• Nem Talált Eredményt

approach exchange in cation chromatography, variants Part II: pHgradient Method development the separation for of monoclonal antibodycharge Journal of Pharmaceutical and Biomedical Analysis

N/A
N/A
Protected

Academic year: 2022

Ossza meg "approach exchange in cation chromatography, variants Part II: pHgradient Method development the separation for of monoclonal antibodycharge Journal of Pharmaceutical and Biomedical Analysis"

Copied!
8
0
0

Teljes szövegt

(1)

ContentslistsavailableatScienceDirect

Journal of Pharmaceutical and Biomedical Analysis

jou rn a l h om ep a g e :w w w . e l s e v i e r . c o m / l oc a t e / j p b a

Method development for the separation of monoclonal antibody charge variants in cation exchange chromatography, Part II: pH gradient approach

Szabolcs Fekete

a,∗

, Alain Beck

b

, Jen ˝o Fekete

c

, Davy Guillarme

a

aSchoolofPharmaceuticalSciences,UniversityofGeneva,UniversityofLausanne,Boulevardd’Yvoy20,1211Geneva4,Switzerland

bCenterofImmunologyPierreFabre,5AvenueNapoléonIII,BP60497,74160Saint-Julien-en-Genevois,France

cBudapestUniversityofTechnologyandEconomics,DepartmentofInorganicandAnalyticalChemistry,Szt.Gellérttér4.,1111Budapest,Hungary

a r t i c l e i n f o

Articlehistory:

Received10July2014

Receivedinrevisedform2September2014 Accepted10September2014

Availableonline5October2014

Keywords:

Ionexchange Monoclonalantibody pHgradient Methoddevelopment Cetuximab

a b s t r a c t

ThecationexhangepHgradientapproachwasevaluatedforthecharacterizationof10modelmonoclonal antibodiesincluding panitumumab,natalizumab,cetuximab,bevacizumab,trastuzumab, rituximab, palivizumab,adalimumab,denosumabandofatumumab.

ThisworkshowsthatretentionandresolutioncanbemodelledincationexchangepHgradientmode, basedononlyfourinitialruns(i.e.twogradienttimesandtwomobilephasetemperature).Only6hwere requiredforacompletemethodoptimizationwhenusinga100mm×4.6mmstrongcationexchange column.Theaccuracyofthepredictionswasexcellent,withanaveragedifferencebetweenpredicted andexperimentalretentiontimesofabout1%.

The10modelantibodiesweresuccessfullyelutedinbothpHandsaltgradientmodes,provingthatboth modesofelutioncanbeconsideredasmulti-productchargesensitiveseparationmethods.Formostof thecompounds,thevariantswerebetterresolvedinthesaltgradientmodeandthepeakcapacitieswere alsohigherinthesaltgradientapproach.TheseobservationsconfirmthatpHgradientapproachmaybe oflowerinterestthansaltgradientcationexchangechromatographyforantibodycharacterization.

©2014ElsevierB.V.Allrightsreserved.

1. Introduction

Monoclonalantibodies (mAbs)and related productsare the fastest growing class of therapeutic agents [1]. Suitable tech- niquesarerequestedtoqualitativelyandquantitativelyanalyze heterogeneitiesrelatedtosizeandchargevariantsofmultimers andaggregates.Commonmodificationsoftheprimarysequence include N-glycosylation,methionine oxidation, proteolyticfrag- mentation,anddeamidation[2,3].

Cationexchangechromatography(CEX)hasbeenwidelyused fortheseparationofmAbschargevariants[4–7]applyingashallow gradientofincreasingsaltconcentration(e.g.sodiumchloride)at constantpH.Besidecation-exchange,anion-exchangechromatog- raphy(AEX)hasalsoseenapplicationfortheseparationofthemore basicoxidizedvariantsofanintactmAbs[7].

InadditiontochoosingtheappropriatepHofthestartingbuffer, itsionicstrength(saltconcentration)shouldbekeptlow.Thepro- teinsarethenelutedbyincreasingthesaltconcentrationtoincrease

Correspondingauthor.Tel.:+41223796334;fax:+41223796808.

E-mailaddresses:szabolcs.fekete@unige.ch,szfekete@mail.bme.hu(S.Fekete).

thecompetitionbetweenthebufferionsandproteinsforcharged groupsontheionexchange(IEX)resin.Thismodeofseparationis consideredasthegoldstandardforproteinscharacterization,due toitshighrobustnessandgoodresolvingpower.

