• Nem Talált Eredményt

ARTICLE IN PRESS

N/A
N/A
Protected

Academic year: 2022

Ossza meg "ARTICLE IN PRESS"

Copied!
7
0
0

Teljes szövegt

(1)

Contents lists available atScienceDirect

Immunobiology

j o u r n a l h o m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / i m b i o

Calcium influx kinetics, and the features of potassium channels of peripheral lymphocytes in primary Sjögren’s syndrome

Nóra Legány

a

, Gergely Toldi

b

, Csaba Orbán

c

, Nóra Megyes

a

, Anna Bajnok

b

, Attila Balog

a,∗

aDepartmentofRheumatology,FacultyofMedicine,AlbertSzent-GyörgyiHealthCenter,UniversityofSzegedKálváriasgt.57.,H-6725,Szeged,Hungary

bFirstDepartmentofObstetricsandGynecology,FacultyofMedicine,SemmelweisUniversity,Budapest,Barossu.27.,H-1088,Budapest,Hungary

cDepartmentofDieteticsandNutritionSciences,FacultyofHealthSciences,SemmelweisUniversity,Vasu.17.,H-1088Budapest,Hungary

a r t i c l e i n f o

Articlehistory:

Received17March2016

Receivedinrevisedform1June2016 Accepted9June2016

Availableonlinexxx

Keywords:

PrimarySjögren’ssyndrome Calciuminflux

Potassiumchannels Lymphocyteactivation

a b s t r a c t

Objective:Thetransientincreaseofthecytoplasmicfreecalciumlevelplaysakeyroleintheprocessof lymphocyteactivation.Kv1.3andIKCa1potassiumchannelsareimportantregulatorsofthemaintenance ofcalciuminfluxandpresentapossibletargetforselectiveimmunomodulation.

Design:Case–controlstudy.

Subjectsandmethods:Wetookperipheralbloodsamplesfrom8healthyindividualsand15primary Sjögren’ssyndrome(pSS)patients.Weevaluatedcalciuminfluxkineticsfollowingactivationinperipheral Tlymphocytes.WealsoassessedthesensitivityofTlymphocytestospecificinhibitionoftheKv1.3and IKCa1potassiumchannels,andtheKv1.3channelexpression.

Results:ThebasalcytoplasmaticcalciumlevelswerelowerinbothTh1andTh2lymphocytesinpSScom- paredtocontrols.ThepeakofcalciuminfluxinlymphocytesisolatedfrompSSpatientsisreachedlater, indicatingthattheyrespondmoreslowlytostimulationcomparedtocontrols.Inhealthyindividuals, theinhibitionoftheIKCa1channeldecreasedcalciuminfluxinTh2andCD4cellstoalowerextentthan inTh1andCD8cells.Onthecontrary,theinhibitionofKv1.3channelsresultedinalargerdecreaseof calciumentryinTh2andCD4thaninTh1andCD8cells.InthepSSgroup,neitheroftheinhibitorsinduced alterationincalciuminflux.ExpressionofKv1.3channelsonCD4,Th2andCD8lymphocytesinpSSwas significantlyhighercomparedtocontrols.

Conclusion:Thealteredexpressionandspecificinhibitionofpotassiumchannelsseemtoberelatedto alteredcalciuminfluxkineticsinpSSwhichdistinguishpSSeitherfromhealthycontrolsorothersystemic autoimmunediseases.

©2016ElsevierGmbH.Allrightsreserved.

1. Introduction

Pathwaysofcalciumhomeostasisparticipate ina numberof cellularprocessesthatdetermineshortandlong-termfunctionof Tlymphocytes.Theincreaseofthecytoplasmiccalciumconcen- trationfromintra-andextracellularsources(i.e.,theendoplasmic reticulumandstore-operatedcalciumentrythroughtheplasma

Abbreviations: AUC,areaunderthecurve;[Ca2+]cyt,cytoplasmicfreecalcium level;CRAC,calciumreleaseactivatedcalcium;Max,maximumvalue;MGTX,mar- gatoxin;PBMC,peripheralbloodmononuclearcell;PHA,phytohemagglutinin;pSS, primarySjögren’ssyndrome;RA,rheumatoidarthritis;TCM,centralmemoryTcell;

TEM,effectormemoryTcell;Th,Thelper;tmax,timetoreachmaximumvalue;TRAM, triarylmethane.

Correspondingauthor.

E-mailaddress:balog.attila@med.u-szeged.hu(A.Balog).

membrane)isthecornerstoneofTlymphocyteactivationandfunc- tionality.Overtherecentyear,anincreasingnumberofcalcium channelsandtransportershavebeendescribedthatplayakeyrole in balancingcytoplasmic calciumlevelsinT cells. (Toldi,2013;

Feske,2013).

In the course of lymphocyte activation, potassium channels maintainthedrivingforceforsustainedcalciuminfluxfromthe extracellularmilieuastheygranttheeffluxofpotassiumfromthe cytoplasm,thusconservinganelectrochemicalpotentialgradient betweentheintra-andextracellularspaces.Therearetwomajor typesof potassiumchannelsin Tcells:thevoltagegatedKv1.3 andthecalcium-activatedIKCa1channels(Orbánetal.,2013).The relation betweenthecalcium currents throughcalcium release activatedcalcium (CRAC) channelsand the effluxof potassium makestheproliferationand activationoflymphocytessensitive topharmacologicalmodulationofKv1.3andIKCa1channels,and http://dx.doi.org/10.1016/j.imbio.2016.06.004

0171-2985/©2016ElsevierGmbH.Allrightsreserved.

(2)

providesanopportunityfortargetedintervention.Specificinhi- bitionofthesechannelsresultsinadiminishedcalciuminfluxin lymphocytesandalowerleveloflymphocyteactivation.Previous datasuggestthatselectivemodulationoflymphocyteactivation throughspecificinhibitionofpotassiumchannelsmaybeapossi- bletherapeuticapproachforthetreatmentofautoimmunedisease (Beetonetal.,2006;Rangarajuetal.,2009).

