2, issue 1, article 4, 2001.

Received 13 April, 2000;

accepted 04 October 2000.

Communicated by:N.S. Barnett

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

SOME ASPECTS OF CONVEX FUNCTIONS AND THEIR APPLICA- TIONS

JAMAL ROOIN

Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-159, Gava Zang,

Zanjan 45195, IRAN.

and

Faculty of Mathematical Sciences and Computer Engineering, University for Teacher Education,

599 Taleghani Avenue, Tehran 15614, IRAN.

EMail:Rooin@iasbs.ic.ir

c

2000Victoria University ISSN (electronic): 1443-5756 008-00

(2)

Some Aspects of Convex Functions and Their

Applications Jamal Rooin

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of18

J. Ineq. Pure and Appl. Math. 2(1) Art. 4, 2001

http://jipam.vu.edu.au

Abstract

In this paper we will study some aspects of convex functions and as applications prove some interesting inequalities.

2000 Mathematics Subject Classification:26D15, 39B62, 43A15 Key words: Convex Functions, Means, Lp-Spaces, Fubini’s Theorem

The author is supported in part by the Institute for Advanced Studies in Basic Sci- ences.

Contents

1 Introduction. . . 3 2 The Main Results . . . 4 3 Applications. . . 11

References

(3)

Some Aspects of Convex Functions and Their

Applications Jamal Rooin

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of18

J. Ineq. Pure and Appl. Math. 2(1) Art. 4, 2001

http://jipam.vu.edu.au

1. Introduction

In [2] Sever S. Dragomir and Nicoleta M. Ionescu have studied some aspects of convex functions and obtained some interesting inequalities. In this paper we generalize the above paper to a very general case by introducing a suitable convex function of a real variable from a given convex function. Studying its properties leads to some remarkable inequalities in different abstract spaces.

(4)

Some Aspects of Convex Functions and Their

Applications Jamal Rooin

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of18

J. Ineq. Pure and Appl. Math. 2(1) Art. 4, 2001

http://jipam.vu.edu.au

2. The Main Results

The aim of this section is to study the properties of the functionF defined below as Theorems2.2and2.5.

First we mention the following simple lemma, which describes the behavior of a convex function defined on a closed interval of the real line.

Lemma 2.1. LetF be a convex function on the closed interval[a, b]. Then, we have

(i) F takes its maximum ataorb.

(ii) F is bounded from below.

(iii) F(a+)andF(b−)exist (and are finite).

(iv) If the infimum ofF over[a, b]is less thanF(a+)andF(b−), thenF takes its minimum at a pointx0in(a, b).

(v) Ifa≤ x0 < b(ora < x0 ≤ b), andF(x0+)(or(F(x0−)) is the infimum ofF over[a, b], thenF is monotone decreasing on[a, x0](or[a, x0)) and monotone increasing on(x0, b](or[x0, b]).

Proof. See [3,4].

Definition 2.1. Let X be a linear space, and f : C ⊆ X → R be a convex mapping on a convex subsetCofX. Forngiven elementsx1, x2,· · · , xnofC,

(5)

Some Aspects of Convex Functions and Their

Applications Jamal Rooin

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of18

J. Ineq. Pure and Appl. Math. 2(1) Art. 4, 2001

http://jipam.vu.edu.au

we define the following mapping of real variableF : [0,1]→Rby

F(t) =

n

P

i=1

f

n

X

j=1

aij(t)xj

!

n ,

where aij : [0,1] → R+ (i, j = 1,· · · , n)are affine mappings, i.e., aij(αt1 + βt2) = αaij(t1) +βaij(t2)for allα, β ≥0withα+β = 1andt1, t2 in[0,1], and for eachiandj

n

X

i=1

aij(t) = 1,

n

X

j=1

aij(t) = 1 (0 ≤t≤1).

The next theorem contains some remarkable properties of this mapping.

Theorem 2.2. With the above assumptions, we have:

(i) f

x1+· · ·+xn n

≤F(t)≤ f(x1) +· · ·+f(xn)

n (0≤t≤1).

(ii) F is convex on[0,1].

(iii) f

x1+· · ·+xn n

≤R1

0 F(t)dt≤ f(x1) +· · ·+f(xn)

n .