Analternativeapproachfortheseparationofchargevariants consistsinapplyingapHgradient,whilstkeepingconstanttheionic strength[8].Chromatofocusing(withinternal pHgradient)was recognizedasthechromatographicanalogytoisoelectricfocusing (IEF)[9–11]andhasbeensuccessfullyappliedforseparatingpro- teinisoforms,duetoitshighresolvingpowerandabilitytoretain theproteinnativestate[12,13].Therearehoweversomelimita- tionstothisapproachsuchasthecostofpolyampholytebuffers, columnregenerationtimeandtheinflexibilityincontrollingthe slope of pH gradient [12,14,15]. Alternatively, the pH gradient canbeconductedexternallybypre-columnmixingoftwoeluting buffersatdifferentpHvaluesconsistingofcommonbufferspecies [16].In contrasttochromatofocusing, theoutletpHgradientin apHgradientIEXisaresultofthesuperimpositionofanexter- nalpH-gradient(withrespecttotime)overan internalcolumn pH-gradient(withrespecttothecolumnlength)[17].Therefore, pHgradientIEXgeneratesawellcontrollableandrepeatablepH- gradientoverawiderangeofpH.

http://dx.doi.org/10.1016/j.jpba.2014.09.032 0731-7085/©2014ElsevierB.V.Allrightsreserved.

(2)

ForpHgradientIEXmode,theuseofamixtureofaminebuffer- ingspeciesinthehigh-pHrangeandamixtureofweakacidsin thelow-pHrangeisquitecommon[14,18,19].Insuchasystem, maintaininglinearityofthepHgradientslopemaybesomewhat difficult.FortheseparationofmAbvariants,severalbuffersystems weretestedinCEXmode.Itwasshownthatanappropriatemix- tureofTris base,piperazineandimidazoleprovidesa linearpH gradientfrompH6to9.5[20].Triethylamineanddiethylamine basedbuffer systemsalso offeredlinear pHgradientin thepH rangeof7.5–10.0[16].Formassspectrometry(MS)detection,5mM ammoniumhydroxidein20%methanolyieldedareasonablepH gradientinalimitedpHrange[16].Finally,Zhangetal.applieda salt-mediatedimprovedpHgradientthatwasusedinawidepH range(between5 and10.5)[21].In theirstudy,a0.25mM/min sodium-chloridegradientwasperformedtogetherwiththepHgra- dient.MAbspossessingisoelectricpoints(pI)between6.2and9.4 weresuccessfullyelutedinonegenericmethodbyusingthissalt- mediatedpHgradient[21].

OneofthebenefitsofpHgradientbasedIEXis thatthesalt concentrationcanbekeptlow,yieldinglessbufferinterferences (e.g.on-lineoroff-linetwo-dimensionalLC).Ontheotherhand, pHgradientbasedseparationusingaCEXcolumnwasfoundtobe amultiproductchargesensitiveseparationmethodformonoclonal antibodies[8,21].

Inthissecondpartofthestudy,pHgradientCEXwasappliedto separatemAbchargevariants.Theimpactofgradientsteepnessand mobilephasetemperatureonretention,peakcapacityandselec- tivitywasstudiedindetailsusingsixselectedmodel mAbsand theirvariants(i.e.trastuzumab,panitumumab,natalizumab,ritux- imab,adalimumabandcetuximab).Finally,thepossibilitiesofpH andconventionalsaltgradientmodeswerecriticallyevaluatedfor 10mAbspossessingpIbetween6.7and9.1.

2. Experimental

2.1. Chemicalsandcolumns

Waterwasobtainedfroma Milli-QPurification Systemfrom Millipore (Bedford, MA, USA). CX-1 pH gradient buffer A (pH 5.6) and CX-1 pH gradient buffer B(pH 10.2) were purchased fromThermoFisherScientificAG(Reinach,Switzerland).1M2- (N-morpholino)ethanesulfonicacid(MES) solution(BioReagent), 1M sodium hydroxide (NaOH) solution and sodium chloride (NaCl)(BioChemika)werepurchasedfromSigma–Aldrich(Buchs, Switzerland).

FDAandEMAapprovedtherapeuticIgGmonoclonalantibodies includingpanitumumab, natalizumab, cetuximab, bevacizumab, trastuzumab, rituximab, palivizumab, adalimumab, denosumab andofatumumabwerekindlyprovidedbytheCenterofImmunol- ogyPierreFabre(Saint-JulienenGenevois,France).Papain(from Caricapapaya),usedforfragmentationofmAbswasobtainedfrom Sigma–Aldrich(Buchs,Switzerland).

