• Nem Talált Eredményt

A STUDY ON STARLIKE AND CONVEX PROPERTIES FOR HYPERGEOMETRIC FUNCTIONS

N/A
N/A
Protected

Academic year: 2022

Ossza meg "A STUDY ON STARLIKE AND CONVEX PROPERTIES FOR HYPERGEOMETRIC FUNCTIONS"

Copied!
16
0
0

Teljes szövegt

(1)

Study on Starlike and Convex Properties

A. O. Mostafa vol. 10, iss. 3, art. 87, 2009

Title Page

Contents

JJ II

J I

Page1of 16 Go Back Full Screen

Close

A STUDY ON STARLIKE AND CONVEX

PROPERTIES FOR HYPERGEOMETRIC FUNCTIONS

A. O. MOSTAFA

Department of Mathematics Faculty of Science

Mansoura University Mansoura 35516, Egypt EMail:adelaeg254@yahoo.com

Received: 07 May, 2008

Accepted: 21 August, 2009

Communicated by: S.S. Dragomir 2000 AMS Sub. Class.: 30C45.

Key words: Starlike, Convex, Hypergeometric function, Integral operator.

Abstract: The objective of the present paper is to give some characterizations for a (Gaus- sian) hypergeometric function to be in various subclasses of starlike and convex functions. We also consider an integral operator related to the hypergeometric function.

(2)

Study on Starlike and Convex Properties

A. O. Mostafa vol. 10, iss. 3, art. 87, 2009

Title Page Contents

JJ II

J I

Page2of 16 Go Back Full Screen

Close

Contents

1 Introduction 3

2 Main Results 5

3 An Integral Operator 13

(3)

Study on Starlike and Convex Properties

A. O. Mostafa vol. 10, iss. 3, art. 87, 2009

Title Page Contents

JJ II

J I

Page3of 16 Go Back Full Screen

Close

1. Introduction

LetT be the class consisting of functions of the form:

(1.1) f(z) = z−

X

n=2

anzn (an>0),

which are analytic and univalent in the open unit discU ={z :|z|<1}.LetT(λ, α) be the subclass ofT consisting of functions which satisfy the condition:

(1.2) Re

zf0(z)

λzf0(z) + (1−λ)f(z)

> α, for someα(0≤α <1), λ(0≤λ <1)and for allz∈U.

Also, letC(λ, α)denote the subclass of T consisting of functions which satisfy the condition:

(1.3) Re

f0(z) +zf00(z) f0(z) +λzf00(z)

> α, for someα(0≤α <1), λ(0≤λ <1)and for allz∈U.

From(1.2)and(1.3), we have

(1.4) f(z)∈C(λ, α)⇔zf0(z)∈T(λ, α).

We note thatT(0, α) =T(α),the class of starlike functions of orderα (0≤α <1) and C(0, α) = C(α), the class of convex functions of orderα (0 ≤ α < 1) (see Silverman [6]).

LetF(a, b;c;z)be the (Gaussian ) hypergeometric function defined by

(1.5) F(a, b;c;z) =

X

n=0

(a)n(b)n

(c)n(1)nzn,

(4)

Study on Starlike and Convex Properties

A. O. Mostafa vol. 10, iss. 3, art. 87, 2009

Title Page Contents

JJ II

J I

Page4of 16 Go Back Full Screen

Close

wherec6= 0,−1,−2, ...,and(θ)nis the Pochhammer symbol defined by (θ)n =

( 1, n= 0

θ(θ+ 1)· · ·(θ+n−1) n∈N ={1,2, ...}.

We note that F(a, b;c; 1) converges for Re(c− a −b) > 0 and is related to the Gamma function by

(1.6) F(a, b;c; 1) = Γ(c)Γ(c−a−b) Γ(c−a)Γ(c−b).