Furthermore,adifferentcharacteristicpotassiumchannelphe- notype of effector memory T cells was described in multiple sclerosis(MS):terminallydifferentiatedeffectormemoryT(TEM) cells exhibit Kv1.3high IKCa1low channel phenotype, contrast- ingnaïve,andcentralmemoryTcells,whichexhibitaKv1.3low IKCa1highchannelphenotype(Wulffetal.,2003).

Althoughresultsfromanimal modelsare promising, limited dataisavailableontheeffectsofpotassiumchannelinhibitiononT cellfunctioninhumans.Furthermore,besidesnaïveandmemoryT cells,alterationsintheactivationpatternofeffector(CD4+helper andCD8+cytotoxic)Tlymphocyteshavenotbeendescribedupon Kv1.3andIKCa1inhibition.Althoughthesecellsmighthavealess- specificroleinthemaintenanceofautoreactivitycomparedtoTEM cells,theirinhibitionhaveimportantconsequencesontheoverall immuneresponse.

Therefore,overtherecentyears,wehaveinvestigatedcalcium influx characteristics in effector T cell subsets in a number of autoimmunediseases(Toldietal.,2010,2011,2013,2015).

InthisstudywefocusedonprimarySjögren’ssyndrome(pSS).

pSSisachronicautoimmuneinflammatorydisorderthatprimar- ilyaffectsexocrineglandsleadingtotheirfunctionalimpairment.

AlthoughpSSetiologyisnotfullyelucidated,itiswellestablished thattheinterplaybetweengenetic,environmentalandhormonal factorsrepresentsthetriggerof aberrantautoimmuneresponse with B and T lymphocyte hyperactivity, autoantibody produc- tionandprogressivedestructionoftargetorgans.Thepathological hallmarkofpSSisachronicmononuclearcellinfiltrateaffecting exocrineglandsmainlydrivenbyThelper(Th)1-typecytokines.

Theinnateandadaptiveimmuneresponsesbothplayanimpor- tantroleinthispathologicalprocess.Growingevidencesuggests thatCD4+Thcellsarepredominant,andtheTh1/Th2balanceshifts infavorofTh1ingland,butTh2cytokinerepertoireprevailsinsera (Tzioufasetal.,2012).

Therefore,inthisstudyweaimedtocharacterizetheeffectsof lymphocytepotassiumchannelinhibitiononshort-termperiph- eralbloodTlymphocyteactivationinmajorlymphocytesubsetsof patientsdiagnosedwithpSS.Weemployedakineticflowcytom- etrymethodtodescribecalciuminfluxcharacteristicsoftheCD4, Th1,Th2andCD8subsets anditssensitivitytotheinhibitionof Kv1.3andIKCa1lymphocytepotassiumchannels.

2. Materialsandmethods 2.1. Patients

Weenrolled8 healthy individualsand 15 patientswithpri- marySjögren’sSyndrome(pSS).pSSpatientsfulfillingAmerican EuropeanConsensusgroup(AECG)2002orAmericanCollegeof Rheumatology (ACR) 2012 classification criteria were included (Vitalietal.,2002; Shiboskietal.,2012).Clinicalparameters of studyparticipantsaresummarizedinTable1.Thefollowingclin- icalsymptomsoccurredinpSSpatientshistory:siccaparameters (100%),cytopeniaandanemiaofautoimmuneorigin(87%),arthri- tis(67%), vasculitis(53%),anti-SSA/Bantibodypositivity(100%), lowC3/C4complementlevel(47%),renalinvolvement(13%),fever andnightsweats(20%),lymphadenopathy(20%),lymphoma(0%), weightloss(33%),myositis(7%),peripheralneuropathy(20%).The EULARSjögren’ssyndromediseaseactivity(ESSDAI)scoreswere

Table1

Clinicalcharacteristicsofstudyparticipants.

Characteristics Healthyindividualsn=8 pSSpatientsn=15

Age(years) 53(42–61) 52(36–77)

Gender(male/female) 2/6 1/14

pSSduration(years) 5(2–14)

Anti-SSA/Bpositivity 15

LSGbiopsypositivity 12

ESSDAI 2(0–4)

ESR(mm/h) 8(5–12) 27*(7–55)

Dataareexpressedasmedian(interquartilerange)forcontinousvariablesandas numberforcategoricalvariables.pSS,primarySjögren’sSyndrome;LSGbiopsy,focal lymphocyticsialadenitis(FLS)withfocusscore1inlabialsalivarygland(LSG) biopsy;Anti-SSA/Banti-SSA/Bautoantibodies;ESSDAI,EULARSjögren’ssyndrome diseaseactivity;ESR,erythrocytesedimentationrate.

*p<0.05vs.healthyindividuals.

calculatedatthetimeofsampling(Seroretal.,2015).TheESSDAI scorewas2correspondingtolowdiseaseactivity.AllpSSpatients received a variety of disease modifying antirheumatic drugs (DMARDs),containingatleastoneofthefollowingcomponents:

chloroquine,methylprednisolone,methotrexateandazathioprine.

Healthycontrolshadanegativehistoryofrheumaticsymptoms andnegativestatusupondetailedphysicalandlaboratoryexamina- tion.Noco-morbiditiesweredetectedinpatientsandcontrolsthat couldhaveinfluencedourinvestigation,nordidtheytakeanymed- icationthatcouldhaveinterferedwiththemeasurements.Written informedconsentwasobtainedfromallsubjects,andourstudywas reviewedandapprovedbyanindependentethicalcommitteeofthe university.Laboratorystudiesandinterpretationswereperformed oncodedsampleslackingpersonalanddiagnosticidentifiers.The studywasadheredtothetenetsofthemostrecentrevisionofthe DeclarationofHelsinki.

