• Nem Talált Eredményt

at the University of Pécs and at the University of Debrecen Identification number

N/A
N/A
Protected

Academic year: 2022

Ossza meg "at the University of Pécs and at the University of Debrecen Identification number"

Copied!
18
0
0

Teljes szövegt

(1)

at the University of Pécs and at the University of Debrecen

Identification number: TÁMOP-4.1.2-08/1/A-2009-0011

(2)

G-PROTEIN-LINKED RECEPTORS

Tímea Berki and Ferenc Boldizsár Signal transduction

Medical Biotechnology Master’s Programmes

at the University of Pécs and at the University of Debrecen

Identification number: TÁMOP-4.1.2-08/1/A-2009-0011

(3)

Nomenclature

• G-protein-coupled receptors (GPCRs)

• Seven-transmembrane domain receptors

• 7-TM receptors

• Heptahelical receptors

• Serpentine receptor

• G protein-linked receptors (GPLR)

(4)

Ligand-binding Gα C-terminal tail Other Gα surfaces Helix 8 (Gβ-binding)

Gα -binding

Interaction surface

IL1 IL2 IL3

EL1 EL2 EL3 Extracellular loops (EL1-3)

Intracellular loops (IL1-3)

N

C

GRK phosphorylation (Desensitization) PKC phosphorylation

(Desensitization)

PKC phosphorylation (Desensitization) Palmitoylation

(Lipid raft localization) N-Glycosylation

(Receptor folding, trafficking)

E/DRY Motif (Receptor activity and protein-protein interactions)

Plasma membrane

TM 1

TM 2

TM 3

TM 4

TM 5

TM 6

TM 7

Transmembrane helix (TM1-7)

TM 4

7-transmembrane-spanning

receptors (7-TM)

(5)

GPCR

(6)

Structure of 7-TM receptors

Side perspective

Intracellular persective

TM 1

TM 4

TM 5 TM

6 TM

7

IL 1

IL2

IL3 EL1

EL2 EL 3

N

C TM 2

TM 3

Intracellular loops

Extracellular loops

TM 1

TM 2

TM

3 TM

4 TM

5 TM

6 TM

7

IL1

IL3

EL1 EL2

EL3 N

C

Ga-binding surface Non-covalent

bond

IL2

TM 1

TM

2 TM

4 IL1

IL2

IL3

EL1

EL2 N EL3

C

TM 7

TM 6

TM 3

TM 5 Ga

TM 1

TM 5 TM TM 6

7

N

C

TM 4 TM

2

TM 3

Ga C-terminal

tail of Ga

Agonist

Active GPCR

Inactive GPCR

(7)

GPCR subtypes

• Class A (or 1) – Rhodopsin-like

• Class B (or 2) – Secretin receptor family

• Class C (or 3) – Metabotropic glutamate/pheromone

• Class D (or 4) – Fungal mating pheromone receptors

• Class E (or 5) – Cyclic AMP receptors

• Class F (or 6) – Frizzeled/Smoothened

(8)

GDP b  a

b  GTP

a GTP

b  a

GDP b  a

Plasma membrane

Cytoplasm

GDP GTP G-protein coupled receptor

(GPCR)

Signal molecule

Inactive G-protein

Activated G-protein subunits

GTP b  a

Activation of G-protein-coupled

receptors (GPCR)

(9)

GDP b  a

b 

GTP Gia

G-protein coupled receptor (GPCR)

Phospholipases Ion channels

Activates Rho

Ion channels PI3K Phospholipases Adenylyl cyclases Receptor kinases GTP

Gsa

GTP Gqa

GTP G12/13a GTP

a

Ca2+

PLC

PIP2 DAG

IP3 cAMP

Adenylyl cyclase ATP

cAMP Adenylyl

cyclase ATP

Plasma membrane

Cytoplasm

G-proteins

(10)

G-protein heterotrimer

(11)

Catecholamine hormon synthesis

CO 2

+ H 3 N

OH Tyrosine

Tyrosine hydroxylase

CO 2

+ H 3 N

OH Dihydroxy

phenilalanine (L-DOPA)

OH DOPA

decarboxylase

Dopamine

+ H 3 N

OH OH

Dopamine β-hydroxylase

Dopamine

+ H 3 N

OH

HO OH Phenethanolamine

N-methyltransferase

Epinephrine N

OH OH HO

H 2 +

H 3 C

(12)

Epinephrine and analogues

HO HO

OH

CH3 H N

Epinephrine (adrenaline)