Silverman [7] gave necessary and sufficient conditions forzF(a, b;c;z)to be in T(α)and C(α), also examining a linear operator acting on hypergeometric func- tions. For other interesting developments onzF(a, b;c;z)in connection with various subclasses of univalent functions, the reader can refer the to works of Carlson and Shaffer [2], Merkes and Scott [4], Ruscheweyh and Singh [5] and Cho et al. [3].

(5)

Study on Starlike and Convex Properties

A. O. Mostafa vol. 10, iss. 3, art. 87, 2009

Title Page Contents

JJ II

J I

Page5of 16 Go Back Full Screen

Close

2. Main Results

To establish our main results, we need the following lemma due to Altintas and Owa [1].

Lemma 2.1.

(i) A functionf(z)defined by(1.1)is in the classT(λ, α)if and only if (2.1)

X

n=2

(n−λαn−α+λα)an ≤1−α.

(ii) A functionf(z)defined by(1.1)is in the classC(λ, α)if and only if (2.2)

X

n=2

n(n−λαn−α+λα)an≤1−α.

Theorem A.

(i) Ifa, b >−1, c > 0andab <0,thenzF(a, b;c;z)is inT(λ, α)if and only if (2.3) c > a+b+ 1− (1−λα)ab

1−α .

(ii) If a, b > 0 andc > a+b+ 1, thenF1(a, b;c;z) = z[2−F(a, b;c;z)] is in T(λ, α)if and only if

(2.4) Γ(c)Γ(c−a−b) Γ(c−a)Γ(c−b)

1 + (1−λα)ab (1−α)(c−a−b−1)

≤2.

(6)

Study on Starlike and Convex Properties

A. O. Mostafa vol. 10, iss. 3, art. 87, 2009

Title Page Contents

JJ II

J I

Page6of 16 Go Back Full Screen

Close

Proof. (i)Since

zF(a, b;c;z) =z+ ab c

X

n=2

(a+ 1)n−2(b+ 1)n−2

(c+ 1)n−2(1)n−1

zn (2.5)

=z−

ab c

X

n=2

(a+ 1)n−2(b+ 1)n−2

(c+ 1)n−2(1)n−1

zn,

according to(i)of Lemma2.1, we must show that (2.6)

X

n=2

(n−λαn−α+λα)(a+ 1)n−2(b+ 1)n−2

(c+ 1)n−2(1)n−1

c ab

(1−α). Note that the left side of(2.6)diverges ifc < a+b+ 1. Now

X

n=2

(n−λαn−α+λα)(a+ 1)n−2(b+ 1)n−2 (c+ 1)n−2(1)n−1

= (1−λα)

X

n=0

(n+ 1)(a+ 1)n(b+ 1)n (c+ 1)n(1)n+1

+ (1−α)

X

n=0

(a+ 1)n(b+ 1)n (c+ 1)n(1)n+1

= (1−λα)

X

n=0

(a+ 1)n(b+ 1)n

(c+ 1)n(1)n +(1−α)c ab

X

n=1

(a)n(b)n (c)n(1)n

= (1−λα)Γ(c+ 1)Γ(c−a−b−1)

Γ(c−a)Γ(c−b) +(1−α)c ab

Γ(c)Γ(c−a−b) Γ(c−a)Γ(c−b)−1

.

(7)

Study on Starlike and Convex Properties

A. O. Mostafa vol. 10, iss. 3, art. 87, 2009

Title Page Contents

JJ II

J I

Page7of 16 Go Back Full Screen

Close

Hence,(2.6)is equivalent to (2.7) Γ(c+ 1)Γ(c−a−b−1)

Γ(c−a)Γ(c−b)

(1−λα) + (1−α)(c−a−b−1) ab

≤(1−α)h

c ab

+ c

ab i

= 0.

Thus,(2.7)is valid if and only if

(1−λα) + (1−α)(c−a−b−1)

ab ≤0,

or equivalently,

c>a+b+ 1− (1−λα)ab 1−α . (ii)Since

F1(a, b;c;z) =z−

X

n=2

(a)n−1(b)n−1

(c)n−1(1)n−1

zn, by(i)of Lemma2.1, we need only to show that

X

n=2

(n−λαn−α+λα)(a)n−1(b)n−1

(c)n−1(1)n−1

≤1−α.