2.2. Fluorescentstaining

Ourmeasurementswerecarriedoutasdescribedearlier(Toldi etal.,2011).Briefly,peripheralbloodmononuclearcells(PBMCs) wereisolatedbyastandarddensitygradientcentrifugationfrom 9mL of freshly drawn peripheralvenous blood and afterwards keptinamodifiedRPMImedium(calciumconcentration:2mM) throughoutthefollowingstepsoftheprocedure.PBMCswerethen incubatedwiththefollowingconjugatedanti-humanmonoclonal antibodiesinordertodifferentiateTlymphocytesubsets:anti-CD4 PE-Cy7,anti-CD8APC-Cy7,anti-CXCR3APC(forthedetermination ofTh1cells)andanti-CCR4PE(forthedeter-minationofTh2cells) (allfromPharMingen,SanDiego,CA,USA),aswellasanti-Kv1.3 channelFITC(Sigma–Aldrich,St.Louis,MO,USA),accordingtothe manufacturers’instructions.Formonitoring[Ca2+]cyt,PBMCswere loadedwithcalciumsensitiveFluo-3andFura-Reddyesaccording tothemanufacturer’srecommendations(Invitrogen,Carlsbad,CA, USA).

2.3. Flowcytometry

PBMCswereequallydistributedintothreevials.Thefirstvial wasusedascontrol.Thesecondvialwastreatedwithmargatoxin (MGTX,60nM),aselectiveblockeroftheKv1.3channel.Thethird vialwastreatedwithatriarylmethanecompound(TRAM,60nM), aspecificinhibitoroftheIKCa1channel.PBMCswereactivatedby theadditionof20␮gphytohemagglutinin(PHA)andthemeasure- mentswereinitiateddirectlyafterwardsona BDFACSAriaflow cytometer.Cellfluorescencedataweremeasuredandrecordedfor 15mininakineticmanner.

(3)

Table2

Prevalenceoflymphocyte subsetsintheoveralllymphocyte populationgated accordingtoForwardScatterCharacteristics(FSC)andSideScatterCharacteristics (SSC)in8healthyindividualsand15pSSpatients.

Subset Healthy pSS

CD4+/ly 37.7(32.4–44.6) 43.4(30.6–52.1)

CXCR3+/CD4 29.8(17.6–34.7) 20.4(15.7–22.9)

CCR4+/CD4 18.9(12.5–26.3) 13.1(8.8–23.6)

CD4+CXCR3+/CD4+CCR4+ratio 1.89(1.27–2.88) 1.25(0.84–2.56)

CD8+/ly 15.4(9.02–25.6) 17.7(14.6–23.3)

Dataareexpressedasmedian[interquartilerange].CD4+CXCR3+—Th1subset,CD4+

CCR4+—Th2subset,ly—overalllymphocytepopulation,pSS—primarySjögren’ssyn- drome.

2.4. Dataevaluation

Recordingswereevaluatedwithourspecificsoftware(FacsKin), based on thecalculation of a double-logisticfunction for each recording(Toldietal.,2011).Thisfunctionisusedtocharacterize measurementsthat have an increasingand a decreasinginten- sityastimepasses.Thesoftwarealsocalculatedparametervalues describingeachfunction,suchastheAreaUndertheCurve(AUC), Maximum(Max),timetoreachmaximum(tmax),andSlopevalues.

AUCvaluescorrespondtothesumof[Ca2+]cytincrease,whichfur- thercorrespondstotheleveloflymphocyteactivation.Maxvalues representthepeakvalueofthecalciuminfluxcurveuponlympho- cyteactivation.Tmaxvaluesdescribehowsoonthepeakvalueof thecalciuminfluxcurveisreached.TheSlopevaluereflectshow rapidlythepeakofcalciuminfluxisreached.Adetaileddescription oftheevaluationprocesscanbefoundatwww.facskin.com.

StatisticsDataareexpressedasmedianandinterquartilerange.

Comparisons betweentwo sample groups weremadewiththe Mann–Whitneytest.Forcomparisonsbetweenpairedvaluesinthe samegroupWilcoxontestswereapplied.Pvalueslessthan0.05 wereconsideredsignificant.StatisticswerecalculatedusingtheR software.

3. Results 3.1. Clinicaldata

AsseeninTable1,theageandgenderdistributionofparticipants weresimilarinbothstudygroups.Inflammatoryparameters(ery- throcytesedimentationrateandCreactiveproteinvalues)were higherinpSSpatientsthaninhealthycontrols.

Thenumberofpatientsindifferentsubgroupsaccordingtother- apeutic interventionwaslimited, and nosignificantdifferences intheinvestigatedparameterswereobservedbetweenthesub- groups.

3.2. Thefrequencyoftheinvestigatedlymphocytesubsets

WedeterminedthefrequencyofCD4,Th1,Th2andCD8,cells insamplesofbothstudygroups.CD4+CXCR3+cellswereregarded asTh1lymphocytes,whileCD4+CCR4+cellswereregardedasthe Th2subset.Itwasnodetectedsignificantdifferenceregardingindi- vidualcellsubsetsamongthestudygroups(Table2).

3.3. Basalcytoplasmaticcalciumlevelsintheinvestigated lymphocytesubsets

Weevaluatedtheratioofthebasalmedianfluorescenceofcal- ciumbindingdyesinlymphocytesofbothstudygroups.Beforethe lymphocyteactivation,thebasalmedianfluorescenceofcalcium bindingdyeswaslowerinbothTh1andTh2lymphocytesubsetsin thepSSgroup(CD4+CXCR3:24,494[12,365–50,658],CD4+CCR4+:

Fig.1. Thebasalmeanfluorescenceintensityofcalciumbindingdyesintheinves- tigatedlymphocytesubsetsinhealthyindividualsandprimarySjögren’ssyndrome patients.*p<0.05vs.control#p<0.05vsCD8.

22768 [9110–44,026]) than in the healthy group CD4+ CXCR3:

26,151[22,324–28,949],CD4+CCR4:28,187[26,149–31,163]arbi- trary units, p<0.05 (median [interquartile range]) respectively (Fig.1).