Tyramine HCL HO

NH2 .HCL

OH

CH3 H N

Ephedrine sulphate CH3

2

.H2SO4

Pseudoephedrine HCL OH

CH3 H N CH3

.HCL

Dexamfetamine sulfate NH2 CH3

2

.H2SO4

Amfetamine sulfate NH2 CH3

2

.H2SO4

Phenylethanolamine sulfate NH2 OH

2

.H2SO4

Isoprenaline HCL N

OH

.HCL HO H

HO

CH3 CH3

Orciprenaline sulfate N

OH H HO

OH

CH3

CH3 .H2SO4

2

.H2SO4

2

Salbutamol sulfate N OH H

HO CH3

CH3 HO

CH3

.H2SO4

2

Terbutaline sulfate N OH H

CH3 CHCH3 3 HO

OH

(13)

cAMP-PKA pathway

PO4 gated channel Gα gated

channel

cAMP gated channel

Receptor

Inactive PKA Activated

PKA GTP

b  a

Adenylyl cyclase

R R

C C cAMP cAMP cAMP

cAMP R

R C C

C C R

cAMP cAMP

cAMP R cAMP

CRE CREB

cAMP Response Element

Gene expression P

CREB P CREB ATP cAMP

GTP a

Nucleus P cAMP

GTP a

P

ADP ATP

(14)

Primary Action of Epinephrine in a Liver Cell

Acetylcholine

Stress signal Fuel for „fight or flight”

Protein Kinase A

Glucose-6- Phosphatase

Pyr Kinase Fructose-2,6-

bisphosphatase

Pyruvate PEP Fructose-1,6-

bisP Fructose-6-P Fructose-2,6-bisP

Fructose-1,6-

bisphosphatase PFK-1

Glucose-6-P Glucose

Glucose-1-P Glycogen

Glucogen Phosphorylas

e Glucogen Synthase

P

P

P

Phosphorylas e Kinase A

P

P

cAMP ATP

Adenylate Cyclase

GDP b  as

Epinephrine

Receptor

(15)

Glucagon signaling

PANCREAS Glucose low in blood

Protein Kinase A

Glucose-6- Phosphatase

Pyr Kinase Fructose-2,6-

bisphosphatase

Pyruvate PEP Fructose-1,6-

bisP Fructose-6-P Fructose-2,6-

bisP

Fructose-1,6-

bisphosphatase PFK-1

Glucose-6-P Glucose

Glucose-1-P Glycogen

Glycogen Phosphorylas

e Glycogen Synthase

P

P

P P

cAMP ATP

Adenylate Cyclase

GDP b  as

Glucagon

(Epinephrine)

Receptor

(16)

Serotonin receptor

Serotonin receptor → G-protein → adenylyl cyclase

→ ATP → cAMP → PKA → cAMP Response

Element (CRE) → Gene expression

(17)

Types of serotonin receptor

Family Mechanism Potential

5-HT1 Decreasing cellular levels of cAMP Inhibitory

5-HT2 Increasing cellular levels of IP3 and DAG Excitatory

5-HT3 Depolarizing plasma membrane Excitatory

5-HT4 Increasing cellular levels of cAMP Excitatory

5-HT5 Decreasing cellular levels of cAMP Inhibitory

5-HT6 Increasing cellular levels of cAMP Excitatory

5-HT7 Increasing cellular levels of cAMP Excitatory

(18)

Receptor desensitization

GRK

ATP ADP

Arrestin

P P P P P

P

G-protein linked receptor kinase

Activated receptor Desensitized receptor

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

A rendszerváltást követõ cenzúramentes, szabadabb idõszak- ban más határontúli magyar közösséghez hasonlóan Kárpátalján is felébredt az igény a kisebbségi

The decision on which direction to take lies entirely on the researcher, though it may be strongly influenced by the other components of the research project, such as the

in the Teaching Material of Medical Biotechnology Master’s Programmes at the University of Pécs and at the University of Debrecen..

1.3.1 Gene expression is regulated in several basic ways 1.3.2 Microarrays: functional genomics in cancer research 1.3.3 Genetic Alterations and Disease.. 1.3.4

1.3.1 Gene expression is regulated in several basic ways 1.3.2 Microarrays: functional genomics in cancer research 1.3.3 Genetic Alterations and Disease?. 1.3.4

1.2 CELL-FREE SYSTEMS: IN VITRO TRANSCRIPTION AND TRANSLATION 1.3 EXPRESSION OF RECOMBINANT PROTEINS IN CELL CULTURE7. 1.4 NON-PROKARYOTIC EXPRESSION SYSTEMS 1.4.1

We are going to learn several methods by which we can introduce genetic material into a cell to treat disease, and in this manner, the aim of gene therapy is to introduce

In this lecture the production of antibodies in the body and by different techniques like in hybridoma cells or the generation of high antibody diversity by phage display