• Nem Talált Eredményt

Adaptive moving mesh algorithm based on local reaction rate Heliyon

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Adaptive moving mesh algorithm based on local reaction rate Heliyon"

Copied!
11
0
0

Teljes szövegt

(1)

Contents lists available atScienceDirect

Heliyon

journal homepage:www.cell.com/heliyon

Research article

Adaptive moving mesh algorithm based on local reaction rate

Viktória Koncz

a,∗

, Ferenc Izsák

b

, Zoltán Noszticzius

a

, Kristóf Kály-Kullai

a

aDepartmentofPhysics,BudapestUniversityofTechnologyandEconomics,1521Budapest,Hungary

bDepartmentofAppliedAnalysisandComputationalMathematics,MTAELTENumNetResearchGroup,EötvösUniversity,1518Budapest,Hungary

A R T I C L E I NF O A B S T R A C T

Keywords:

AdaptiveFEM Movingmesh

Reaction-diffusionsystems Acid-basediode COMSOLMultiphysics

Anempiricalmeshadaptionalgorithmisintroducedformodelingone-dimensionalreaction-diffusionsystems withlargemovinggradients.Ournewalgorithmisbasedontherevelation,thatinreaction-diffusionsystems thehighmovingconcentrationgradientsappearnearbytotheregionwheretherateofreactionismaximal, thusthelocalreactionratecanbeusedtocontrolthemeshadaption.Wefound,thatthemainadvantage of sucha method isitssimplicityandeasyimplementation. Asanexamplewestudyanacid-base diode, wherelargemovinggradientsappear.ThemathematicalmodelofthediodecontainsseveralparabolicPDEs, coupledwithoneellipticPDE.An𝑟-refinementtechniqueisusedandattachedtothecommercialfiniteelement solverCOMSOL.Weinvestigatedthetime-dependentsalteffectsofthediodewithourdevelopedalgorithm.

Ourmeshadaptionmethodisadvantageousformodelingofanyreaction-diffusionsystemswithlocalized high concentrationgradients.

1. Introduction

Acid-basediodes,whicharecomplexreaction-diffusion-ionicmigra- tion systems, couldtheoretically be used asion-sensors. They could evenformpartsofso-calledlabonachipelectroanalyticaldevicesbe- causeoftheirsimplicity.Wewouldliketomaterializesuchsensorsas ourfinalaim.Toachievethisaim,itisimportanttostudyandmodel thetimeevolutionoftheeffects,whichwouldbethebasisoftheirap- plicationasionsensor.

Inanelectrolytediodeahydrogelcylinderconnectsanalkalineand anacidicreservoir.This waydiffusion,migrationandreactionofthe componentsareallowed,butadvectionandconvectionarerestrained, unlikeinpurewater.Duetotheappliedelectricpotentialbetweenthe edgesofthegelcylinder,hydrogene(H+)andhydroxil(OH)ionscan getinside theconnectingelement, wherewateris formedfrom their reaction.

Itmeans,thatsomewhereinthemodeleddomainthereisareaction zone,wherethischemicalacid-basereactionoccurs.Thisreactionzone ischaracterizedbylargeconcentrationandpotentialgradients.Dynam- icalsimulationsoftransientbehaviorinsuchsystemscanbedifficult duetothelargemovinggradientsofthemodelvariables(concentra- tionandpotential).Themodeledreaction-diffusionsystemisdescribed byasetofparabolicpartialdifferentialequations(PDEs,in thiscase

*

Correspondingauthor.

E-mailaddress:viki.koncz@gmail.com(V. Koncz).

massbalanceequationsforthechemicalcomponents)andoneelliptic partialdifferentialequation(Poisson-equation).

After the spatial discretization of the domain a system of ordi- narydifferentialequationsisobtained,whichisintegratedforwardby timenumerically(methodof lines).Regardlessthespatialdiscretiza- tionmethod(e.g.finitedifferencemethod,finiteelementmethod)the appliedmeshhasspecialimpactonthenumericalsolvability,speedof convergence,andapproximationerror.Thehigherthenumberofgrid points used,the smallertheerror willbe.However, havingadense gridiscomputationallyexpensive,demandingalargechunkofmemory andanextendedruntime(Farmagaetal., 2011,Zimmerman,2006).

Ifthesolutionshaveregions ofhighspatialactivity,astandarduni- formfixed-gridtechniqueiscomputationallyinefficient,sincetoafford anaccuratenumericalapproximationandreachconvergence,itshould contain,ingeneral,averylargenumberofgridpoints.Themeshneeds tobelocallyrefined.Moreover,iftheregionsofhighspatialactivityare movingintime,likesteepmovingfrontsinreaction-diffusionsystems, thenthemeshshouldbeadaptedaccordingly.

Regardingtothespatialgridadaptionstrategies,atleastthreedif- ferentmethodscanbedistinguished:

𝑟-refinementorthemovingmesh(relocation)method:inthiscase fixednumber ofgrid points isused, andthe positionsof points move.

https://doi.org/10.1016/j.heliyon.2020.e05842

Received2October2020;Receivedinrevisedform19November2020;Accepted21December2020

2405-8440/©2020PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

-refinementorthelocalrefinementmethod:thenumberofgrid pointsisnotfixed.Pointsareaddedtoorremovedfromthegrid, accordingtothelocalrequirements,theoriginalgridpoints stay inthesamelocation.Practically,thespatialgridstepislocally decreasedorincreased.

𝑝-refinement:inthisapproachafixedmeshisused,andthepoly- nomialdegreeofbasis(𝑝)alters.

Certainly,thecombinationofthesemethodsexists(Schwab,1999).

Although the moving meshmethod has been less popular than the localrefinementmethod,whichisduetothedifficultyofderivingsuit- ablegoverningequationsfortheadaptivemapping,ithassomeuseful featuresinnumericalcomputations.E.g.itis easytoimplement,and coupletoanyfixedmeshsoftware,anddifficultiesfromthechangein numberofgridpointscanbeavoided(Pˇribyletal.,2006).

Usuallythemovingmeshmethodsarebasedontheequidistribution principle(Huangetal.,1994),meaningselectingmeshpointsinsucha way,thatanempiricalerrorisequalizedovereachsubintervalonthe mesh.Theerrordistributionisfollowedbyamonitorfunction,which isderivedfromthefirstandsecondderivativesofdependentvariables.

(Oftenthisdoesnotresembletonumericalerrors.)

Intheliteraturetherearemanyexamplesaboutthesuccessfulnu- mericalmodelingofsimilarPDEsliketheonesdescribingthebehavior ofthediode.Mostofthemethodsrequirethecompletedevelopment andfullimplementationofthespatialdiscretizationandtimeintegra- tionof themodelequations.A movingmeshmethodwas developed (ZegelingandKok,2004) tosolvetheequationsofreaction-diffusion systems, namelytheGray-ScottandBrusselator models.Asystemof adaptivemeshPDEsdescribingthemeshmovementissetupandsolved (inthiscasedecoupledfromtheoriginalPDEsystem),infactthesolu- tionistherealizationofacoordinatetransformationbetweenphysical andcomputationalcoordinates. Theadaptive meshPDEsarederived fromtheminimizationofaso-calledmesh-energyfunctional.Thevari- ationalapproachofthemovingmeshmethodsisgeneral(Caoetal., 2003). Usually the original PDEs are coupled with the mesh PDEs (ZegelingandKeppens,2001).Moreexamplesaboutan𝑟-methodare foundin(Coimbraetal.,2004),(ZegelingandBlom,1992).