Therewas nodifferencebetweenthe studygroups in CD8+

pSS: 26,483 [12,251–50,510], healthy: 29,797 [22,307–33,994]

lymphocytefluorescence. Thebasal cytoplasmaticcalciumlevel washigherintheCD8+subsets thanintheCD4+andTh1sub- setsin thecontrol group(CD8+: 29,797[22,307–33,994],CD4+:

26,843 [23,925–28,502], CD4+CXCR3: 26,151 [22,324–28,949]

p<0.05 (median[interquartilerange])),but inthepSSsamples, there wasnodifferenceamong thelymphocyte subsets (CD4+:

25,167 [12,126–44,988], CD4+ CXCR3: 24,494 [12,365–50,658], CD4+CCR4:22,768[9110–44,026],CD8+:26,483[12,251–50,510]

(median[interquartilerange]))(Fig.1).

3.4. Calciuminfluxkinetics

After lymphocyte activation with PHA, intracellular calcium influxkineticsweremeasuredwithcalculatedparametervalues (AUC,Max,tmax,andslope)inhealthysubjectsandinpSSpatients (Table3).IntheCD4+population,AUCandMaxvalueswerelower inthepSSgroupcomparedtothehealthygroup.ForTh1lympho- cytes,theAUCvaluewaslowerinpSSsamplesthaninthecontrol group.Inthecase ofTh2andCD8+lymphocytes, thecalculated parametervaluesshowednosignificantdifferenceamongthestudy groups(Table3,Fig.2).

3.5. Theeffectsofpotassiumchannelinhibitorsonlymphocyte calciuminflux

Wemeasuredtheeffectofpotassiumchannelinhibitors(MGTX, TRAM)inbothpSSandhealthygroups.Ourresultsrevealedthatthe sensitivityofTh1andTh2cellstoIKCa1channelinhibitionwasdif- ferentinlymphocytesisolatedfromhealthyindividuals(Table3).

TreatmentwithTRAM,thespecificinhibitoroftheIKCa1channel decreasedcalciuminfluxinTh2cellstoalowerextentthaninTh1 cells.On thecontrarytoIKCa1,theinhibition ofKv1.3channels resultedinalargerdecreaseofcalciumentryinTh2thaninTh1 cells.Inhealthyindividuals,CD4cellsweremoresensitivetothe inhibitionofKv1.3channelsthantheCD8subset,respondingwith ahigherlevelofdecreaseoftheAUCvalueupontheapplication ofMGTX.However,upontreatmentwithTRAM,CD8cellsshowed alargerdecreaseinAUCandMaxvaluesthanCD4cells(Table3).

(4)

Table3

TheeffectsofthespecificinhibitoroftheKv1.3channel,margatoxin(MGTX)andthespecificinhibitoroftheIKCa1channel,triarylmethane(TRAM)applicationonparameter values(AUCAreaunderthecurveinunits(U),Maxmaximumvalueinrelativeparametervalue(rpv),tmaxtimetoreachmaximumvalueinseconds(s))ofcalcium influxkineticsinperipherallymphocytesobtainedfrom8healthyindividualsand15pSSpatients.

Noinhibitor MGTX(60nM) TRAM(60nM)

Subset Healthy pSS Healthy pSS Healthy pSS

CD4+ AUC(U) 2591(2349–2939) 2033a(1936–2255) 2328b(2226–2353) 2110(2043–2168) 2483(2325–2723) 2084(1923–2319) Max(rpv) 1.46(1.249−1.608) 1.115a(1.036−1.215) 1.207b(1.141−1.22) 1.085(1.049−1.121) 1.303(1.198−1.483) 1.143(1.033−1.227) tmax(s) 631.9(471.7–930.1) 504.3(355.4–576.3) 913.5(666.2–1351) 598.4(427.2–799.3) 755.2(564.4–972.7) 464.2(131.6–578.4) CD4+CXCR3+ AUC(U) 2411(2325–2508) 2162a(1896–2358) 2358(2336–2511) 2067(1972–2142) 2204b(2151–2235) 2104(1958–2262)

Max(rpv) 1.284(1.203−1.335) 1.122(1.022−1.298) 1.134b(1.096−1.155) 1.081(1.053−1.166) 1.231(1.199−1.34) 1.066(1.024−1.198) tmax (s) 674.8(472.7–1003) 552.8(189.1–646.6) 901.6(756–990) 604.1(432.5–782.3) 872.9(645.3–1096) 652.4(511.2–1100) CD4+CCR4+ AUC(U) 2289(2158–2521) 1984(1718–2396) 2136b(2086–2189) 2204(1737–2331) 2306(2136–2396) 2297(2027–2537)

Max(rpv) 1.239(1.099−1.361) 1.097(1.006−1.222) 1.088(1.057−1.12) 1.278(1.144−1.359) 1.192(1.09−1.249) 1.164(1.104−1.407) tmax (s) 791.1(626.6–1046) 615.3(345.3–906.1) 1065(889.2–1215) 677.5(535.6–711.1) 1034(885.5–1149) 900.3(382.8–1117) CD8+ AUC(U) 2285(2220–2444) 2164(2105–2423) 2258(2224–2318) 2199(2121–2667) 2404(2265–2471) 2322(1964–2566)

Max(rpv) 1.181(1.141−1.317) 1.213(1.09−1.365) 1.156(1.141−1.198) 1.174(1.137−1.355) 1.213(1.067−1.521) 1.257(1.159−1.284) tmax (s) 648.1(519.4–1014) 531.7(436.3–682.5) 988.1(671.6–1076) 659.5(455.8–856.5) 606.6(541.9–927.9) 590.2(388.9–1001) CD4+,CD4+CXCR3+,CD4+CCR4+andCD8+cellsweregatedfromtheoveralllymphocytepopulation.Dataareexpressedasmedian[interquartilerange].CD4+CXCR3+ Th1subset,CD4+CCR4+Th2subset,pSSprimarySjögren’ssyndrome.cMGTXandTRAMtreatedsampleswerecomparedwithsampleswithnoinhibitorapplication withinlymphocytesisolatedfrompSSpatients,p<0.05.

aLymphocytesisolatedfrompSSpatientswerecomparedwithlymphocytesisolatedfromhealthyindividualswithinsampleswithnoinhibitorapplication,p<0.05.

b MGTXandTRAMtreatedsampleswerecomparedwithsampleswithnoinhibitorapplicationwithinlymphocytesisolatedfromhealthyindividuals,p<0.05.