Now,

X

n=2

(n−λαn−α+λα)(a)n−1(b)n−1

(c)n−1(1)n−1

(2.8)

=

X

n=2

[(n−1)(1−λα) + (1−α)](a)n−1(b)n−1

(c)n−1(1)n−1

(8)

Study on Starlike and Convex Properties

A. O. Mostafa vol. 10, iss. 3, art. 87, 2009

Title Page Contents

JJ II

J I

Page8of 16 Go Back Full Screen

Close

= (1−λα)

X

n=1

n(a)n(b)n

(c)n(1)n + (1−α)

X

n=1

(a)n(b)n (c)n(1)n

= (1−λα)

X

n=1

(a)n(b)n (c)n(1)n−1

+ (1−α)

X

n=1

(a)n(b)n (c)n(1)n. Noting that(θ)n=θ((θ+ 1)n−1then,(2.8)may be expressed as

(1−λα)ab c

X

n=1

(a+ 1)n−1(b+ 1)n−1

(c+ 1)n−1(1)n−1 + (1−α)

X

n=1

(a)n(b)n (c)n(1)n

= (1−λα)ab c

X

n=0

(a+ 1)n(b+ 1)n

(c+ 1)n(1)n + (1−α)

" X

n=0

(a)n(b)n (c)n(1)n −1

#

= (1−λα)ab c

Γ(c+ 1)Γ(c−a−b−1)

Γ(c−a)Γ(c−b) + (1−α)

Γ(c)Γ(c−a−b) Γ(c−a)Γ(c−b)−1

= Γ(c)Γ(c−a−b) Γ(c−a)Γ(c−b)

(1−α) + ab(1−λα) (c−a−b−1)

−(1−α).

But this last expression is bounded above by1−αif and only if(2.4)holds.

Theorem B.

(i) Ifa, b >−1,ab < 0,andc > a+b+ 2,thenzF(a, b;c;z)is inC(λ, α)if and only if

(2.9) (1−λα)(a)2(b)2 + (3−2λα−α)ab(c−a−b−2)

+ (1−α)(c−a−b−2)2 >0.

(9)

Study on Starlike and Convex Properties

A. O. Mostafa vol. 10, iss. 3, art. 87, 2009

Title Page Contents

JJ II

J I

Page9of 16 Go Back Full Screen

Close

(ii) If a, b > 0 and c > a+b+ 2, thenF1(a, b;c;z) = z[2−F(a, b;c;z)] is in C(λ, α)if and only if

(2.10) Γ(c)Γ(c−a−b) Γ(c−a)Γ(c−b)

1 + (1−λα)(a)2(b)2 (1−α)(c−a−b−2)2 +

3−2λα−α 1−α

ab c−a−b−1

≤2.

Proof. (i) SincezF(a, b;c;z)has the form (2.5), we see from(ii) of Lemma 2.1, that our conclusion is equivalent to

(2.11)

X

n=2

n(n−λαn−α+λα)(a+ 1)n−2(b+ 1)n−2

(c+ 1)n−2(1)n−1

c ab

(1−α). Note that forc > a+b+ 2, the left side of(2.11)converges. Writing

(n+ 2)[(n+ 2)(1−λα)−α(1−λ)]

= (n+ 1)2(1−λα) + (n+ 1)(2−α−λα) + (1−α), we see that

X

n=0

(n+ 2)[(n+ 2)(1−λα)−α(1−λ)](a+ 1)n(b+ 1)n (c+ 1)n(1)n+1

= (1−λα)

X

n=0

(n+ 1)2(a+ 1)n(b+ 1)n (c+ 1)n(1)n+1 + (2−α−λα)

X

n=0

(n+ 1)(a+ 1)n(b+ 1)n

(c+ 1)n(1)n+1 + (1−α)

X

n=0

(a+ 1)n(b+ 1)n

(c+ 1)n(1)n+1

(10)