An-methodwasdevelopedforsolvingelectrochemistryproblems withlargespatialgradientsapplyingafinitedifferencemethod(Bieni- asz,2000).Laterthismethodwassuccessfullyusedforthesimulationof theNernst-Planck-PoissonequationsandNernst-Planckequationwith theassumption of electroneutrality((Bieniasz,2004a) and(Bieniasz, 2004b)).More examples aboutthe-refinement arefoundin (Lang, 1998,Wangetal.,2004,TrompertandVerwer,1991).

Probably themost significant adaptivemesh techniqueregarding ourworkis thealgorithmsuitableformodeling thetransientbehav- iorofthesamesystemwithcompletelydifferentboundaryconditions (Pˇribyletal.,2006).ThismethodisattachedtothecommercialFEM- LAB routines, which arebased on the finiteelement method. Their monitorfunctionisderivedfromthespatialderivativesofhydrogen,hy- droxylionconcentrationsandthepotential.Duetothetime-consuming evaluationofthemonitorfunctionandsuccessivemeshadaptation,the evaluationisnotcarriedoutateachtimeintegrationstep,theadapta- tionandconsecutiveevaluationtimeintervalisdeterminedbasedon theestimationoftransporttimes.

1.1. Aimofthiswork

Inthispaperwewouldlike toreportourempiricalmovingmesh method (𝑟-refinement), which was developed to model the time- dependentsalt-effectsofanelectrolytediode.Thealgorithmisattached tothecommercialCOMSOLequation-basedmodelingsoftware,which providesthespatialandtimediscretizationFEMalgorithmswithwell- definedinterfaces.Themainideaofthismethodis,thatinareaction- diffusionsystem,wherereactionfrontsmove, thelocalreactionrate indicatingthepresenceofanychemicalreactioncanbethebasisofan

Fig. 1.Schematicviewofastrongacid-basediode:Analkalinereservoir(filled bye.g.0.1MKOHsolution)andanacidicone(filledbye.g.0.1MHClsolution) areconnectedbyahydrogel.Δ𝜑>0meansreversebiaseddiode,theopposite isforwardbiased.

adaptivemeshrefinement.Theproblematicpartofsuchasystemisthe neighborhoodofthelocalchemicalreactions,wherethegradientsand thenumericalerrorofapproximationarethehighest.Thisideacould bethebasisof anyspatialdiscretization method, notonly thefinite elementmethod,theadvantageswouldbethesame:easyimplementa- tion,simplemonitorfunction,hencetherequiredmeshdensitywould bedeterminedinanempiricalwaynotdirectlyderivedfromtheerror ofapproximation.

2.Numericalsimulations 2.1. Themodel

Theso-calledacid-basediode(orelectrolytediode)isareaction- diffusion- ion-migrationsystem(NoszticziusandSchubert,1973,Schu- bertandNoszticzius,1977),where,duetotheapplied potentialand concentrationgradients,thechemicalspeciesmove,whileanacid-base reactionoccurs. Previouslysome highlynonlinearphenomenacalled positiveandnegativesalteffectsrelatedtothesalt-contaminationof theacid-basediodewerediscovered,thusitisstraightforwardtouse thenegativesalteffecttosensitivelydetectnonhydrogencations(Chun andChung,2015,Roszoletal.,2010,Kirschneretal.,1998).

Inanacid-basediodeaconnectingelement(eitherahydrogelora membrane)connectsanalkaline(KOH)andanacidic(HCl)reservoir, restrainingconvection,butallowingdiffusion,migrationandchemical reaction.(Theschematicviewofanacid-basediodeisshowninFig.1) Iftheacidic reservoirhasa negativepotentialin comparison tothe alkalineone(forwardbiaseddiode),fromthealkalinereservoircations (e.g.K+),fromtheacidiconeanions(e.g.Cl)canmigrateintothegel cylinder,wheretheyformawell-conductingsalt(inthiscaseKCl).If theacidicreservoiristhepositiveside(reversebiaseddiode),hydrogen (H+)andhydroxil(OH)ionscanmoveintothehydrogel,wherewater isformedfromtheirreaction,resultinginmuchsmallerconductivity.

Mostgelscontain fixedweaklyacidicgroups.Thedissociationof themleadstofixednegativeions,inthepresentworkFAisthefixed charge,andHFA denotesits protonatedform.The current - voltage characteristicofanelectrolytedioderesemblestothecharacteristicofa semiconductorone,meaningthediodecurrentdependsonthepolarity oftheappliedvoltage,asFig.2shows.

Ifthereservoirsofthediodearecontaminatedbyasalt(inthecase ofstrong diodeby KCl),theconcentrationof thecontaminating salt influencesthecurrentofthereversebiaseddiode:

• If only one reservoir is contaminated (usually the alkaline one duetohighersensitivity),thediodecurrentincreasesinanonlin- earway(Fig.3/a).Thisphenomenoniscalledpositivesalt-effect ((Kirschneretal.,1998,Heged˝usetal.,1999)).

• Ifonesideofthediodeisalreadycontaminated,andtheopposite reservoirofthediodegetscontaminatedaswell,surprisinglythe

(3)

Fig. 2.Simulatedvoltage–currentdensitycharacteristicofastrongacid-base diode.Concentrationsoftheelectrolytes:[KOH]=[HCl]= 0.1M.

Fig. 3.Calculatedcurrentdensityasthefunctionofsaltcontamination.(a):

positivesalteffect,(b):negativesalteffect.[KCl]ALand[KCl]ACdenotethesalt concentrationinthealkalineandacidicreservoirs,respectively.Theblackdot insubfigure(a)representsthealkalinesaltconcentrationusedforsubfigure(b).

[KCl]AL= 60mM,Δ𝜑= 10V.

diode currentdecreases byincreasedcounter saltcontamination (Fig.3/b).Thisphenomenoniscallednegativesalt-effect.

Bothpositiveandnegativesalteffectshadalreadybeeninvestigated for stationarystate (Kirschneret al., 1998, Roszoletal., 2010), we startedtofocusonthetime-dependentmodelingofsalt-contaminated diode (Konczetal.,2017),wherewemetunexpected computational complexity.

Atthisstageofinvestigation,themathematicalmodelofthediode isasystemofone-dimensionalpartialdifferentialequations(Roszolet al., 2010, Merkinet al., 2000, Heged˝uset al., 1996, Lindneret al., 2002).Thepreviouslydiscussedsimplificationsandassumptions((Iván etal.,2002))arekept(onedimensionalmodel,concentrationpolariza- tionandohmicpotentialdroponthereservoirareneglected).

Tocalculatetheconcentrationdistributionofthe𝑖-thcomponentthe mass-balanceequationisused,andtheNernst-Planckequationisused toobtainthecurrentdensity:

𝜕𝑐𝑖

𝜕𝑡 = −𝜕

𝜕𝑥 (

𝐷𝑖𝜕𝑐𝑖

𝜕𝑥𝑧𝑖𝐷𝑖𝐹 𝑅𝑇 𝑐𝑖𝜕𝜑

𝜕𝑥 )

+𝜎𝑖, (1)

where𝑐𝑖,𝑧𝑖and𝐷𝑖denotetheconcentration,chargenumberanddiffu- sioncoefficientofthe𝑖-thcomponent(H+,OH,K+,Cl,FA,HFA), respectively.𝑇 isthetemperature,𝐹 istheFaradayconstant,𝑅isthe molargasconstant,𝜑denotesthespacedependentpotential, 𝑡isthe timecoordinateand𝑥isthespacecoordinatealongtheconnectingele- ment.𝜎𝑖denotesthereactionrateofthe𝑖-thchemicalcomponent:

𝜎H+=𝑘w(𝐾w𝑐H+𝑐OH) +𝑘f(𝐾f𝑐HFA𝑐H+𝑐FA), (2)

𝜎OH=𝑘w(𝐾w𝑐H+𝑐OH), (3)

𝜎K+=𝜎Cl= 0, (4)

𝜎FA= −𝜎HFA=𝑘f(𝐾f𝑐HFA𝑐H+𝑐FA), (5) where𝐾w isthe equilibriumconstantof water dissociation,and𝑘w

denotestherateconstantofwaterrecombination.𝐾fisthedissociation constantand𝑘fdenotesthekineticconstantofthefixedcharge.