Fig.2. CalciuminfluxkineticsinperipheralTh1lymphocytesofhealthyindividualsandpSSpatientsuponactivationofsampleswithphytohemagglutinin(dataofa representativesamplefromeachgroup).ForTh1lymphocytes,theAUCvaluewaslowerinpSSsamplesthaninthecontrolgroup.Thebasal[Ca2+]cytwaslowerinpSS comparedtohealthyindividuals.Thisisrepresentedbyhighertmaxvalues,i.e.calciuminfluxreachesitspeaklateruponactivation,andalowerMaxcomparedtohealthy controls.

Abbreviations:pSS—primarySjögrensyndrome,AUC—areaunderthecurve,Max—maximumvalue,tmax—timetoreachmaximum

InthepSSgroup,neitheroftheinhibitorsinducedalterationin calciuminfluxoflymphocytes(Table3,Fig.4).

3.6. Kv1.3channelexpressioninpSSintheinvestigated lymphocytesubsets

WeobservedasignificantlyhigherKv1.3channelexpressionin CD4+,Th2,andCD8+lymphocytesubsetsinpSSsamplesthanin controllymphocytes.Themedianfluorescenceofthestudygroups wassimilarinthecaseoftheTh1lymphocytesubsets.Therewasno differenceamongtheseveralcontrollymphocytesubsets(Fig.3).

4. Discussion

4.1. Calciuminfluxkineticsduringlymphocyteactivation

We applied a novel flow cytometry-based approach for the detectionofcalciuminflux.Untiltherecentpast,single-celltech- niqueswereusedfor theinvestigationof calciuminflux during lymphocyteactivation.Therehasbeennohigh-throughputmethod

Fig.3.Meanfluorescenceintensityoftheanti-Kv1.3channelantibodyintheinves- tigatedlymphocytesubsetsinhealthyindividualsandprimarySjögren’ssyndrome patients.*p<0.05vs.control#p<0.05vsTh1.

(5)

Fig.4.TheeffectsofthespecificinhibitoroftheKv1.3channel,margatoxin(MGTX)andthespecificinhibitoroftheIKCa1channel,triarylmethane(TRAM)applicationon parametervaluesAUC—areaunderthecurveinunits(U)inperipherallymphocytesobtainedfrom8healthyindividualsand15andprimarySjögren’ssyndromepatients.

*p<0.05vs.control.

availabletostudythekineticsoflymphocyteactivationinmore subsetsatthesametime.Single-celltechniquesarerestrictedby notbeingcapableofcharacterizingthisprocessincomplexcel- lularsystems,thusignoringtheinteractionbetweenthedifferent lymphocytesubsetsthatmaymodulatethecourseoftheiractiva- tion.Therefore,overtherecentyearswehavedevelopedanovel algorithmthatallowssimultaneousmonitoringofcalciuminflux inseverallymphocytesubsets.Oursoftware(FacsKin)fitsfunc- tionstomedianvaluesofthedataofinterestandcalculatesrelevant parametersdescribingeachfunction.Byselectingthebestfitting function,thisapproachprovidesanopportunityforthemathemat- icalanalysisandstatisticalcomparisonofkineticflowcytometry measurementsofdistinctsamples(Toldietal.,2011).

4.2. Basalcytoplasmaticcalciumlevelsandcalciuminflux kineticsintheinvestigatedlymphocytesubsets

Several animal models have already demonstrated that the reducedTCRsignalcausesincreasedsusceptibilitytoautoimmune diseases. SKG micehave a geneticdefect in ZAP-70,a key sig- naltransductionmoleculeinT-cellsleadingtoT-cellsmediated autoimmunearthritis,andotherautoimmunedisorders.Thisdefect attenuatestheTCRsignalthereforenegativeandpositive selec- tionofTcellsisimpairedinthethymuspromotingself-reactive hyporesponsivenessofT-cellselection.Ontheotherhandalloanti- gensinducesufficientresponsein ZAP-70deficientautoreactive T-cells.Ourpreviousobservationintypeonediabetesandrheuma- toidarthritisareinlinewithanimalmodels(e.g.collageninduced arthritis)whereautoimmunitycanbetriggeredbyexuberantTcell responses.However,ourresultsinprimarySjögrensyndromeare rathercomparabletoSKGanimalmodelswithsub-optimalTcell activation(Sakaguchietal.,2012).

Incontrastwithourpreviousstudiesinautoimmunedisorders, multiplesclerosis,rheumatoidarthritis,andtypeonediabetes,we foundthatlymphocytesisolatedfrompSSpatientsrespondslowler tostimulationthanthoseofhealthyindividuals(Toldietal.,2013).

Furthermore,thefindingsofourstudyindicatethatbasal[Ca2+]cyt waslowerinpSScomparedtohealthyindividuals.Thisisrepre- sentedbyhighertmaxvalues,i.e.calciuminfluxreachesitspeak lateruponactivation,andalowerAUCcomparedtohealthycon- trols(Table3,Fig.2).ThisfindingisespeciallyrelevantintheTh1 subset,alsoindicatingthatTh1responsesperipherallymightbe

decreasedinpSStocontroltheongoinginflammation(Cornecetal., 2014).

ThepathologicalhallmarkofpSSisachronicmononuclearcell infiltrateaffectingexocrineglandsmainlydrivenbyThelper(Th) 1-typecytokines(Beetonetal.,2006).Recently,however,growing evidencehasbeensuggestingthatthepro-inflammatorycytokine interleukin(IL)-17playsapivotalroleinthepathogenesisofpSS (Gongetal.,2014).Additionally,presenceofdifferentTcellsubsets wasevidencedinpSS,inperipheralbloodandinsalivaryglands.

