• Nem Talált Eredményt

Lecture IV: Dense Granular Flows

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Lecture IV: Dense Granular Flows"

Copied!
45
0
0

Teljes szövegt

(1)

Lecture IV: Dense Granular Flows

Igor Aronson

Materials Science Division

Argonne National Laboratory

(2)

2

Outline

• Stationary Flow Stability

• Phase Diagram

• Avalanches in Shallow Layers

• Deep Layers/Connection to BCRE

• Comparison with MD simulations

• Granular Stick-Slips Friction

(3)

Summary of Lecture III

v 2 (1 )( )

t             

(1 ( ))

i j

ij ij

j i

v v

x x q

   

   

            144424443

div v=0

Order parameter equation

Constitutive relation for shear stress

Mass conservation + Momentum conservation

ij

0

g

 

 

(4)

4

Shear Temperature: Simplified Version

) tan

(tan 2

tan tan

2 tan

1 2

2

1 

  

• 

1

, 

2

– dynamic/static repose angles

•for 

 – granular solid is unstable

•for 

 – solid/liquid equilibrium

(note slightly different definition of )

(5)

Chute: stability of solid state 

Boundary conditions:



= 1 for

z



h

(rough bottom)



z = 0 for

z

free surface

OPE:

t

2

( 1 )( )

Perturbation:

Eigenvalue:

1 ),

2 / cos(

1   

Ae

t

z h A const

2 2

/ 4

1  h

   

h

y

x

g

z

(6)

6

Stationary Flow

Stationary OPE:

zz

( 1 )( ) 0

1st integral:

const

z2

/ 2  2 (   1 ) / 3 

3

 

2

c

Velocity profile – from stress constitutive relations:

(1 ) 0

x

xz

v

z     

Boundary conditions:

z

(rough bottom) 0 =1 for

0 =0 for 0 (open sur f ace)

x z x

v z h

v z

  

   

h

y x

g

z

(7)

Stationary Flow Existence Limit

Solution exists only for   1 hh

min

()

1

0 3

min 2

0

/ 2 2 ( 1 ) / 3 ( )

min

   

c h d

z

2 / 1

~ for

) 2 / 1 log(

min

  2   

h

1 for

2 / 1 2

min

  /    

h

Solving the first integral:

(8)

8

Phase Diagram

no flow solid only

solid &

liquid flow

liquid only

2 / )

1 ( 

1/2

   h

s

h

min

(9)

Single mode approximation:

depth averaging

Close to the stability boundary   1  A ( x , y , t ) cos(  z / 2 h )

2 2

3 2

8(2 ) 3

1 4 3 4

t xx yy

A A A A A A

h

 

 

  

        

 

Order parameter equation

A(x,y,t) – slowly varying amplitude

Orthogonality/Solvability condition

0

cos 2

h

B B z dz

h

 

     

(10)

10

Correction to 

z

x

) tan

(tan 2

tan tan

2 tan

1 2

2

1

  

0

- local slope contribution   

0

  h

x

) tan (tan

2

1

1

2

 

 

0 x

h

    

0

- chute angle,  –local slope

(11)

Mass Conservation Law

t x x y y

h   J   J

  2 (

2

8

3

) g sin

3

0h

( )

x x

J   v z dz   Ah

down-hill flux of grains

“dimensionless” mobility

Transverse flux

J

y is neglected since

J

x

>> J

y

(12)

12

Model

• Order parameter equation

• Local “shear temperature”

• Evolution of layer depth

2 2

3 2

8(2 ) 3

1 4 3 4

t xx yy

A A A A A A

h

 

 

  

        

 

0

h

x

    

3

t x x x

h   J     Ah

(13)

Boundary conditions

• Inlet x=0

– No-flux condition: J

x

=0

– Fixed flux condition J

x

=Ah

3

=J

0

(grains

supplied from hopper with the fixed rate)

(14)

14

Numerical Methods

• Implicit Crank-Nicholson code for A

• Number of mesh point in x – 600-2400

• Number of mesh points in y – 600

• Time of integration op to 2000 units

h – 2-16 =0.025, =3, L

x

=400, L

y

=200

• Unit of length is about grain diameter

(15)

Fixed Flux at the Inlet of the Chute

x

t

0 1000

500

•Large flux – steady flow, h is adjusted according to J0

•Small flux – periodic sequence of avalanches, Period T ~1/J0

Space-time plot of the height h Red – max, blue - min

(16)

16

Two types of avalanches (theory)

15 . 0 ,

25 . 0 ,

2 . 1 ,

3   

   

h h  5 . 5 ,   1 . 07 ,   0 . 25 ,   0 . 05

Downhill Uphill

(17)

Two types of avalanches (experiment)

Daerr & Douady, Nature, 399, 241 (1999)

(18)

18

Transition from down-hill to up-hill:

1D analysis of avalanche cross-sections

h

0 10 20

h

0 200 400 600

x

0 10 20

uphill

downhill

07 .