Study on Starlike and Convex Properties

A. O. Mostafa vol. 10, iss. 3, art. 87, 2009

Title Page Contents

JJ II

J I

Page10of 16 Go Back Full Screen

Close

= (1−λα)

X

n=0

(n+ 1)(a+ 1)n(b+ 1)n (c+ 1)n(1)n + (2−α−λα)

X

n=0

(a+ 1)n(b+ 1)n

(c+ 1)n(1)n + (1−α)

X

n=0

(a+ 1)n(b+ 1)n (c+ 1)n(1)n+1

= (1−λα)

X

n=0

n(a+ 1)n(b+ 1)n (c+ 1)n(1)n

+ (3−α−2λα)

X

n=0

(a+ 1)n(b+ 1)n (c+ 1)n(1)n

+ (1−α)

X

n=1

(a+ 1)n−1(b+ 1)n−1

(c+ 1)n−1(1)n

= (1−λα)(a+ 1)(b+ 1) (c+ 1)

X

n=0

(a+ 2)n(b+ 2)n (c+ 2)n(1)n + (3−α−2λα)

X

n=0

(a+ 1)n(b+ 1)n

(c+ 1)n(1)n + (1−α) c ab

X

n=1

(a)n(b)n (c)n(1)n

= Γ(c+ 1)Γ(c−a−b−2) Γ(c−a)Γ(c−b)

−(1−λα)(a+ 1)(b+ 1) +(3−α−2λα)(c−a−b−2) + (1−α)

ab (c−a−b−2)2

− (1−α)c ab . This last expression is bounded above by

abc

(1−α)if and only if (1−λα)(a+1)(b+1)+(3−α−2λα)(c−a−b−2)+(1−α)

ab (c−a−b−2)2 ≤0, which is equivalent to(2.9).

(11)

Study on Starlike and Convex Properties

A. O. Mostafa vol. 10, iss. 3, art. 87, 2009

Title Page Contents

JJ II

J I

Page11of 16 Go Back Full Screen

Close

(ii)In view of(ii)of Lemma2.1, we need to show that

X

n=2

n(n−λαn−α+λα)(a)n−1(b)n−1

(c)n−1(1)n−1

≤(1−α). Now

X

n=2

n(n−λαn−α+λα)(a)n−1(b)n−1

(c)n−1(1)n−1

(2.12)

=

X

n=0

(n+ 2)[(n+ 2)(1−λα)−α(1−λ)](a)n+1(b)n+1 (c)n+1(1)n+1

= (1−λα)

X

n=0

(n+2)2(a)n+1(b)n+1

(c)n+1(1)n+1−α(1−λ)

X

n=0

(n+2)(a)n+1(b)n+1 (c)n+1(1)n+1. Writing(n+ 2) = (n+ 1) + 1,we have

X

n=0

(n+ 2)(a)n+1(b)n+1 (c)n+1(1)n+1 =

X

n=0

(n+ 1)(a)n+1(b)n+1 (c)n+1(1)n+1 +

X

n=0

(a)n+1(b)n+1 (c)n+1(1)n+1 (2.13)

=

X

n=0

(a)n+1(b)n+1 (c)n+1(1)n +

X

n=0

(a)n+1(b)n+1 (c)n+1(1)n+1 and

X

n=0

(n+ 2)2(a)n+1(b)n+1 (c)n+1(1)n+1 (2.14)

=

X

n=0

(n+ 1)(a)n+1(b)n+1

(c)n+1(1)n + 2

X

n=0

(a)n+1(b)n+1

(c)n+1(1)n +

X

n=0

(a)n+1(b)n+1

(c)n+1(1)n+1

(12)

Study on Starlike and Convex Properties

A. O. Mostafa vol. 10, iss. 3, art. 87, 2009

Title Page Contents

JJ II

J I

Page12of 16 Go Back Full Screen

Close

=

X

n=1

(a)n+1(b)n+1 (c)n+1(1)n−1

+ 3

X

n=0

(a)n+1(b)n+1 (c)n+1(1)n +

X

n=1

(a)n(b)n (c)n(1)n. Substituting(2.13)and(2.14)into the right side of(2.12), yields (2.15) (1−λα)