(iv) Let pi ≥ 0 with Pn = Pn

i=1pi > 0, and ti are in [0,1] for all i =

(6)

Some Aspects of Convex Functions and Their

Applications Jamal Rooin

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of18

J. Ineq. Pure and Appl. Math. 2(1) Art. 4, 2001

http://jipam.vu.edu.au

1,2,· · · , n. Then, we have the inequality:

f

x1 +· · ·+xn n

≤F 1

Pn

n

X

i=1

piti

! (2.1)

≤ 1 Pn

n

X

i=1

piF(ti)≤ f(x1) +· · ·+f(xn)

n ,

which is a discrete version of Hadamard’s result.

Proof. (i) By the convexity off, for all0≤t≤1, we have

F(t) ≥ f Pn

i=1

Pn

j=1aij(t)xj n

!

= f Pn

j=1

Pn

i=1aij(t)xj n

!

= f Pn

j=1xj n

! ,

and

F(t) ≤ Pn

i=1

Pn

j=1aij(t)f(xj) n

= Pn

j=1

Pn

i=1aij(t)f(xj) n

= Pn

j=1f(xj)

n .

(7)

Some Aspects of Convex Functions and Their

Applications Jamal Rooin

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of18

J. Ineq. Pure and Appl. Math. 2(1) Art. 4, 2001

http://jipam.vu.edu.au

(ii) Letα, β ≥0withα+β = 1andt1,t2be in[0,1]. Then, F(αt1+βt2)

(2.2)

= Pn

i=1f Pn

j=1aij(αt1+βt2)xj n

= Pn

i=1f

αPn

j=1aij(t1)xj +βPn

j=1aij(t2)xj

n

≤α Pn

i=1f Pn

j=1aij(t1)xj

n +β

Pn i=1f

Pn

j=1aij(t2)xj n

=αF(t1) +βF(t2).

ThusF is convex.

(iii) F being convex on[0,1], is integrable on[0,1], and by(i), we get(iii).

(iv) The first and last inequalities in (2.1) are obvious from(i), and the second inequality follows from Jensen’s inequality applied for the convex function F.

Lemma 2.3. The general form of an affine mappingg : [0,1]→Ris g(t) = (1−t)k0+tk1,

wherek0 andk1 are two arbitrary real numbers.

The proof follows by consideringt= (1−t)·0 +t·1.

(8)

Some Aspects of Convex Functions and Their

Applications Jamal Rooin

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of18

J. Ineq. Pure and Appl. Math. 2(1) Art. 4, 2001

http://jipam.vu.edu.au

Lemma 2.4. Ifaij : [0,1] →R+ (i, j = 1,2,· · · , n)are affine mappings such that for eacht, iandj,Pn

i=1aij(t) = 1andPn

j=1aij(t) = 1, then there exist nonnegative numbersbij andcij, such that

(2.3) aij(t) = (1−t)bij +tcij (0≤t ≤1; i, j = 1,· · · , n), and for anyiandj

n

X

i=1

bij =

n

X

i=1

cij = 1, and

n

X

j=1

bij =

n

X

j=1

cij = 1.

Proof. The decomposition of (2.3) is immediate from Lemma2.3, and the rest of the proof comes from below:

0 ≤ aij(0) =bij, 0≤aij(1) =cij,

n

X

i=1

bij =

n

X

i=1

aij(0) = 1,

n

X

i=1

cij =

n

X

i=1

aij(1) = 1,

n

X

j=1

bij =

n

X

j=1

aij(0) = 1,

n

X

j=1

cij =

n

X

j=1

aij(1) = 1.

Remark 2.1. A lot of simplifications occur if we take

(2.4) bijij and ciji,n+1−j (i, j = 1,· · · , n), in Lemma2.4, whereδij is the Kronecker delta.

(9)

Some Aspects of Convex Functions and Their

Applications Jamal Rooin

Title Page Contents

JJ II

J I

Go Back Close

Quit Page9of18

J. Ineq. Pure and Appl. Math. 2(1) Art. 4, 2001

http://jipam.vu.edu.au

Theorem 2.5. With the above assumptions, if bij and cij are in the form (2.4), then we have:

(i) For eachtin 0,12

,F 12 +t

=F 12 −t .

(ii) max{F(t) : 0 ≤t≤1}=F(0) =F(1) = n1(f(x1) +· · ·+f(xn)).

(iii) min{F(t) : 0≤t ≤1}=F 12

=Pn

i=1f xi+xn+1−i2 n.