YMCBioProSP-F 100mm×4.6mm,5␮mnon-porous strong cationexchangecolumnwaspurchasedfromStacroma(Reinach, Switzerland).

2.2. Equipmentandsoftware

Alltheexperimentswereperformedusinga WatersAcquity UPLCTMsystemequippedwithabinarysolventdeliverypump,an autosamplerandfluorescencedetector(FL).TheWatersAcquity systemincludeda5␮lsampleloopanda2␮lFLflow-cell.Theloop isdirectlyconnectedtotheinjectionswitchingvalve(noneedle seatcapillary).Theconnectiontubebetweentheinjectorandcol- umninletwas0.13mmI.D.and250mmlong(passivepreheating

included),andthecapillarylocatedbetweenthecolumnanddetec- torwas0.10mmI.D.and150mmlong.Theoverallextra-column volume(Vext)isabout14␮lasmeasuredfromtheinjectionseatof theauto-samplertothedetectorcell.Themeasureddwellvolume isaround100␮l.Dataacquisitionandinstrumentcontrolwasper- formedbyEmpowerPro2Software(Waters).Calculationanddata transferringwasachievedbyusingExceltemplates.

ThemobilephasepHwascheckedandadjustedusingaSeven- MultiS40pHmeter(MettlerToledo,Greifensee,Switzerland).

MethodoptimizationwasperformedusingDryLab®2000Plus chromatographic modelling software (Molnar-Institute, Berlin, Germany).

2.3. Apparatusandmethodology

2.3.1. Mobilephasecompositionandsamplepreparation

ForthepHgradientCEXseparationofmAbsandtheirfragments, themobilephase“A”wasa10timesdilutedCX-1pHgradientbuffer A(pH5.6)whilethemobilephase“B”wasa10timesdilutedCX- 1pHgradientbufferB(pH 10.2)–asdescribedin theprotocol providedbythevendor(ThermoFisherScientific).

Forthesaltgradientseparations,themobilephase“A”consisted of10mMMESinwater,whilethemobilephase“B”was10mMMES inwatercontaining1MNaCl.ThepHofbothmobilephaseswas adjustedbyadding1MNaOHsolutiontoreachtherequiredpH.

Thedigestionofcetuximabwasinitiatedbyadditionofpapain (dilutedto100␮g/mlwithwater)toreachafinalprotein:enzyme ratioof100:1(m/m%).Thedigestionwascarriedoutat37Cfor3h.

Thefinaldigestionvolumewas200␮landdirectlyinjectedusing lowvolumeinsertvials.

2.3.2. Investigationofretentionpropertiesofantibodies

IntactantibodieswereelutedinpHgradientmode.Forstudying theretentionpropertiesofintactmAbs,sixofthe10availableanti- bodieswereselectedbasedontheirtype(IgGclassandisotype) andcalculatedpI,namelypanitumumab(huIgG2,pI=6.7),natal- izumab(hzIgG4,pI=8.6),cetuximab(chIgG1,pI=8.7),adalimumab (huIgG1, pI=8.8), trastuzumab (hzIgG1, pI=8.8) and rituximab (chIgG1,pI=9.1).BecauseIgGfromdifferentsubclassesmayhave differentproperties(Fcregions arevery closebutthestructure of thehinge regions may berelatively different), therefore the strengthofinteractionsbetweentheion-exchangeresinandIgG canvaryconsiderablybetweenspeciesandsubtypes.Ourpurpose wasto cover thewhole pIrange and toinclude chimeric (ch), humanized (hz)andhuman(hu)referenceIgG1, IgG2and IgG4 isotypes,todrawoverallandreliableconclusions.

First,theeffectofpHgradientsteepnessontheretentionwas evaluated.Differentgradienttimesweretestedatagivenmobile phasetemperature.Agenericlineargradient,startingfrom0%to 100%B(equivalenttoalinearpHgradientfrom5.6to10.2)was appliedataflowrateof0.6ml/minforallsamples.Thegradient time(tg)wasvariedas10,15,20,30and40min(atT=30C).The observedapparentretentionfactors(kapp)andpeakcapacity(Pc) valueswereplottedagainstthegradienttime(steepness).