Poissonequation is used tocalculate thepotential profileof the diode:

𝜕

𝜕𝑥 (

𝜀𝜕𝜑

𝜕𝑥 )

=𝐹( ∑

𝑖 𝑧𝑖𝑐𝑖)

, (6)

where𝜀denotesthepermittivityofwater.

InourmodelcalculationsDirichletboundaryconditionswereap- plied.Donnanequilibriumisusedtocalculatetheconstantboundary concentrationsinsidetheconnectingelementfromthefixedconcentra- tionsinthereservoirs.TheDonnanpotentialwasusedtocorrectthe electricpotential.

Unfortunatelywewerenotabletoreachconvergence,iftheabove discussedfullsystemofdifferentialequationsisapplied (massbalance equationsaresetupforeachspecies).Forstationaryinvestigationsthe concentrationof thefixedanions canbecalculatedfromtheequilib- rium,

𝑐FA= 𝑐f

𝑐H+𝐾f+ 1, (7)

where𝑐fdenotestheestimatedtotalconcentrationofthefixedgroups (Ivánetal.,2004),thereforethemass-balanceequationisusedforthe mobileions(H+,OH,K+,Cl)only.

This assumption of quasi-stationarity was considered to be valid evenintimedependentcasesTheusageofthissimplification means thattheprotonationanddeprotonationofthefixedchargegroupsare consideredinstantaneous,thusthereactionratebelongingtothefixed groupsisapproximatedbyzero(𝜎FA=𝜎HFA= 0).Theremainingreac- tionrateofH+is:𝜎H+=𝜎OH=𝑘w(𝐾w𝑐H+𝑐OH).

Withthissimplificationitbecomespossibletosolvetheremaining PDEswithCOMSOL.

TheappliedvaluesoftheparameterscanbefoundinTable1.

2.2. SolutionmethodwithCOMSOL

ThesimulationswerecarriedoutbyusingthecommercialFEMsoft- warepackageCOMSOLMultiphysics4.3.Themodelwasdefinedfrom thefollowing interfaces: for the Nernst-Planck equation the “Trans- portofDilutedSpecies”and“ClassicalPDEs/Poissonequation”were applied.Afullmodelcalculationcanbesplitintotwomainsteps:af- tercomputingtheboundaryconditions,theinitialconditions(thisisa stationarystateofthediode)arecalculatedbyapreviouslydiscussed parametricstationarysolver(Roszoletal.,2010),whichisfollowedby thetime-dependentstudy.Thesolversettingsareadjustedunderthe

“Study”node,wherethetwostudystepsbelongingtothesolversare defined.Betweenthetwostudystepstheboundaryconditionsmustbe resetforthetransientvalue.(Inthecaseofstep1Computetoselected, inthecaseofstep2Computefromselectedcommandmustbeused.)

Forthenumerical integration of thetime-dependent ODEs(after spatialdiscretization) BDF method with SPOOLES linear solverwas appliedwiththefollowingsettings:automaticscaling,thetime-steps aredetermined freelyby thesolver. Toavoidnumerical oscillations crosswinddiffusionstabilizationtechniquewasapplied.Secondorder Lagrangeelementswereused.

ThekeyofFEMsimulationsistheappliedmesh.Thegradientsofthe concentrationsandpotentialarethelargestintheneighborhood ofthe so-calledreactionzone,thisisthehardesttocalculatepartofanacid- basediode.Toachieveconvergence,inthiszoneextremelyfinemesh isrequired.Duringthetime-dependentstudythelocationofthereac- tionzoneischanging,henceanadaptivemeshingtechniqueishighly recommendedtoreducecomputationalcosts.

In COMSOL Multiphysics adaptive mesh refinementextension is availableforthetime-dependentstudies.Unfortunatelythisbuilt-intool

(4)

Table 1.Modelparameters(Marcus(1997)).

𝑐KOH(moldm−3) Concentration of base 0.1

𝑐HCl(moldm−3) Concentration of acid 0.1

𝐷H+(m2s−1) Diffusion coefficient of protons 9.31 × 10−9 𝐷OH(m2s−1) Diffusion coefficient of hydroxyl ions 5.28 × 10−9 𝐷K+(m2s−1) Diffusion coefficient of potassium ions 1.96 × 10−9 𝐷Cl(m2s−1) Diffusion coefficient of chloride ions 2.04 × 10−9 𝐷FA(m2s−1) Diffusion coefficient of the fixed charge 0 𝐷HFA(m2s−1) Diffusion coefficient of the protonated fixed group 0

𝜑L(V) Electric potential on the L boundary 0

𝜑R(V) Electric potential on the R boundary 10 − 20

𝑙(m) Length of the gel 1 × 10−3

𝑧H+ Charge number of protons 1

𝑧OH Charge number of hydroxyl ions −1

𝑧K+ Charge number of potassium ions 1

𝑧Cl Charge number of chloride ions −1

𝑧FA Charge number of the fixed charge −1

𝑧HFA Charge number of the protonated fixed charge 0

𝐹(Cmol−1) Faraday constant 9.6487 × 104

𝑅(Jmol−1K−1) Molar gas constant 8.314

𝑇(K) Temperature 298.15

𝜀(AsV−1m−1) Permittivity of water 6.954 × 10−10 𝑘w(m3mol−1s−1) Kinetic constant of water recombination 1.3 × 108 𝐾w(mol2m−6) Ionic product of water 1 × 10−8 𝑐f(molm−3) Concentration of the fixed charge 4 𝑘f(m3mol−1s−1) Kinetic constant of the fixed charge 6 × 106 𝐾f(molm−3) Dissociation constant of the fixed charge 1 × 10−1

Fig. 4.The general operation of adaptive meshing algorithms.

andtheCOMSOL’sMovingMeshinterfaceprovedtobeinadequatefor ourpurposes.Thusweattachedanownadaptivealgorithmtooursim- ulationframework.(CarryingoutmodelcalculationsinCOMSOLGUI inseriesiscumbersome,thereforeaneasy-to-useframeworkwasdevel- opedinJavausingtheCOMSOLJavaAPI.)

ForthegeneraloperationofadaptivemeshingalgorithmsseeFig.4.

Thenumericalsolvermustbemonitored,andattheendofeveryiter- ationstepitmustbedecided,whethertheiterationcanbecontinued (meshisstillsatisfying)oranewmeshshouldbegenerated.Incaseofa newmeshthelastsolutionwiththeoldmeshisinterpolatedtothenew one,andthenumericalsolverisrestarted.InCOMSOLtheFEMalgo- rithmsareconsideredtobe“blackboxes”,thatisthenumericalmethod canbereachedonlyviatheinterfacesprovidedbyCOMSOL.Tostop andmonitorthenumericalsolver,astopconditionisformulatedapply- ingtheso-called“DomainPointProbe”.Withapointprobeexpression afunctionofvariablesofthedifferentialequationatapre-definedlo- cationisevaluated.