(iv) F is monotone decreasing on 0,12

and monotone increasing on1

2,1 . Proof. (i) Sincebijij andciji,n+1−j, we have

(2.5) F(t) =

n

P

i=1

f[(1−t)xi+txn+1−i]

n ,

and therefore, for eachtin 0,12

,

F 1

2−t

=

n

P

i=1

f 1

2 +t

xi+ 12 −t

xn+1−i

n

=

n

P

i=1

f 1

2 +t

xn+1−i+ 12 −t xi n

= F 1

2 +t

.

(ii) It is obvious from (2.5), and (i) of Lemma2.1.

(10)

Some Aspects of Convex Functions and Their

Applications Jamal Rooin

Title Page Contents

JJ II

J I

Go Back Close

Quit Page10of18

J. Ineq. Pure and Appl. Math. 2(1) Art. 4, 2001

http://jipam.vu.edu.au

(iii) IfF(12)is not the minimum ofF over[0,1], then by (i), there is a0< t≤

1

2, such that

F 1

2 −t

=F 1

2+t

< F 1

2

. But, using the convexity ofF over[0,1], we have

F 1

2

≤ 1 2F

1 2 −t

+ 1

2F 1

2+t

< F 1

2

, a contradiction.

(iv) It is obvious from (iii) of Theorem2.5, and (v) of Lemma2.1.

(11)

Some Aspects of Convex Functions and Their

Applications Jamal Rooin

Title Page Contents

JJ II

J I

Go Back Close

Quit Page11of18

J. Ineq. Pure and Appl. Math. 2(1) Art. 4, 2001

http://jipam.vu.edu.au

3. Applications

Application 1. Let x1, x2,· · · , xn be n nonnegative numbers. Then, with the above notations, we have

(3.1) √n

x1x2· · ·xnn v u u t

n

Y

i=1 n

X

j=1

[(1−t)bij +tcij]xj ≤ x1+x2 +· · ·+xn

n ,

(3.2) √n

x1x2· · ·xnn v u u t

n

Y

i=1

[(1−t)xi+txn+1−i]≤ x1+x2+· · ·+xn

n ,

for alltin[0,1], and

n

x1x2· · ·xn ≤ e−1 n v u u u u u t

n

Y

i=1

 P

jcijxj

Pjcijxj

P

jbijxjPjbijxj

1

(Pj cij xjP j bij xj) (3.3)

≤ x1+x2+· · ·+xn

n .

In particular

n

x1x2· · ·xn ≤ e−1 n v u u t

n

Y

i=1

xxn+1−in+1−i xxii

( 1

xn+1−ixi)

(3.4)

≤ x1 +x2+· · ·+xn

n ,

(12)

Some Aspects of Convex Functions and Their

Applications Jamal Rooin

Title Page Contents

JJ II

J I

Go Back Close

Quit Page12of18

J. Ineq. Pure and Appl. Math. 2(1) Art. 4, 2001

http://jipam.vu.edu.au

and

(3.5) √

x1x2 ≤e−1 xx11

xx22 x 1

1−x2

≤ x1+x2 2 ,

(3.6) 2n+ 2

2n+ 1

1 + 1 n

n

≤e≤

rn+ 1 n

1 + 1

n n

.

Proof. If we takef : (0,∞)→R, f(x) =−lnx,then we have

F(t) = −1 n

n

X

i=1

ln

n

X

j=1

[(1−t)bij+tcij]xj

! ,

and Z 1

0

F(t)dt = −1 n

n

X

i=1

Z 1 0

ln

n

X

j=1

[(1−t)bij +tcij]xj

! dt

= −1 n ln

n

Y

i=1

 Pn

j=1cijxj

Pnj=1cijxj

Pn

j=1bijxjPnj=1bijxj

1 Pn

j=1cij xjPn j=1bij xj

+ 1,

which proves (3.1) and (3.3). In particular, if we take bij = δij and cij = δi,n+1−j(i, j = 1,· · · , n), we obtain (3.2) and (3.4) from (3.1) and (3.3) respec- tively. The result (3.5) is immediate from (3.4). If we takex1 =n, x2 =n+ 1 in (3.5), we get (3.6).