Atleast six Th subsets exist:Th0,Th1,Th2,Th17,regulatoryT (Treg),andfollicularhelperT(Tfh)cells,whicharesuggestedtobe involvedinthepathogenesisofpSS(Toldietal.,2011).Thesalivary glandsarepredominantlyinfiltratedbyCD4+Thelper(Th)cells atanearlystageofpSS,andinadvancedstage,Bcellspredomi- nateandtheseinfiltrationextendstooccupytheacinarepithelium (SjögrenIgG4)(NocturneandMariette,2013).Additionally,besides conventionalCD4+Th17cells,anotherIL-17-producingT-cellsub- population,lackingbothCD4andCD8surfacemolecules(double negative,DN)hasakeyroleinthepathogenesisofpSS(Alunno etal.,2014).

Furthermore,anepigenome-wideDNAmethylationstudyiden- tified several genes which were hypo or hypermethylated in peripheral naïve CD4+T cells from pSS patients compared to healthycontrols(Altoroketal.,2014).Hypomethylatedgeneswere mainlyinvolvedinlymphocyteactivationandimmuneresponse, whereashypermethylatedgeneswereinvolvedinantigenprocess- ingandpresentation.

Inthisstudy,allpSSpatientswereenrolledafterlongeronsetof disease(yearsafterthepresentationofthediagnosis)withoutany severesystemicmanifestations(lowESSDAI)attimeofbloodsam- pling.Theoretically,alloftheseobservationsinpSSincludingthe roleofdifferentThsubsets,thepresenceofdifferentTcellsubsets inperipheralbloodandinsalivaryglandsmightpartiallyexplain thedecreasedreactivityofperipheralTh1andTh2lymphocytesin pSSandtheabsenceofsignificantdifferenceregardingindividual cellsubsetsamongthestudygroups.

Muscarinic acetylcholine receptor (M3R) is expressed in exocrine glands and plays crucial roles in exocrine secretion.

AcetylcholinebindstoandactivatesM3Ronsalivaryglandcells, causingariseinintracellularCa2+concentrationviainositol1,4, 5-triphosphate(IP3)andIP3receptors.SimilarlytoTcellactiva- tion,theincreaseofthecytoplasmiccalciumconcentrationisthe

(6)

cornerstoneofsalivaryglandcellsandfunctionality.Severalanti- M3Rantibodies(Abs)weredescribedinpSS.Theseanti-M3RAbs causesalivarydysfunctioninpSSviareductioninCa2+influxand down-regulationofM3Rmoleculesonepithelialcellsofsalivary glands.Nexttothedestructionofaffectedtissues(mainlysalivary andlacrimalglands)anotherfeatureofpSSisBcellhyperactiv- ity,asattestedbyabundantproductionofautoantibodies(Sumida etal.,2014).Autoimmuneresponsesaremainlypolyclonal,target- ingmultipleepitopeswithinthesameorinteractingautoantigens.

Despiteextensivestudies,themechanismsoperatingfortheexpo- sureofcertainintracellularautoantigenstotheimmunesystem remainrather elusive.It is temptingtospeculate potentialAbs causeTh1andTh2peripherallymphocytesdysfunctionviaaltered calciuminfluxkineticsinpSS.

Based on our results, the time when the peak of calcium influxwasreacheddecreasedinautoimmunepatientscompared tohealthy individuals, indicating thatthese cells arein a state ofsustainedreactivityduetotheongoingautoimmunereaction.

Contrary,notonlythetimewhenthepeakofcalciuminfluxwas reachedincreased significantly, but the peak of calcium influx decreasedsignificantly too,indicating thatthesecells arein an insensitivestatewhichsuggeststhedistinctpathomechanismof pSS(Table3,Fig.2).

4.3. Theeffectsofpotassiumchannelinhibitorsonlymphocyte calciuminflux

Earlierstudieswerelimitedtotheinvestigationofpotassium channelsinnaiveandmemorylymphocytes.We haveextended thesefindingsto significanteffectorTlymphocyte subsets, and founda differentpattern ofsensitivitytotheinhibition oflym- phocytepotassiumchannelsinTh1cellsofautoimmunepatients (RA,MS,T1DM)comparedtohealthyindividuals(Toldietal.,2010, 2011,2013).Intheinvestigated autoimmunepatientsa greater decreaseofcalciuminfluxupontheinhibitionoftheKv1.3chan- nelthanthatoftheIKCa1channelwasobservedinTh1cells.This findingisofspecialinterest,sinceTh1cellsareregardedaskey playersin the mediationof pro-inflammatory responses. How- ever,theselectivityoftheinvestigatedinhibitorswaslimitedin ourexperiments,astheydidnotonly affecta singlesubset,as previouslysuggested.Althoughin earlierobservationstheinhi- bitionofKv1.3channelsspecificallyblockedthefunctionofTEM cells,ourinvestigations extendingtosignificanteffector Tlym- phocytesubsetsdemonstratedthattheinhibitoryeffectispresent notonlyindisease-associatedCD8andTh1cells,butalsointhe anti-inflammatoryTh2subset.

However,previousdataharmonizingwithourresultssuggest thatselectivemodulationoflymphocyteactivationthroughspe- cificinhibitionofpotassiumchannelsmaybeapossibletherapeutic approachforthetreatmentofautoimmunedisease,peripheralT- lymphocytesin pSSwere insensitive tothe potassium channel inhibitors.

4.4. Kv1.3channelexpressioninpSSintheinvestigated lymphocytesubsets

The insensitivity of peripheralT-lymphocytes in pSSto the potassiumchannelinhibitorsresultsmaybeduetoalteredfunc- tionality or changes in the expression of Kv1.3 channels. We therefore analyzed cell surface expression of Kv1.3 channel by measuringmedianfluorescenceofspecificantibodies.Changesto thesensitivityofKv1.3channelinhibition seemtoberelatedto itsalteredexpression,andtherefore,mightexplainourfindings.

Hence,functionalalterationsoftheKv1.3channelmustalsoplaya roleindifferentialsensitivityuponinhibitiondetectedbetweenpSS patientsandhealthycontrols.Ofnote,duetothelackofcommer-

ciallyavailableantibodiesagainsttheotherinvestigatedpotassium channel,wecouldnotperformasimilarmeasurementincaseof IKCa1.