Atthetwoedgesofthereactionzone,insidethedensemeshzone, twopointprobeexpressionsaredefined.Thevaluesof themarethe absolutevalueoftheacid-basereaction’slocalreactionrateatthegiven location:

𝑝𝑝𝑣=||𝜎H+||=||𝜎OH||=||𝑘w(𝐾w𝑐H+𝑐OH)||. (8) Thenthestopconditionisthefollowing:ifoneofthepointprobeex- pressionsdiffersignificantlyfromzero(𝑝𝑝𝑣>1.3⋅10−3mol

dm3s),thesolver

isstopped.This𝑝𝑝𝑣valuemeansthesolverstopswhen𝑐H+𝑐OH> 𝐾w, wegetthisthresholdbytrialanderror.Afterthat,fromthebehavior ofthereactionzoneanewmeshisgenerated.WithCOMSOLJavaAPI inthecaseofone dimensionalgeometryonlythevertexcoordinates arecalculated, theedges aretrivial(how thevertexesareconnected toanelement).InCOMSOLthesolutionofthetime-dependentsolver iscopied(Copysolution)toretaintheresults,andthedomainpoint probesarerelocatedbeforethetime-dependentsolverisrestarted.

2.3. Adaptivealgorithmwithgridfunction

Theso-calledgridfunctionwasselectedtodefinethemesh.An𝑥𝑓(𝑥)gridfunctiondefinestherealmesh’scoordinatesasafunctionof theequidistantmesh’scoordinates.Somegridfunctionswithschematic onedimensionalmeshesareshowninFig.5.

Thebasisofourselectedgridfunctionisanequidistantmeshwitha refinedzone(Fig.5/b),wherethevicinityofthereactionzoneiscov- eredbyanextremelyfinemesh.Toavoidnumericalproblemsarising fromsuddenchangesinthesizeofneighboringelements,inthevicin- ityofthestraightline’sintersectionsexponentialsmoothingfunctions areapplied.Formoredetailsseethe1stsectionoftheSupplementary Information.

Theadaptivealgorithmbasedonthegridfunctionhasthefollowing parameters:

𝑁:totalnumberofmeshpoints

𝑦A,𝑦B:inreal-meshcoordinatestheinitiallimitsoftheextremely finemeshzone

𝑅:ratioofthenumberofpointsbetween𝑦Aand𝑦Bandthetotal numberofgridpoints

𝛿: widthof theexponentialsmoothing partin equidistant mesh coordinates

𝑑: distancebetween 𝑦A or 𝑦B andits correspondingpointprobe expression

• Δ𝑦:howmuchthecontrolpoints(𝑦A,𝑦B)ofthegridfunctionare shiftedintothedirectionofthereaction’smovement,afterthestop conditionisfulfilled,andthenextmeshisgenerated

Themainadvantageofapplyingagridfunctionis itseasyimple- mentation, simple mesh generation, and low time-demand of mesh

(5)

Fig. 5.Somegridfunctionswiththecorrespondingschematicmeshillustrations.(a)Equidistantmesh.(b)Equidistantmeshwitharefinedzone.(c)Theapplied gridfunctionwithexponentialsmoothing.

construction. Forthe source codesee https://github.com/vikikoncz/ adaptive_FEM_based_reaction_zone.

3. Resultsanddiscussion

Wewouldliketoshowtheabilityoftheadaptivemeshalgorithm tosimulatethetime-dependentbehaviorofanacid-basediode.Inthe presentworkwedemonstrate theoperationofthealgorithmincase of time-dependentpositive salteffect withthefollowingsettings. As initialstatethesalt-freestationarydiodewasused.Thecontaminating salt was addedtothealkaline reservoirat 𝑡= 0,[KCl]AL,t= 60mM.

Approximatelyafter100sthenewsteadystatewasattained,thus150 swassimulatedafterthesystemwasperturbedbyKClcontamination.

Ourworkispresentedinthreesubsections.First,inSection3.1the appearanceofthereactionzoneisinvestigated.Wewouldliketoshow, that thelocation of thechemical reaction (where thereaction ratio differssignificantlyfromzero)isveryclosetothelocationwherethe gradientsoftheconcentrationandpotentialarethehighest.

Then,weinvestigatedtheabsoluteandrelativeerrorofapproxima- tiononthemodeleddomainforvalidationpurposes(Section3.2).

Finally,we discussthe effectof different meshes onthe error of approximationandsimulationtime(Section3.3).

3.1. Reactionzone

Thelocalreactionrateoftheacid-basereactionis𝜎H2O= −𝑘w(𝐾w𝑐H+𝑐OH).Itisthelinearfunctionof[H+]⋅[OH],whichinequilibrium is atemperaturedependentconstant.Fig.6shows the localreaction rate(𝜎H2O)alongthegelcylinderinastationarysalt-freediode.𝜎H2O

Fig. 6.Thelocalreactionrate(𝜎H2O= −𝑘w(𝐾w𝑐H+𝑐OH))ofwaterrecombina- tionintheuncontaminateddiode.

isdifferent fromzeroonlyat thereaction zone,wheretheacid-base reactionoccurs.

Fig.7showssomecalculated𝜎H2Oprofilesofatime-dependentpos- itivesalt effect. Atacertaintime𝜎H2Ois differentfrom zeroinone regiononly,certainlythisisthereactionzone.

Asthealkalinereservoir(lefthandside)isapproachedbythereac- tionzone,theacid-basereactionbecomesfasterandfaster(thepeakof 𝜎H2Oincreases).Thereactionzonekeepsitspositionafterabout10s, however,thereactionratecontinuesincreasing.

Thelookofthereactionzoneatfourselectedmomentsoftimeis showninFig.8.Whiletheacid-basereactiongetsfaster,theextension ofthereactionzoneshrinks.Inthenewsteadystateitswidthisonly

(6)

Fig. 7.Thelocalreactionrate(𝜎H2O= −𝑘w(𝐾w𝑐H+𝑐OH))ofwaterrecombina- tionatdifferentmomentsoftime.

thethirdoftheuncontaminatedone.Theextensionofthereactionzone iscalculatedfromthehalf-widthofthe𝜎H2Opeak.

Intheuncontaminatedsteadystatethepositionsoftheextremaof spatialderivativesarevery closetothelocationwheretheacid-base reactionoccurs.Thesederivativesmovetogetherwiththechemicalre- action.Thelocalextremaofconcentrationderivativesareincreasing(in absolutevalue),whilethederivativeofpotentialchangesonlyslightly.

Thesituationisthesameinthecaseofsecondspatialderivatives.

3.2. Validation

Inthecaseofasystemofnonlinearpartialdifferentialequations, itispossible,thatthenumericalsolverfindsaphysicallyinvalidso- lutioneventhoughitsatisfiesthetolerancecriteria(LeVeque(1992)).

Weusedaposteriorierrorindicatorstocharacterizetheprecisityofthe numericalsolutions.

Ameaningfulmeasureofthecomputationalerrorcanbegivenon (𝑥𝑖,𝑥𝑖+1)asfollows:

𝑥𝑖+1 𝑥𝑖

(̃𝑦(𝑥) −𝑦(𝑥))2 𝑑𝑥=𝑅(𝑥,𝐚), (9)

where𝑦(𝑥)denotestherealsolution ofthedifferentialequationand

̃𝑦(𝑥)=∑𝑛

𝑗=1𝑎𝑗⋅Φ𝑗(𝑥)isthefiniteelementapproximation.Inpractice, therealsolutionisunknown,therefore,anothererrorindicatorhasto befound.

Ifthecoefficients𝑎𝑗ofthebasisfunctionsareavailable,substituting themintotheoriginalPDE’sleadstoanerrorindicatoroneachelement.

UnfortunatelyduetoCOMSOL’s‘blackbox’approachitisneither possibletogettheLagrangian coefficients,northeerrorcalculatedby COMSOL.