(13)

Some Aspects of Convex Functions and Their

Applications Jamal Rooin

Title Page Contents

JJ II

J I

Go Back Close

Quit Page13of18

J. Ineq. Pure and Appl. Math. 2(1) Art. 4, 2001

http://jipam.vu.edu.au

Application 2. If X is a Lebesgue measurable subset of Rk, p ≥ 1, and f1, f2,· · · , fnbelong toLp =Lp(X), then we have

f1+· · ·+fn

n

p

p

≤ Pn

i=1

hPn

j=1cij|fj|;Pn

j=1bij|fj|i n(p+ 1)

(3.7)

≤ kf1kpp+· · ·+kfnkpp

n ,

and

f1+· · ·+fn n

p

p

≤ Pn

i=1[|fi|;|fn+1−i|]

n(p+ 1) (3.8)

≤ kf1kpp+· · ·+kfnkpp

n ,

where for each Lebesgue measurable functiong ≥0andh≥0onX,

[g;h] =

gp+1−hp+1 g−h

1

= Z

X

gp+1−hp+1 g−h dx, wheng(x) =h(x), the integrand is understood to be(p+ 1)gp(x).

In particular, ifpis an integer then,

(3.9)

f1 +· · ·+fn n

p

p

n

P

i=1 p

P

k=0

fik.fn+1−ip−k 1

n(p+ 1) ≤ kf1kpp+· · ·+kfnkpp

n ,

(14)

Some Aspects of Convex Functions and Their

Applications Jamal Rooin

Title Page Contents

JJ II

J I

Go Back Close

Quit Page14of18

J. Ineq. Pure and Appl. Math. 2(1) Art. 4, 2001

http://jipam.vu.edu.au

and

(3.10)

f1 +f2 2

p

p

p

P

k=0

f1k.f2p−k 1

p+ 1 ≤ kf1kpp+kf2kpp

2 ,

Proof. Since

(f1+· · ·+fn) n

p

(|f1|+· · ·+|fn|) n

p

and the Lp−norms of fi and |fi| are equal (i = 1,· · · , n), it is sufficient to assume fi ≥ 0 (i = 1,· · · , n). If we take ϕ → kϕkp for the convex function Lp →R, then using Fubini’s theorem we get

Z 1 0

F(t)dt = 1 n

n

X

i=1

Z 1 0

n

X

j=1

[(1−t)bij +tcij]fj

p

p

dt

= 1 n

n

X

i=1

Z 1 0

Z

X n

X

j=1

[(1−t)bij+tcij]fj(x)

!p

dxdt

= 1 n

n

X

i=1

Z

X

Z 1 0

n

X

j=1

[(1−t)bij+tcij]fj(x)

!p

dtdx

= 1

n(p+ 1)

n

X

i=1

Z

X

Pn

j=1cijfjp+1

− Pn

j=1bijfjp+1

Pn

j=1cijfj−Pn

j=1bijfj dx

(15)

Some Aspects of Convex Functions and Their

Applications Jamal Rooin

Title Page Contents

JJ II

J I

Go Back Close

Quit Page15of18

J. Ineq. Pure and Appl. Math. 2(1) Art. 4, 2001

http://jipam.vu.edu.au

= Pn

i=1

hPn

j=1cijfj;Pn j=1bijfj

i

n(p+ 1) ,

which yields (3.7). In particular, if we set bij = δij andcij = δi,n+1−j(i, j = 1,· · · , n), (3.8) follows from (3.7). Finally, (3.9) and (3.10) are immediate from (3.8).

Remark 3.1. LetXbe a Lebesgue measurable subset ofRkwith finite measure, and M be the vector space of all Lebesgue measurable functions on X with pointwise operations [1]. The setC, consisting of all nonnegative measurable functions onX, is a convex subset ofM. Since the functiont → 1+tt (t ≥0)is concave, the mappingϕ:C →Rwith

ϕ(f) = Z

X

f

1 +fdx (f ∈C)

is concave.

Application 3. With the above notations, iff1,· · · , fnbelong toM, then 1

n

n

X

i=1

Z

X

|fi| 1 +|fi|dx (3.11)

≤m(X)− 1 n

n

X

i=1

Z

X

1 Pn

j=1(cij −bij)|fj|ln1 +Pn

j=1cij|fj| 1 +Pn

j=1bij|fj|dx

≤ Z

X 1 n

Pn i=1|fi| 1 + n1 Pn

i=1|fi|dx,

(16)

Some Aspects of Convex Functions and Their

Applications Jamal Rooin

Title Page Contents

JJ II

J I

Go Back Close

Quit Page16of18

J. Ineq. Pure and Appl. Math. 2(1) Art. 4, 2001

http://jipam.vu.edu.au

1 n

n

X

i=1

Z

X

|fi| 1 +|fi|dx (3.12)

≤m(X)− 1 n

n

X

i=1

Z

X

1

|fn+1−i| − |fi|ln1 +|fn+1−i| 1 +|fi| dx

≤ Z

X 1 n

Pn i=1|fi| 1 + 1nPn

i=1|fi|dx,

1 2

2

X

i=1

Z

X

|fi|

1 +|fi|dx ≤ m(X)− Z

X

1

|f2| − |f1|ln1 +|f2| 1 +|f1|dx (3.13)

≤ Z

X 1 2

P2 i=1|fi| 1 + 12P2

i=1|fi|dx,

in which, generally, whena=b >0, the ratio(lnb−lna)(b−a)is understood as1a.