1

02 .

1

Secondary avalanche

1.05 1.06 1.07 1.08 1.09 1.10

0.0 0.1 0.2 0.3 0.4 0.5 0.6

V

Uphill front speed

discontinuous transition!

(19)

Quantitative comparison with experiment

Model parameters

, characteristic time l, characteristic length

1

,

2

, static/dynamic repose angles

viscosity coefficient

3

2 8) sin

( 2



g

) tan (tan

2

1

1

2

 

Daerr & Douady:

15 . 3 32

,

25

0 2 0

1

     

m d

l ~  240 

(particle diameter)

ms g

d / ) 5 (

~

1/2

(20)

20

Phase diagram (theory & experiment)

(21)

Infinite Layers: Exact front solution for  =1/2

•does not satisfy boundary conditions

•non-stationary for ≠1/2

1 0

1 tanh 2 8

       z z    

New variable z0=const - position of the front

(22)

28

Avalanches in deep chute

Universal approximation for exact for small and large z)

0 0

1 tanh tanh

8 8

z z z z

               

New variable z0 : depth of fluidized layer

 

0

0

1

z zdz

  



2

0 0

( )

0

( )

0 0

t

z

x

z F zG z

x

z

     

Evolution of z0

0 0 0

0

( 1) 0.502 for 1

; 3.29 for 1 2( 1/ 2)

z z z

F G

z

  

    

  

=

?

Bi-stable function F







(23)

Deep chute (cont)

2 0 0

3 0

0

for 1 2

for 1 z z

f z z

 

  

=

? Expression for flux

h

x

 

0

x

t

J

h   

t

  J

xx

0 2

(1 ) ( )

0

Jzdz  3 f z



   

Symmetry x  x

(24)

30

Connection with BCRE theory

BCRE (Bouchaud, Cates, Rave Prakash & Edwards, 1995) operates with:

H-thickness of immobile fraction, R-thickness of rolling fraction

2

( ) 2

( ) ,

r

r

R R R

R v D

t x x

H H

t R x

  

   

  

    

  

     

 

Boutreux, Raphael & de Gennes modified instability term

2

( r ) up 2

R R R

v D

t   v x x

 

Our theory:

•reproduces BCRE for small R (or z0)

•reproduces Boutreux et al for large R

•has hysteresis missing in both theories

(25)

• For flow with finite granular temperature

Control parameter

T-granular temperature, 0-shear temperature

T1,2-critical temperatures for instability of overheated solid/overcooled liquid

Resulting equations

1. momentum conservation 2. order parameter

3. granular temperature evolution

Transition to conventional granular hydrodynamics for T>>0

Connection with hydrodynamics &

kinetic theory

1 0

2 1

T T

T T

   

(26)

32

Validation of Theory by MD simulations

•non-cohesive, dry, disk-like grains three degrees of freedom.

•A grain p is specified by radius Rp, position rp, translational and angular velocities vp and p.

•Grains p and q interact whenever they overlap, Rp + Rq rp –rp| > 0

•linear spring-dashpot model for normal impact

•Cundall-Strack model for oblique impact.

•Detail: Silbert et al, Phys Rev E, 64, 051302 (2001)

All quantities are normalized using particle size d,

mass m, and gravity g 2304 particles (48x48),

= 0.82; = 0.3; Pext = 13.45,Vx=24

Simulations: IBM SP2 at NERSC, fastest unclassified computer in the world

Restitution coefficient

Friction coefficient

(27)

Testbed system:Couette flow in a thin granular layer without gravity

500 particles (50x10), e= 0.82; = 0.3; P = 13.45, no gravity

Adiabatic change in shear force:

(28)

34

Fitting free energy: fixed points of the order parameter

MD simulations OP equation

500 particles (50x10),

= 0.82; = 0.3

2 0

2 2 2 2

* * *

* *

( 1) ( , ) /

( , ) 2 exp[ ( )]

0.6; 0.26; 25; 2

t

xy yy

D G

G A

A D

     

  

       

 

    

    

   

(29)

Fitting the constitutive relation

yy xx y

x s

yy xx yy

xx y

x f

yy xx xy

s xy xy

f xy

s ij f

ij ij

q q

q

q( ) ; (1 ( )) ; , , ( ) , ; , (1 , ( )) , where

Fit: q() = (1)2.5

fluid (collisional) stress solid (contact) stress

f s

ij ij

   

f

/

xy xy

 

f

/

f

yy yy

 

f

/

xx xx

 