X

n=0

(a)n+2(b)n+2

(c)n+2(1)n + (3−2λα−α)

X

n=0

(a)n+1(b)n+1 (c)n+1(1)n + (1−α)

X

n=1

(a)n(b)n (c)n(1)n. Since(a)n+k= (a)k(a+k)n,we may write(2.15)as

Γ(c)Γ(c−a−b) Γ(c−a)Γ(c−b)

(1−λα)(a)2(b)2

(c−a−b−2)2 +(3−2λα−α)ab

(c−a−b−1) + (1−α)

−(1−α).

By a simplification, we see that the last expression is bounded above by(1−α)if and only if(2.10)holds.

Puttingλ= 0in(i)of TheoremB, we have:

Corollary 2.2. If a, b > −1, ab < 0, and c > a+b + 2,then zF(a, b;c;z) is in C(α)if and only if

(a)2(b)2+ (3−α)ab(c−a−b−2) + (1−α)(c−a−b−2)2 >0.

Remark 1. Corollary2.2, corrects the result obtained by Silverman [7, Theorem 4].

(13)

Study on Starlike and Convex Properties

A. O. Mostafa vol. 10, iss. 3, art. 87, 2009

Title Page Contents

JJ II

J I

Page13of 16 Go Back Full Screen

Close

3. An Integral Operator

In the theorems below, we obtain similar results in connection with a particular inte- gral operatorG(a, b;c;z)acting onF(a, b;c;z)as follows:

(3.1) G(a, b;c;z) =

Z z

0

F(a, b;c;t)dt.

Theorem C. Let a, b > −1, ab < 0 and c > max{0, a +b}. Then G(a, b;c;z) defined by(3.1)is inT(λ, α)if and only if

(3.2) Γ(c+ 1)Γ(c−a−b) Γ(c−a)Γ(c−b)

(1−λα)

ab − α(1−λ)(c−a−b) (a−1)2(b−1)2

+α(1−λ)(c−1)2 (a−1)2(b−1)2 ≤0.

Proof. Since

G(a, b;c;z) = z−

ab c

X

n=2

(a+ 1)n−2(b+ 1)n−2

(c+ 1)n−2(1)n

zn,

by(i)of Lemma2.1, we need only to show that

X

n=2

(n−λαn−α+λα)(a+ 1)n−2(b+ 1)n−2

(c+ 1)n−2(1)n

c ab

(1−α).

(14)

Study on Starlike and Convex Properties

A. O. Mostafa vol. 10, iss. 3, art. 87, 2009

Title Page Contents

JJ II

J I

Page14of 16 Go Back Full Screen

Close

Now

X

n=2

[n(1−λα)−α(1−λ)](a+ 1)n−2(b+ 1)n−2 (c+ 1)n−2(1)n

= (1−λα)

X

n=0

(n+ 2)(a+ 1)n(b+ 1)n (c+ 1)n(1)n+2

−α(1−λ)

X

n=0

(a+ 1)n(b+ 1)n (c+ 1)n(1)n+2

= (1−λα)

X

n=0

(a+ 1)n(b+ 1)n

(c+ 1)n(1)n+1 −α(1−λ)

X

n=1

(a+ 1)n−1(b+ 1)n−1

(c+ 1)n−1(1)n+1

= (1−λα)

X

n=1

(a+ 1)n−1(b+ 1)n−1

(c+ 1)n−1(1)n −α(1−λ) c ab

X

n=1

(a)n(b)n (c)n(1)n+1

= (1−λα) c ab

X

n=1

(a)n(b)n

(c)n(1)n −α(1−λ) c ab

X

n=1

(a)n(b)n (c)n(1)n+1

= (1−λα) c ab

" X

n=0

(a)n(b)n (c)n(1)n

−1

#

−α(1−λ) (c−1)2 (a−1)2(b−1)2

X

n=2

(a−1)n(b−1)n (c−1)n(1)n

= Γ(c+ 1)Γ(c−a−b) Γ(c−a)Γ(c−b)

(1−λα)

ab − α(1−λ)(c−a−b) (a−1)2(b−1)2

+ α(1−λ)(c−1)2

(a−1)2(b−1)2 − (1−α)c ab , which is bounded above by(1−α)

abc

if and only if(3.2)holds.