Proof. We can suppose thatfi ≥0 (1≤ i≤ n). Sinceϕis concave, takingϕ andφinstead off andF in Theorem2.2respectively, we get

ϕ(f1) +· · ·+ϕ(fn)

n ≤

Z 1 0

φ(t)dt (3.14)

≤ ϕ

f1+· · ·+fn n

.

(17)

Some Aspects of Convex Functions and Their

Applications Jamal Rooin

Title Page Contents

JJ II

J I

Go Back Close

Quit Page17of18

J. Ineq. Pure and Appl. Math. 2(1) Art. 4, 2001

http://jipam.vu.edu.au

However, by Fubini’s theorem and applying the change of variables

u=

n

X

j=1

[(1−t)bij +tcij]fj(x),

in the following integrals, we have,

Z 1 0

φ(t)dt = 1 n

n

X

i=1

Z 1 0

Z

X

Pn

j=1[(1−t)bij +tcij]fj(x) 1 +Pn

j=1[(1−t)bij +tcij]fj(x)dxdt

= 1 n

n

X

i=1

Z

X

Z 1 0

Pn

j=1[(1−t)bij +tcij]fj(x) 1 +Pn

j=1[(1−t)bij +tcij]fj(x)dtdx

= 1 n

n

X

i=1

Z

X

1 Pn

j=1(cij −bij)fj(x)

Z Pnj=1cijfj(x) Pn

j=1bijfj(x)

1− 1 1 +u

dudx

= m(X)− 1 n

n

X

i=1

Z

X

1 Pn

j=1(cij −bij)fj

ln1 +Pn j=1cijfj 1 +Pn

j=1bijfj

dx,

and after substituting this in (3.14), we obtain (3.11). The inequalities (3.12) and (3.13) are special cases of (3.11), takingbijij andciji,n+1−j. Acknowledgement 1. I would like to express my gratitude to Professors A. R.

Medghalchi and B. Mehri for their valuable comments and suggestions.

(18)

Some Aspects of Convex Functions and Their

Applications Jamal Rooin

Title Page Contents

JJ II

J I

Go Back Close

Quit Page18of18

J. Ineq. Pure and Appl. Math. 2(1) Art. 4, 2001

http://jipam.vu.edu.au

References

[1] S. BERBERIAN, Lectures in functional analysis and operator theory, Springer, New York-Heidelberg-Berlin, 1974.

[2] S. S. DRAGOMIR ANDN. M. IONESCU, Some remarks on convex func- tions, Revue d’analyse numérique et de théorie de l’approximation, 21 (1992), 31–36.

[3] A.W. ROBERTSANDD.E. VARBERG, Convex functions, Academic Press, New York and London, 1973.

[4] R. WEBSTER, Convexity, Oxford University Press, Oxford, New York, Tokyo, 1994.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

PEARCE, Selected Topics on Hermite- Hadamard Inequalities and Applications, RGMIA Monographs, Vic- toria University, 2000. ROOIN, Some aspects of convex functions and

We derive some interesting properties of this generalized integral operator which include inclu- sion results and radius problems.. 2000 Mathematics Subject Classification:

In the present paper, by introducing some parameters, new forms of Hardy- Hilbert’s inequalities are given.. 2000 Mathematics Subject

Key words and phrases: Partial sums, Meromorphic starlike functions, Meromorphic convex functions, Meromorphic close- to-convex functions, Integral operators.. 2000 Mathematics

The main result of this paper shows that λ-convex functions can be character- ized in terms of a lower second-order generalized derivative.. 2000 Mathematics Subject

In this paper, using Grüss’ and Chebyshev’s inequalities we prove several in- equalities involving Taylor’s remainder.. 2000 Mathematics Subject

Some interesting inequalities proved by Dragomir and van der Hoek are gener- alized with some remarks on the results.. 2000 Mathematics Subject

In this paper, some new inequalities similar to Hilbert-Pachpatte type inequali- ties are given.. 2000 Mathematics Subject