Tofindametricforcomparingdifferentsolutions,anownmethod hadtobedeveloped.ItispossibletoexportfromCOMSOLtheinterpo- latedsolution,andthespatialandtimederivativesofthevariablesof theequationatthepredefinedpointsinagivenmoment.(FromCOM- SOLJavaAPItheso-called‘Interp’functionwasappliedtoretrievethe numericalresults.)Ourmethodisthefollowing:duringtimedevelop- mentateverydiscretemomentoftimetheapproximatedvalueofthe variables,the1stand2ndspatialderivativesandthetime-derivatives areexportedatthemeshpoints.Thesevaluescanbesubstitutedtothe fivedifferentialequations(fourmassbalancesandthePoisson)atevery momentandlocation,leadingtofive(absolute)residualvalues𝑒𝑟𝑟abs,𝑖. Asanexample,thecalculatedabsoluteresidualvaluesoftheH+’s massbalanceequation,andthePoissonequationareshowninFigs.9 and10.

Theabsolute error in itselfdoesnot tellusthe wholepicture,it hastobecomparedtotheabsolutevaluesofthevarioustermsinthe givenequation.Forthisreasonweusetherelativeerrordefinedinthe followingway:

𝑒𝑟𝑟rel,𝑖= 𝑒𝑟𝑟abs,𝑖

|||𝜕𝑐𝜕𝑡𝑖|||+||

||−𝜕

𝜕𝑥

(

𝐷𝑖𝜕𝑐𝜕𝑥𝑖)|

|||+||

||−𝜕

𝜕𝑥

(

𝑧𝑖𝐷𝑖𝐹

𝑅𝑇 𝑐𝑖𝜕𝜑𝜕𝑥)|

|||+||𝜎𝑖|| (10) 𝑒𝑟𝑟rel,Poisson= 𝑒𝑟𝑟abs,Poisson

||||𝜕𝑥𝜕 (

𝜀𝜕𝜑𝜕𝑥)|

|||+||

||𝐹( ∑

𝑖𝑧𝑖𝑐𝑖)|

|||

(11)

Despiteofthelarge absoluteerrorintheneighborhoodofthere- actionzone,therelativeerrors (Figs.11and12) seemtobe mostly acceptable.However,averysharpregionexistsinthemiddleof the reactionzone,wheretheapproximationerrorofthePoissonequation becomes0.65.

3.3. Theeffectofthegridfunction’sparametersontheerrorof approximationandonthesimulationtime

Tocomparethedifferenttypesofmeshes,thesimulationtimemea- suredinanisolatedvirtualmachine(fordetailsseethe2ndsectionof SupplementaryInformation)wasmonitored,andtheerrorofapproxi- mationwasestimated.Unfortunately,thenumberofiterationsarenot measurableviaCOMSOL,thuswehadtomeasuretherunningtimeof thesimulations.It isalso importantinpractice, butdepends on the hardware.ThebasicstepsofanadaptiveFEMsimulationwiththemea- suredrunningtimevaluesarefoundinthe4thsectionofSupplementary Information.About97%ofthetotalsimulationtimegoestothetime- steppingandmeshinterpolation, thus therunningtimeoftheother stagesofFEMsimulationisnegligible.

Insteadofplottingtheresidualsateverymomentoftime(likein Section3.2),itisbettertouseacumulatederrorindicatortodescribe theapplicabilityofthemesh.Toconstructsuchanaposteriorierror indicator,weconsiderequation (1)asasystemofconservation laws coupledwiththereactivesourceterms(𝜎H+,𝜎OH,0,0).Usingthecor- respondingtheoryforthenon-linearconservationlawsinTheorem5.2 in(Cockburn,1999),astraightforwardchoicefortheerrorestimation ofthe𝑗-thcomponentinequation(1)canbecalculatedasfollows:

𝑒𝑟𝑟𝑗=

𝑇

0 𝐿

0

|𝑒𝑟𝑟abs,𝑗|𝑑𝑡𝑑𝑥+

√√

√√

√√max

𝑡∈[0,𝑇]𝑆(𝑐𝑗)(𝑡)⋅

𝑇

0

𝑆(𝑐𝑗)(𝑡)𝑑𝑡⋅√

𝐷𝑗, (12)

where 𝑒𝑟𝑟abs,𝑗 denotes the𝑗-th componentscalculated residual, and 𝑆(𝑐𝑗)(𝑡)isthesumoftheconcentrationabsolutedifferences between thegridpointsontheentiremodeleddomain.Wefound,thattheterm containing𝑆isalmostnegligiblecomparedtothetimeandspatialin- tegraloftheresiduals.Furthermore,itwasfoundthatthistermvaries within1%inthecaseofeverymeshsetting(ifconvergenceisachieved), thusitcanbeneglectedwhencomparingmeshes.

Forasinglecumulativeerrorindicatortheerrorestimationofthe fourcomponentsissummed andnormedby𝑇= 150s (duetothetime integration):

𝑒𝑟𝑟𝑜𝑟=𝑒𝑟𝑟H++𝑒𝑟𝑟OH+𝑒𝑟𝑟K++𝑒𝑟𝑟Cl

𝑇 . (13)

Inthefollowingtablesandfiguresonlythiscumulativevalueisused tocomparedifferentmeshes.

First,theefficiencyof theadaptivemeshing algorithmisshowed withcomparisontotwofixedmeshsimulations.Afterthat,theeffects ofthegridfunctionparametersareexplored,andwetriedtofindan optimalparametercombinationconsideringthesimulationtimeandthe errorofapproximation.(Inthisstudytheparametersarefixedduringa simulation.)Finally,weinvestigatedhowthecontinuousmodification ofthegridfunction’sparametersinfluencesthesimulation.

3.3.1. Fixedmeshvsadaptivemesh

Theperformanceofanequidistantmesh(namedfixed(1)),afixed meshwithadensezone(fixed(2))andthreemovingmesheswiththe proposedgridfunctionwerecompared(Table2).Therunningtimeof

(7)

Fig. 8.Reactionfronts:spatialgradientsandthelocalreactionrateofacid-basereactionindifferentmomentsoftime.Inthefirstcolumnthelocalreactionrateand the1stspatialderivativesareshownatt=0s(a),t=3s(c),t=5s(e)andt=20s(g).Inthesecondcolumnthelocalreactionrateandthe2ndspatialderivatives areshownatt=0s(b),t=3s(d),t=5s(f)andt=20s(h),respectively.Pleasenote:thederivativesandthelocalreactionratearescaled,thusnounitisshown inthisfigure,becauseweareonlyinterestedinthepositionsofpeaks,nottheirmagnitude.

Fig. 9.TheabsoluteerroroftheH+ionsmassbalanceequation(𝑒𝑟𝑟abs,H+)at 𝑡= 3s.Theparametersoftheappliedmesharethefollowing:𝑁= 10000,𝑦A= 0.192,𝑦B= 0.202,𝑑= 0.002,Δ𝑦= 0.002,𝛿= 0.01,𝑅= 0.8.

Fig. 10.Theabsoluteerrorof thePoissonequation(𝑒𝑟𝑟abs,Poisson)at𝑡= 3s.

Theparametersoftheappliedmesharethefollowing:𝑁= 10000,𝑦A= 0.192, 𝑦B= 0.202,𝑑= 0.002,Δ𝑦= 0.002,𝛿= 0.01,𝑅= 0.8.

(8)

Fig. 11.TherelativeerroroftheH+ionsmassbalanceequation(𝑒𝑟𝑟rel,H+)at𝑡= 3s inthereactionzone.Theparametersoftheappliedmesharethefollowing:

𝑁= 10000,𝑦A= 0.192,𝑦B= 0.202,𝑑= 0.002,Δ𝑦= 0.002,𝛿= 0.01,𝑅= 0.8.