Now, we observe that G(a, b;c;z) ∈ C(λ, α) if and only if zF(a, b;c;z) ∈

(15)

Study on Starlike and Convex Properties

A. O. Mostafa vol. 10, iss. 3, art. 87, 2009

Title Page Contents

JJ II

J I

Page15of 16 Go Back Full Screen

Close

T(λ, α).Thus any result of functions belonging to the classT(λ, α)aboutzF(a, b;c;z) leads to that of functions belonging to the class C(λ, α).Hence we obtain the fol- lowing analogous result to TheoremA.

Theorem 3.1. Leta, b > −1, ab < 0andc > a+b+ 2.ThenG(a, b;c;z)defined by(3.1)is inC(λ, α)if and only if

c > a+b+ 1−(1−λα)ab 1−α .

Remark 2. Puttingλ= 0in the above results, we obtain the results of Silverman [7].

(16)

Study on Starlike and Convex Properties

A. O. Mostafa vol. 10, iss. 3, art. 87, 2009

Title Page Contents

JJ II

J I

Page16of 16 Go Back Full Screen

Close

References

[1] O. ALTINTASANDS. OWA, On subclasses of univalent functions with negative coefficients, Pusan Ky˘ongnam Math. J., 4 (1988), 41–56.

[2] B.C. CARLSONANDD.B. SHAFFER, Starlike and prestarlike hypergeometric functions, J. Math. Anal. Appl., 15 (1984), 737–745.

[3] N.E. CHO, S.Y. WOOANDS. OWA, Uniform convexity properties for hyperge- ometric functions, Fract. Calculus Appl. Anal., 5(3) (2002), 303–313.

[4] E. MERKESANDB.T. SCOTT, Starlike hypergeometric functions, Proc. Amer.

Math. Soc., 12 (1961), 885–888.

[5] St. RUSCHEWEYHANDV. SINGH, On the order of starlikeness of hypergeo- metric functions, J. Math. Anal. Appl., 113 (1986), 1–11.

[6] H. SILVERMAN, Univalent functions with negative coefficients, Proc. Amer.

Math. Soc., 51 (1975), 109–116.

[7] H. SILVERMAN, Starlike and convexity properties for hypergeometric func- tions, J. Math. Anal. Appl., 172 (1993), 574–581.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Key words: Univalent, Starlike, Convex, Uniformly convex, Uniformly starlike, Hadamard product, Integral means, Generalized hypergeometric functions.. Abstract: Making use of

Making use of the generalized hypergeometric functions, we introduce some gen- eralized class of k−uniformly convex and starlike functions and for this class, we settle the

A certain integral operator is used to define some subclasses of A and their inclusion properties are studied.. Key words and phrases: Convex and starlike functions of order

In this paper we establish some results concerning the partial sums of mero- morphic p-valent starlike functions and meromorphic p-valent convex functions.. 2000 Mathematics

Key words: Partial sums, Meromorphic functions, Integral operators, Meromorphic starlike functions, Meromorphic convex functions, Meromorphic close to convex

Key words and phrases: Partial sums, Meromorphic functions, Integral operators, Meromorphic starlike functions, Meromor- phic convex functions, Meromorphic close to convex

The multipliers {c n+m−1 } and {d n+m−1 } provide a transition from multivalent harmonic starlike functions to multivalent harmonic convex functions, including many more subclasses

For a brief history of the Fekete-Szegö problem for the class of starlike, convex and close-to-convex functions, see the recent paper by Srivastava et