5. Conclusion

In conclusion, the altered expression of Kv1.3 channels and specificinhibition of potassium channelsseemto berelatedto alteredcalciuminfluxkineticsinpSSwhichdistinguishpSSeither from healthy controls or other systemic autoimmune diseases.

These observationssupportthe differentialpathomechanism of pSS.Therefore,furtherstudies,includingtheanalysisofotherlym- phocytessubsetsandfunctionalconsequencesofspecificinhibition ofpotassiumchannelssuchascytokineproductionwouldaddvalu- ableinformation.

Conflictofinterest

All authors declare no conflict of interest related to this manuscript.

Contributorship

Studyconceptionanddesign:NL,GT,ABalog;Datacollection andanalysis:NL,NM,CO,ABajnok;reviewandapprovethefinal manuscript:GT,ABalogAnalysisandinterpretationofdata:NL,GT, ABalog;NL,GT,ABalogwrotethemanuscript.

Acknowledgements

The study wassupported by the research grant of Hungar- ianAssociationofRheumatologists(2014–2015).AttilaBalogand Gergely Toldi were supported by the JánosBolyai Scholarship.

GergelyToldiisanInternationalSocietyfortheAdvanecementof Cytometry(ISAC)Scholar.Thefundershadnoroleinstudydesign, datacollectionandanalysis,decisiontopublish,orpreparationof themanuscript.

References

Altorok,N.,Coit,P.,Hughes,T.,Koelsch,K.A.,Stone,D.U.,Rasmussen,A.,Radfar,L., Scofield,R.H.,Sivils,K.L.,Farris,A.D.,Sawalha,A.H.,2014.Genome-wideDNA methylationpatternsinnaiveCD4TcellsfrompatientswithprimarySjögren’s syndrome.ArthritisRheumatol.66,731–739,http://dx.doi.org/10.1002/art.

38264.

Alunno,A.,Carubbi,F.,Bistoni,O.,Caterbi,S.,Bartoloni,E.,Bigerna,B.,Pacini,R., Beghelli,D.,Cipriani,P.,Giacomelli,R.,Gerli,R.,2014.CD4-CD8-T-cellsin primarySjögren’ssyndrome:associationwiththeextentofglandular involvement.J.Autoimmun.51,38–43,http://dx.doi.org/10.1016/j.jaut.2014.

01.030.

Beeton,C.,Wulff,H.,StandiferAzam,N.E.P.,Mullen,K.M.,Pennington,M.W., Kolski-Andreaco,A.,Wei,E.,Grino,A.,Counts,D.R.,Wang,P.H.,LeeHealey,C.J., Andrews,S.B.,Sankaranarayanan,A.,Homerick,D.,Roeck,W.W.,Tehranzadeh, J.,Stanhope,K.L.,Zimin,P.,Havel,P.J.,Griffey,S.,Knaus,H.G.,Nepom,G.T., Gutman,G.A.,Calabresi,P.A.,Chandy,K.G.,2006.Kv1.3channelsarea therapeutictargetforTcell-mediatedautoimmunediseases.Proc.Natl.Acad.

Sci.U.S.A.103,17414–17419,http://dx.doi.org/10.1073/pnas.0605136103.

Cornec,D.,Jamin,C.,Pers,J.O.,2014.Sjögren’ssyndrome:wheredowestand,and whereshallwego?J.Autoimmun.51,109–114,http://dx.doi.org/10.1016/j.

jaut.2014.02.006.

Feske,S.,2013.Ca2+influxinTcells:howmanyCa2+channels?Front.Immunol.

4,99,http://dx.doi.org/10.3389/fimmu.2013.00099.

Gong,Y.Z.,Nititham,J.,Taylor,K.,Miceli-Richard,C.,Sordet,C.,Wachsmann,D., Bahram,S.,Georgel,P.,Criswell,L.A.,Sibilia,J.,Mariette,X.,Alsaleh,G., Gottenberg,J.E.,2014.DifferentiationoffollicularhelperTcellsbysalivary glandepithelialcellsinprimarySjögren’ssyndrome.J.Autoimmun.51,57–66, http://dx.doi.org/10.1016/j.jaut.2013.11.003.

Nocturne,G.,Mariette,X.,2013.Advancesinunderstandingthepathogenesisof primarySjögren’ssyndrome.Nat.Rev.Rheumatol.9,544e56.

Orbán,C.,Biró,E.,Grozdics,E.,Bajnok,A.,Toldi,G.,2013.Front.Immunol.4,234, http://dx.doi.org/10.3389/fimmu.2013.00234.

(7)

Rangaraju,S.,Chi,V.,Pennington,M.W.,Chandy,K.G.,2009.Kv1.3potassium channelsasatherapeutictargetinmultiplesclerosis.ExpertOpin.Ther.

Targets13,909–924,http://dx.doi.org/10.1517/14728220903018957.

Sakaguchi,S.,Benham,H.,Cope,A.P.,Thomas,R.,2012.T-cellreceptorsignaling andthepathogenesisofautoimmunearthritis:insightsfrommouseandman.

Immunol.CellBiol.90,277–287,http://dx.doi.org/10.1038/icb.2012.4.

Seror,R.,Bowman,S.J.,Brito-Zeron,P.,Theander,E.,Bootsma,H.,Tzioufas,A., Gottenberg,J.E.,Ramos-Casals,M.,Dörner,T.,Ravaud,P.,Vitali,C.,Mariette,X., Asmussen,K.,Jacobsen,S.,Bartoloni,E.,Gerli,R.,Bijlsma,J.W.,Kruize,A.A., Bombardieri,S.,Bookman,A.,Kallenberg,C.,Meiners,P.,Brun,J.G.,Jonsson,R., Caporali,R.,Carsons,S.,DeVita,S.,DelPapa,N.,Devauchelle,V.,Saraux,A., Fauchais,A.L.,Sibilia,J.,Hachulla,E.,Illei,G.,Isenberg,D.,Jones,A., Manoussakis,M.,Mandl,T.,Jacobsson,L.,Demoulins,F.,Montecucco,C.,Ng, W.F.,Nishiyama,S.,Omdal,R.,Parke,A.,Praprotnik,S.,Tomsic,M.,Price,E., Scofield,H.,Sivils,L.K.,Smolen,J.,Laqué,R.S.,Steinfeld,S.,Sutcliffe,N.,Sumida, T.,Valesini,G.,Valim,V.,Vivino,F.B.,Vollenweider,C.,2015.EULARSjégrenös syndromediseaseactivityindex(ESSDAI):auserguide.RMDOpen1,e000022, http://dx.doi.org/10.1136/rmdopen-2014-000022.