Fig. 12.TherelativeerrorofthePoissonequation(𝑒𝑟𝑟rel,Poisson)at𝑡= 3s inthe reactionzone.Theparametersoftheappliedmesharethefollowing:𝑁= 10000, 𝑦A= 0.192,𝑦B= 0.202,𝑑= 0.002,Δ𝑦= 0.002,𝛿= 0.01,𝑅= 0.8.

Table 2. The measured running time and calculated errorofapproximation(error)in the caseoffixedandadaptivemeshes. The fixed(1)meshisanequidistantmesh,fixed(2) isa fixedmesh witha densezone. Param- etersofthegridfunctionarethefollowing:

𝑦A= 0.192,𝑦B= 0.202,𝑑= 0.002,Δ𝑦= 0.002, 𝛿= 0.01,𝑅= 0.8.

Mesh type N Time (min) error

fixed(1) 100000 3648 147

fixed(2) 21000 532 73

adaptive 500 15 183

adaptive 1000 35 97

adaptive 2000 42 49

adaptive 10000 222 10

theequidistantmesh(10000gridpoints)is thebiggest,andapprox- imatelythesameprecision can beachieved usinganadaptive mesh with500- 1000gridpointsdependingonthegridfunctionparameters.

Thefixed(2)meshhasthesameresolutionastheequidistantmesh (fixed(1))initsdensepart,whichcoversthatpartofthegel,wherethe reactionzonecanoccur.Theremainingpartofthegeliscoveredbyan 80timeslessdenseequidistantmesh,andthetwozonesareconnected byanexponentialsmoothingpart.

Despitethesameresolutioninthereactionzone,theerrorofapprox- imationisalmosthalvedinthecaseoffixed(2),duetotheconvergence

Fig. 13.Themeasuredrunningtime andtheerrorofapproximationasthe functionofthenumberofgridpoints.Parametersofthegridfunctionarethe following:𝑦A= 0.192,𝑦B= 0.202,𝑑= 0.002,Δ𝑦= 0.002,𝛿= 0.01,𝑅= 0.8.

criteriaofCOMSOL’snonlinearsolver.Intheaggregatederrorevalu- atedbyCOMSOLaftereveryiterationstep,theerroronanelementis notweightedbytheelement’ssize.ThusinCOMSOL’saggregatederror, inthecaseofequidistantmeshtheelementsbelongingtothereaction zoneareunderweightedcomparedtothefixed(2)mesh.(Furtherdetails aboutCOMSOL’sconvergencecriteriacanbefoundinthe3rdsection oftheSupplementaryInformation.)

Themostaccuratesolution isachievable byamovingmeshwith asmany gridpointsasthedesiredrunningtimeallows.(Inourcase maximum10000meshelementswereused.)Inthecaseofonespecific adaptivemeshparametersettingthemeasuredrunningtimeandthe errorofapproximationasthefunctionofthenumberofgridpointsare showninFig.13.(Meshtrajectoriesofthismovingmeshcanbefound inthe7thsectionoftheSupplementaryInformation.)

Ifthenumberofgridpointsincreases,theapproximationerrorde- creasesinahiperbolicway.Therunningtimecanshowdiscrepancies, itdoesnotincreasemonotonicallyasafunctionof𝑁.

Theconvergenceratesofthesediscretizationschemes (fixed(2),and adaptive)arecomparedinthe6thsectionoftheSupplementaryInfor- mation.

3.3.2. Theeffectofthegridfunctionparameters

Inthissectionwepresentourfindingsaboutsystematicinvestiga- tionsoftheeffectofgridfunctionparametersontheperformanceof themovingmeshalgorithm.Pleasenote,duringonesimulationthepa- rametersofthegridfunctionwerekeptconstant.Duringthediscovery oftheparameters𝑁= 2000waschosen,becausewefounditagood compromisebetweenrunningtimeanderrorofapproximation(seeTa- ble2).

First,theeffectofΔ𝑦wasinvestigated(Fig.14).Itdoesnotinflu- encetheerrorofapproximationsignificantly,however,themeasured simulationtimedepends onit.ThesmallertheΔ𝑦is,thehigher the runningtimebecomes.Thefrequentmeshadaptationneedstoomuch interpolationbetweenthedifferentmeshes.

Withinawiderangethegridfunctionparametercalled𝑅hasvery similareffect ontheerror andsimulation time(Fig. 15).If𝑅 istoo small,thesolverjust cannotconverge(becausetheresolutionis not highenoughinthereactionzone).Certainly,theprecisevaluedepends on thenumberof grid points,and theotherparameters of thegrid function,e.g.if𝑁= 2000, 𝑅mustbe atleast 0.05.However,in this casetheapproximationerrorishuge(2600).(Forthisreasonitisnot showninFig.15.)Theerrorofapproximationhasanoptimumaround 𝑅= 0.94,if𝑅islarger,toofewgridpointsappearoutsidethereaction zone.

(9)

Fig. 14.Themeasuredrunningtimeandtheerrorofapproximationasthe functionoftheΔ𝑦parameter.Parametersofthegridfunctionarethefollowing:

𝑦A= 0.191,𝑦B= 0.203,𝑑= 0.003,𝑅= 0.8,𝛿= 0.01,𝑁= 2000.

Fig. 15.Themeasuredrunningtimeandtheerrorofapproximationasthe functionofthe𝑅parameter.Parametersofthegridfunctionarethefollowing:

𝑦A= 0.191,𝑦B= 0.203,𝑑= 0.003,Δ𝑦= 0.002,𝛿= 0.01,𝑁= 2000.

Dependingonthewidthoftheextremelyfinemeshzone,andon thegridfunctionparameters,anoptimal𝛿exists,wheretheerrorof approximationisthesmallest(Fig.16).If𝛿increasesfromzero,firstthe errorofapproximationdecreases,duetosmoothertransitionofelement size.When𝛿becomescomparabletothesizeofthedensemeshzone, thenumberofmeshelementsinthereactionzonestartstodecrease, resultinginincreasederrorofapproximation.

Duetothetimedemandoftoofrequentmeshadaption,anddueto convenience,densemeshwasusuallyusedonalargeenvironmentof thereactionzone.(Itmeans,𝑦B𝑦Aisatleastfivetimesbigger,than thereactionzone’sextension.)Theimpactofthedistancebetween𝑦A

and𝑦B wasinvestigated(Fig. 17) toseewhethercoveringasmaller environmentwithdensemeshstillgivessatisfactoryresults.Theerror of approximation increaseswith thisdistance (because lessgrid ele- mentscoverthereactionzone).Usuallysmallererrorcomeswithlower runningtime,however,heretheoppositehappens:increasederrorde- creasestherunningtime.

Theminimalreasonabledistancebetween𝑦Band𝑦Aistheextension ofthereactionzone:underthislimitconvergenceproblemsappear.In thecaseofminimal𝑦B𝑦Atheerrorandtherunningtimeasthefunc- tionof𝑁isshowninFig.18.Toreachconvergencewiththesesettings, theminimumnumberofrequiredelementsis𝑁= 150,althoughinthis casetheerrorofapproximationisaround450,andtheprofilesarenot

Fig. 16.Themeasuredsimulationtimeandtheerrorofapproximationasthe functionofthe𝛿parameter.Parametersofthegridfunctionarethefollowing:

𝑦A= 0.191,𝑦B= 0.203,𝑑= 0.003,Δ𝑦= 0.002,𝑅= 0.8,𝛿= 0.01,𝑁= 2000.