Fit: qy() = (1)1.9

(30)

36

Newtonian Fluid + Contact Part

Kinematic viscosity in slow dense flows:  

(31)

Relation to Bagnold Scaling

Bagnold relation (1954): 

xy

:  &

2

Silbert, Ertas, Grest, Halsey, Levine, and Plimpton, Phys. Rev. E 64, 051302 (2001)

(32)

38

Shear granular flows and stick-slips

Nasuno, Kudrolli, Bak and Gollub, PRE, 58, 2161 (1998).

sliding speed V=11.33 mm/s sliding speed V=5.67 mm/s sliding speed V=5.67 m/s

(33)

Slip event: MD simulations

(34)

40

Example: stick-slips thick surface driven granular flow with gravity

5000 particles (50x100), = 0.82; = 0.3; Pext =

10,50,Vtop=5,50 x y

)

x(y V

g

Set of equations for sand

2 2 2 2 2

0 * * *

* * 0

y

2.5

( 1)( 2 exp[ ( )])

/ / ( ) /( )

0.6; 0.26; 25; 2; 0.02

. (0)= (L )=0

(1- ) =- ( B.C

Constit. Relation )

t

xy yy

D A

p y m y

A D

V y

         

    

  

 

  

        

     

    

 

Ly

V0 m

Equations for heavy plate

(

0

)

x V

mV   x V t

  

&

&

(35)

Simplified theory: reduction to ODE

• Stationary OP profile:

  –width of fluidized layer

(depends on shear stress), 

1

=(4

*

-1)/3

- Stationary solution exists only for specific value of  (y)

(symmetry between the roots of OP equations) which fixes position of the front

1 1

1

1 ( ( ))(1 )

( ) 1 tanh

2 8

y t

f y D

  

        

x

y Vx(y)

Vtop

g

(36)

42

Perturbation theory

• Substituting  into OP equation and performing orthogonality one obtains

• Regularization for <<1 ( –is the growth rate of small perturbations)

0

F F dy



 

2

0 1

0 1

2.5 1

1 2

12.6; 326

Constit. Relation

((1 ) )

C m C

C C

V

  

 

 

  

 

  

&

 

2

1 2 2 2

0 *

A

2 *

(1

*

)

m

 

 

   

   

&

(37)

Resulting 3 ODE

• 2 Equations for Plate

• 1 Equation for width of fluidized layer

(

0

)

x V

mV   x V t

  

&

&

 

2

0 1

or

1 2

for 1

V

C m C

 

  

  

  

&

& =

(38)

44

Comparison: Spring deflection vs time

theory: ODE MD simulations

theory: PDE

(39)

Conclusions

• We introduced a theoretical description for partially fluidized granular flows based on the order parameter which is defined as a fraction of persistent contacts among the grains.

• Stress tensor in granular flows is separated into a “fluid” part and a

“solid” part. The ratio of the fluid and solid parts is controlled the order parameter

• The dynamics of the order parameter is described by the Ginzburg- Landau equation with a bistable free energy functional.

• The free energy controlling the dynamics of the order parameter, can be extracted from molecular dynamics simulations.

• The viscosity coefficient calculated as a ratio of the fluid shear stress to the strain rate does not diverge at small strain rates.

• The model successfully describes dynamics of various shear granular flow: from avalanches to stick slips.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

A Computational Fluid Dynamics (CFD) based software is used to predict the static pressure, pressure drop, shear stress, shear strain, flow structure, friction factor, loss

For this study, in order to obtain model parameters, the G 0 value measured in low strain Resonant Column tests and the stress-strain values of a higher strain single hysteresis loop

The plastic load-bearing investigation assumes the development of rigid - ideally plastic hinges, however, the model describes the inelastic behaviour of steel structures

To evaluate the effect of acidic and alkaline chemical solu- tions on the undrained shear strength and stress-strain characteristics of collapsible soils, unconfined compres-

dynamics or epidemiology of certain Trichoderma species, due to the lack of strain specificity they are not the most reliable options for the environmental monitoring of

As the shear rate is increased (via the rotation speed) the viscosity of the shear-thinning solution decreases leading to enhanced Taylor-cone formation and the initiation of

baumannii strain, iv administered A3-APO at 2,5 mg/kg or im administered A3-APO at 5 mg/kg decreased not only the blood bacterial counts, but increased the survival rate

dynamics or epidemiology of certain Trichoderma species, due to the lack of strain specificity they are not the most reliable options for the environmental monitoring of