Shiboski,S.C.,Shiboski,C.H.,Criswell,L.,Baer,A.,Challacombe,S.,Lanfranchi,H., Schiødt,M.,Umehara,H.,Vivino,F.,Zhao,Y.,Dong,Y.,Greenspan,D., Heidenreich,A.M.,Helin,P.,Kirkham,B.,Kitagawa,K.,Larkin,G.,Li,M., Lietman,T.,Lindegaard,J.,McNamara,N.,Sack,K.,Shirlaw,P.,Sugai,S., Vollenweider,C.,Whitcher,J.,Wu,A.,Zhang,S.,Zhang,W.,Greenspan,J., Daniels,T.,2012.Sjögren’sInternationalCollaborativeClinicalAlliance(SICCA) ResearchGroups:AmericanCollegeofRheumatologyclassificationcriteriafor Sjögren’ssyndromeadata-divenexpertconsensusapproachintheSjögren’s InternationalCollaborativeClinicalAlliancecohort.ArthritisCareRes.64, 475–487.

Sumida,T.,Tsuboi,H.,Iizuka,M.,Hirota,T.,Asashima,H.,Matsumoto,I.,2014.The roleofM3muscarinicacetylcholinereceptorreactiveTcellsinSjögren’s syndrome:acriticalreview.J.Autoimmun.51,44–50,http://dx.doi.org/10.

1016/j.jaut.2013.12.012.

Toldi,G.,2013.TheregulationofcalciumhomeostasisinTlymphocytes.Front.

Immunol.4,432,http://dx.doi.org/10.3389/fimmu.2013.00432.

Toldi,G.,Vasarhelyi,B.,Kaposi,A.,Mészáros,G.,Pánczél,P.,Hosszufalusi,N., Tulassay,T.,Treszl,A.,2010.Lymphocyteactivationintype1diabetes mellitus:theincreasedsignificanceofKv1.3potassiumchannels.Immunol.

Lett.133,35–41,http://dx.doi.org/10.1016/j.imlet.2010.06.009.

Toldi,G.,Folyovich,A.,Simon,Z.,Zsiga,K.,Kaposi,A.,Mészáros,G.,Tulassay,T., Vásárhelyi,B.,2011.Lymphocytecalciuminfluxkineticsinmultiplesclerosis treatedwithoutorwithinterferonbeta.J.Neuroimmunol.237,80–86,http://

dx.doi.org/10.1016/j.jneuroim.2011.06.008.

Toldi,G.,Bajnok,A.,Dobi,D.,Kaposi,A.,Kovács,L.,Vásárhelyi,B.,Balog,A.,2013.

TheeffectsofKv1.3andIKCa1potassiumchannelinhibitiononcalciuminflux ofhumanperipheralTlymphocytesinrheumatoidarthritis.Immunobiology 218,311–316,http://dx.doi.org/10.1016/j.imbio.2012.05.013.

Toldi,G.,Munoz,L.,Herrmann,M.,Schett,G.,Balog,A.,2015.TheeffectsofKv1.3 andIKCa1channelinhibitiononcytokineproductionandcalciuminfluxofT lymphocytesinrheumatoidarthritisandankylosingspondylitis.Immunol.

Res.(August18),Epubaheadofprint.

Tzioufas,A.G.,Kapsogeorgou,E.K.,Moutsopoulos,H.M.,2012.Pathogenesisof Sjögren’ssyndrome:whatweknowandwhatweshouldlearn.J.Autoimmun.

39,4e8.

Vitali,C.,Bombardieri,S.,Jonsson,R.,Moutsopoulos,H.M.,Alexander,E.L.,Carsons, S.E.,Daniels,T.E.,Fox,P.C.,Fox,R.I.,Kassan,S.S.,Pillemer,S.R.,Talal,N., Weisman,M.H.,2002.Europeanstudygrouponclassificationcriteriafor sjögren’ssyndrome:classificationcriteriaforSjögren’ssyndromearevised versionoftheeuropeancriteriaproposedbytheAmerican-European consensusgroup(review).Ann.Rheum.Dis.61,554–558.

Wulff,H.,Calabresi,P.A.,Allie,R.,Yun,S.,Pennington,M.,Beeton,C.,Chandy,K.G., 2003.Thevoltage-gatedKv1.3K(+)channelineffectormemoryTcellsasnew targetforMS.J.Clin.Invest.111,1703–1713,http://dx.doi.org/10.1172/

JCI16921.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Diabetic rats show decreased cerebral perfusion, which is not altered by losartan Cerebral perfusion, reported to be altered in experimental models of diabetes [22], was measured

Altered lymphocyte potassium channel inhibitory patterns, regulators of calcium influx kinetics, might contribute to the development of age-related changes of T cell

In case of Treg cells, the total amount of calcium influx (represented by AUC values) are not altered upon the inhibition of Kv1.3 and IKCa1 channels, however

The addition of 1% CNTs to the 316L steel yielded an increase in the hardness which can be explained by the smaller grain size, the higher dislocation den- sity and the

The stability of both LDH-PSS and LDH-PSS-PDADMAC particles was investigated in a wide range of ionic strength and it was found that polyelectrolyte functionalization led to an

In this study we investigated ion channels related to connexins in patients with altered hearing and detected the expression level of Cx26, Cx43 and Kir2.1 channels in the

Comparing the relative gene expression for Kir and 2-pore ion channels in ventricles, we observed decreased gene expression for Kir2.2, Kir6.1, and SUR2 but, interestingly, the

sensitivity to drugs, conversion from drug-sensitive to drug-insensitive states, are manifestations of altered states of enzyme proteins. These altered states perpetuating in