Fig. 17.Themeasuredrunningtime andtheerrorofapproximationasthe functionofthedistancebetween𝑦Aand𝑦B.Parametersofthegridfunctionare thefollowing:𝑑= 0.0005,Δ𝑦= 0.0005,𝑅= 0.8,𝛿= 0.01,𝑁= 2000.

Fig. 18.Themeasuredrunningtime andtheerrorofapproximationasthe functionofthe𝑁.Parametersofthegridfunctionarethefollowing:𝑦A= 0.196, 𝑦B= 0.199,𝑑= 0.0005,Δ𝑦= 0.0005,𝑅= 0.8,𝛿= 0.01.Thedensemeshbarely coversthereactionzone.

smoothenough.If𝑁= 500,thealgorithmhasverysimilarperformance, as𝑁= 2000withthewidelycoveredzone.

(10)

Table 3. The measured running timeandtheerrorofapproxima- tionin thecaseof movingmesh algorithmswithdifferentcontinu- ouslymodifiedgridfunctions.Ini- tialvaluesofthegridfunctionpa- rameters: 𝑁= 10000, 𝑦A= 0.191, 𝑦B= 0.203,𝑑= 0.003,𝑅= 0.8,Δ𝑦= 0.002, 𝛿= 0.01. In the method calledCMG1onlythedistancebe- tween𝑦B𝑦A,𝑑,andΔ𝑦arede- creased.InthemethodcalledCMG 2𝑅isalsodecreased,furthermore inthemethodcalledCMG3even 𝛿isdecreased.InthecaseofNMG (non-modifiedgridalgorithm)the initialvaluesoftheparametersare the same, and arekept constant duringthesimulation.

Mesh type Time (min) error

CMG 1 233 7

CMG 2 235 14

CMG 3 257 17

NMG 283 11

3.3.3. Continuousmodificationoftheparameters

Duringthetransitionofthediodetheextensionofthereactionzone shrinks.Inthenewsteadystate,it’sextensionisonethird,thaninthe saltfreediode(section3.1).Isitpossibletoreachbetterperformance byshrinkingthefinemeshzonewiththereactionzone?

Toalterthegridfunctioncontinuously,thepreviouslydiscussedal- gorithmismodified:ifthestopconditiondefinedinCOMSOLisfulfilled andtheiterationstops,thenthedependent variables(and itsspatial derivatives)mustberetrievedatthegridpoints.Thehalfwidthofthe localreaction ratepeakwas usedtoestimate thereactionzone’sex- tension,fromwhichnotonlythelocationofthefinemeshzone,but otherparametersofthegridfunctioncouldbere-calculated(forfurther detailssee5thsectionofSupplementaryInformation).Unfortunatelyif thetotalnumberofgridpointsistoosmall,theestimationofshrink- ageofthereactionzonebecomesunprecise,leadingtonon-converging mesh.Itmeans,thatinthecaseofsmall𝑁continuousmodificationof theparameterscanbenumericallyunstable.

The performance of algorithms with continuously modified grid (CMG)andanonmodifiedgrid(NMG)issummarized inTable3.The methodcalledCMG1,whereonly𝑦B𝑦A,𝑑andΔ𝑦areshrinked,gives thesmallesterrorandsimulationtime.

4. Conclusionsandoutlook 4.1. Conclusions

We suggestan empiricalmoving meshalgorithm, which was at- tachedtothecommercialFEMsolverCOMSOL.Realizingthathigher reaction rateand higher concentrationusually appearclose to each other,thelocalreactionratewasusedtocontrolthemeshadaption.The proposed algorithmwas testedfor areaction-diffusion systemcalled acid-basediode,andtheparameterswerefine-tunedforthiscase.Dur- ingthetime-dependentmodelingoftheso-calledsalteffectsinthissys- temweexperiencedhighcomputationalcomplexity,thusanadaptive meshingalgorithmwasnecessarytoreducethetimeofthesimulation.

Wefound,thatusingthelocalreactionrateinsteadofthespatialderiva- tivesmakestheimplementationofthealgorithmveryeasyandsimple.

4.2. Outlook

Themovingmeshalgorithmcanbeextendedtohandletheappear- ance anddisappearance of thereactionzones.Ifthetime-dependent solverisstopped,oraftereveryiterationstep,themodeled domaincan

bescannedwithamonitorfunction,whichevaluatesthelocalreaction rates,andmarksthelocationofthereactionzone.Fromthelocationsa newgridfunctioncanbecreated,inwhichthelesssteepstraightseg- mentsofthepiecewisegridfunctioncorrespondtothereactionzones.

(Theexponentialsmoothing,andhandlingoftooclosereactionzones needtobedealtwith.)

Unfortunately,astraightforwardextensionoftheproposedprocess fortwo-dimensionalgeometricsetupseemstobeimpossible.Forsuch cases, thegrid-transformationbetween consecutivetime stepsis ob- tainedfrom thesolution ofso-called movingmeshPDE (Zegelinget al.,2005).Themeshhastoberegularizedinmanycasesandaninter- polationisalsonecessarybetweentwoconsecutivemeshes.Formany applications,however,one-dimensionalsituationsarealsoofgreatim- portance.

Furthermore,thelocalreactionratecanbeusedasa‘monitorfunc- tion’ not only in 𝑟-refinement, but in ℎ-refinement, 𝑝-refinement or ℎ𝑝-refinementmethodsaswell.Insuchcases,intheneighborhood of thechemicalreactionmeshelementscanbeadded(andlaterremoved), orthepolynomialdegreeof thebasisfunctioncanbe increased(and laterdecreased).Thesetechniquesareeasiertoextendtotwoormore dimensionalproblemssimulatedbyfiniteelementorfinitedifference methods.

Declarations

Authorcontributionstatement

ViktóriaKoncz&KristófKály-Kullai:Conceivedanddesignedthe analysis;Analyzedandinterpretedthedata;Wrotethepaper.Ferenc Izsák:Conceivedanddesignedtheanalysis;Wrote thepaper. Zoltán Noszticzius:Contributedanalysistoolsordata;Wrotethepaper.

Fundingstatement

ThisworkwassupportedbyOTKAGrantK131425andbytheELTE InstitutionalExcellenceProgram(1783-3/2018/FEKUTSRAT)through theHungarianMinistryofHumanCapacities.

Dataavailabilitystatement

Datawillbemadeavailableonrequest.

Declarationofinterestsstatement

Theauthorsdeclarenoconflictofinterest.

Additionalinformation

Supplementarycontentrelatedtothisarticlehasbeenpublishedon- lineathttps://doi.org/10.1016/j.heliyon.2020.e05842.

Acknowledgements

TheauthorsthankA.Patariczaforhelpfuldiscussions.

References

Bieniasz,L.K.,2000.Useofdynamicallyadaptivegridtechniquesforthesolutionofelec- trochemicalkineticequations:part5.Afinite-difference,adaptivespace/timegrid strategybasedonapatch-typelocaluniformspatialgridrefinement,forkineticmod- elsinone-dimensionalspacegeometry.J.Electroanal.Chem. 481(2),115–133.

Bieniasz,L.K.,2004a.Useofdynamicallyadaptivegridtechniquesforthesolutionof electrochemicalkineticequations.Part14:extensionofthepatch-adaptivestrategy totime-dependentmodelsinvolvingmigration-diffusiontransportinone-dimensional spacegeometry,andit.J.Electroanal.Chem. 565(2),251–271.

Bieniasz,L.K.,2004b.Useofdynamicallyadaptivegridtechniquesforthesolutionof electrochemicalkineticequations. Part15:patch-adaptivesimulationofexample transientexperimentsdescribedbyNernst–Planck–electroneutralityequationsinone- dimensionalspacegeometry.J.Electroanal.Chem. 565(2),273–285.

(11)

Cao,W.,Huang,W.,Russell,R.D.,2003.Approachesforgeneratingmovingadaptive meshes:locationversusvelocity.Appl.Numer.Math. 47(2),121–138.

Chun,H.,Chung,T.D.,2015.Iontronics.Annu.Rev.Anal.Chem. 8,441–462.

Cockburn,B.,1999.TheGraduateStudent’sGuidetoNumericalAnalysis’98.Springer, Berlin.

Coimbra,M.D.C.,Sereno,C.,Rodrigues,A.,2004.Movingfiniteelementmethod:appli- cationstoscienceandengineeringproblems.Comput.Chem.Eng. 28(5),597–603.

Farmaga,I.,Shmigelskyi,P.,Spiewak,P.,Ciupinski,L.,2011.Evaluationofcomputational complexityoffiniteelementanalysis.In:201111thInternationalConferencetheEx- perienceofDesigningandApplicationofCADSystemsinMicroelectronics(CADSM), pp. 213–214.

Heged˝us,L., Kirschner,N., Wittmann,M.,Simon, P.,Noszticzius,Z., Amemiya,T., Ohmori,T.,Yamaguchi,T.,1999.Nonlineareffectsofelectrolytediodesandtran- sistorsinapolymergelmedium.Chaos 9(2),283–297.http://www.ncbi.nlm.nih. gov/pubmed/12779826.

Heged˝us,L.,Wittmann,M.,Kirschner,N.,Noszticzius,Z.,1996.Reaction,diffusion,elec- tricconductionanddeterminationoffixedionsinahydrogel.Prog.Colloid&Polym.

Sci. 102,101–109.

Huang,W.,Ren,Y.,Russell,R.D.,1994.Movingmeshpartialdifferentialequations(MM- PDES)basedontheequidistributionprinciple.J.Numer.Anal. 31(3),709–730.

Iván,K.,Kirschner,N.,Wittmann,M.,Simon,P.L.,Jakab,V.,Noszticzius,Z.,Merkin, J.H.,Scott,S.K.,2002.Directevidenceforfixedionicgroupsinthehydrogelofan electrolytediode.Phys.Chem.Chem.Phys. 4(8),1339–1347.

Iván,K.,Wittmann,M.,Simon,P.L.,Noszticzius,Z.,Vollmer,J.,2004.Electrolytediodes andhydrogels:determinationofconcentrationandpKvalueoffixedacidicgroupsin aweaklychargedhydrogel.Phys.Rev.E 70(61),061–402.

Kirschner,N.,Heged˝us,L.,Wittmann,M.,Noszticzius,Z.,1998.Nonlinear“salt-effect”in anelectrolytediode.Theoryandexperiments.ACH- ModelsChem. 135,279–286.

Koncz,V.,Noszticzius,Z.,Roszol,L.,Kály-Kullai,K.,2017.Time-dependentmodelingof salt-contaminatedacid-basediodes.J.Electrochem.Soc. 164(4),H257–H265.http://

jes.ecsdl.org/lookup/doi/10.1149/2.1701704jes.

Lang,J.,1998.AdaptiveFEMforreaction—diffusionequations.Appl.Numer.Math. 26 (1–2),105–116.

LeVeque,R.J.,1992.NumericalMethodsforConservationLaws.Birkhäuser,Basel.

Lindner,J.,Šnita,D.,Marek,M.,2002.Modellingofionicsystemswithanarrowacid–

baseboundary.Phys.Chem.Chem.Phys. 4(8),1348–1354.

Marcus,Y.,1997.IonProperties.MarcelDekker,NewYork.

Merkin,J.H.,Simon,P.L.,Noszticzius,Z.,2000.Analysisoftheelectrolytediode.Electro- diffusionandchemicalreactionwithinahydrogelreactor.J.Math.Chem. 28,43–58.

Noszticzius,Z.,Schubert,A.,1973.“Electrolytediode”analysisofisothermaltransport processesintheinterfacesofaqueoussolutions.Period.Polytech.,Chem.Eng. 17, 165–177.

Pˇribyl,M.,Šnita,D.,Kubíˇcek,M.,2006.Adaptivemeshsimulationsofionicsystemsin microcapillariesbasedontheestimationoftransporttimes.Comput.Chem.Eng. 30 (4),674–685.

Roszol,L.,Várnai,A.,Lorántfy,B.,Noszticzius,Z.,Wittmann,M.,2010.Negativesalt effectinanacid-basediode:simulationsandexperiments.J.Chem.Phys. 132(6), 064902.

Schubert,A.,Noszticzius,Z.,1977.Electrolytediode- anexperimentalstudypolarization phenomenaatthejunctionoftheaqueoussolutionsofanacidandabase.PartII.

Period.Polytech.,Mech.Eng. 21,279–283.

Schwab,C.,1999.p- andhp- FiniteElementMethods.ClarendonPress,Gloucestershire.

Trompert,R.A.,Verwer, J.G.,1991.A static-regriddingmethodfortwo-dimensional parabolicpartialdifferentialequations.Appl.Numer.Math. 8(1),65–90.

Wang,R.,Keast,P.,Muir,P.,2004.Ahigh-orderglobalspatiallyadaptivecollocation methodfor1-DparabolicPDEs.Appl.Numer.Math. 50(2),239–260.

Zegeling,P.A.,Blom,J.G.,1992.Anevaluationofthegradient-weightedmoving-finite- elementmethodinonespacedimension.J.Comput.Phys. 103(2),422–441.

Zegeling,P.A.,deBoer,W.D.,Tang,H.Z.,2005.Robustandefficientadaptivemoving meshsolutionofthe2-DEulerequations.Contemp.Math. 383,375–386.

Zegeling,P.A.,Keppens,R.,2001.AdaptiveMethodofLinesforMagnetohydrodynamic PDEModels.AdaptiveMethodofLines,pp. 117–137.

Zegeling,P.A., Kok,H.P.,2004. Adaptive movingmesh computationsfor reaction- diffusionsystems.J.Comput.Appl.Math. 168(1–2),519–528.

Zimmerman,W.B.J.,2006.MultiphysicsModelingwithFiniteElementMethods.World ScientificPublishingCompany,Singapore.

Ábra

Fig. 1. Schematic view of a strong acid-base diode: An alkaline reservoir (filled by e.g
Fig. 2. Simulated voltage – current density characteristic of a strong acid-base diode
Table 1. Model parameters (Marcus (1997)).
Fig. 5. Some grid functions with the corresponding schematic mesh illustrations. (a) Equidistant mesh
+5

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Using the proposed bi-linear σ - ε curve of the masonry infill and the di ff erent Young’s moduli to model unloading, which are based on EC6, in an orthotropic surface model

On other side, based on the error between the active and reactive power prediction and their references of the electrical grid, the predictive algorithm control of the gird

1) A supermolecule is constructed placing some solvent molecules around the solute molecule into fixed positions. For such an agglomeration the Hartree Fock operators of

This is the necessary condition for the second order additive algorithm to produce a single, well defined grid value in each grid point, not depending on the

Keywords: mesh generation, structured/unstructured mesh, multi-block, grid, mesh, computational domain: (airfoil, blade row, cascade/stage, axial compressor, turbine), mesh

Whereas Brosselard's meticulous study of the epitaphs remains invaluable today, this paper, unlike his publication, focuses on the history and architecture of the Yaʿqubiyya

Hungarian Geographical Bulletin (formerly Földrajzi Értesítő) is a double-blind peer-reviewed English- language quarterly journal publishing open access original scientific works

103 From the point of view of Church leadership, it is quite telling how the contents of the dossier of the case are summed up on the cover: “Reports on György Ferenczi, parson