Fortheinvestigationofmobilephasetemperature,15mingra- dientruns(0–100%B)werecarriedoutusingvarioustemperatures between 30C and theupper temperature limit of thecolumn (60C).TheretentionpropertiesofintactmAbsandtheircharge variantswereevaluatedbyplottingthelogarithmkappagainst1/T (Van’tHofftyperepresentation).Peakcapacityandresolutionwere alsostudiedasafunctionofmobilephasetemperature.

2.3.3. Systematicmethodoptimization

A commonapproach in methoddevelopment is tosimulta- neously model the selectivity and/or resolution as a function of temperature and gradient steepness on a selected column

(3)

fromalimitednumberofinitialruns[22,23].Inthiscase,initial experimentsarethoseonwhichthecomputer-modelsarebased (calculated)tomodelafewthousandexperiments.Then,withthe helpofresolutionmaps–whichshowthecriticalresolutionofthe peakstobeseparated–thegradientprogramandcolumntemper- aturecanberapidlyandaccuratelyoptimized.Thisapproachwas currentlyappliedforthesaltgradientCEXseparationofantibody variants[24].Inthissecondpart,thisprocedurewasimplemented forpHgradientCEXbasedseparations,toevaluateifthesamerules formethoddevelopmentcanbeapplied.

Basedontheobservedeffectsofthefactorsonretentionand resolution of mAbs peaks, a 4 runs based initial experimental setupisrecommendedformethodoptimizationinthepHgradi- entmode.Performinggradientrunswithtwogradienttimes(as tg1=10min,tg2=30min)attwotemperature(T1=25C,T2=55C) ona100mm×4.6mmcolumnallowedareliableoptimizationof theseparation.

Theoptimizationwasperformedbycomputersimulationusing aDryLabtwodimensionalmodel.Cetuximabpapaindigestedsam- pleswereinjectedtobuilduptheDryLabmodelandstudythe predictionaccuracyerror.CetuximabisaheterogeneousmAbpos- sessingtwoN-glycosylationsitesintheheavychainandseveral chargevariantsincludingC-terminallysinesandsialicacids[25].It isthereforeacomplexexampleformethoddevelopment[24].

2.3.4. GenericpHgradientformultiproductanalysis

Afterstudyingtheretentionbehaviorofa limitednumberof modelantibodies,a genericpHgradientwasproposedallowing theelutionandseparationofallthe10mAbswithinreasonable analysistime(20min).ApHgradient,startingfrompH5.6to10.2 wasappliedataflowrateof0.6ml/minforallsamples.Themobile phasetemperaturewassetatT=30C.Fluorescencedetectionwas carriedoutatex=280andem=360nm.

2.3.5. ComparisonofpH-gradientandsalt-gradientCEX

Thegenericmethodsforthe10mAbsandtheoptimizedsepa- rationofcetuximabfragmentsinbothsaltandpHgradientmodes werecompared.Thesamestationaryphaseandmobilephaseflow ratewereemployedallowinga faircomparison ofthetwoCEX modes.Peakcapacity,selectivityandelutionorderwerestudied.

Themethodoptimizationandfinalconditionsemployedforthe saltgradientCEXmethodshavebeendetailedinthefirstpartof thisarticleseries[24].

3. Resultsanddiscussion

InpHgradientmode,theproteinsnetchargecanbemodified duringthepHgradient,duetoprotonation–deprotonationoffunc- tionalgroups.InCEX,theproteinisexpectedtoeluteat,orcloseto itspI.Accordingtotheory,whenusingpHgradientelutionmode andlowionicstrengthmobilephase,theproteinsarefocusedin narrowerbandsenablinghigherresolutioncomparedtoapHgra- dientperformedathighionicstrength.Thewidthofaproteinpeak alongalinearpHgradientexpressedinpHunitscanbewrittenas follows[9,10,16]:

(pH)2≈ D

dpH/dV

ϕ

dZ/dpH

(1)

whereDisthediffusioncoefficientoftheanalyte,dpH/dVisthegra- dientslope,ϕistheDonnanpotentialanddZ/dpHisthechangein proteinnetchargealongthepHgradient.SincetheDonnanpoten- tialdependsontheionicstrength,apeakfocusingeffectisexpected atlowerionicstrength.In agreementwiththis expectation,pH gradientsatlowionicstrengthshowedbetterresolutionformAb variantscomparedtopHgradientsperformedinhighionicstrength

medium[16].However,themechanismof saltgradientandpH gradientmodeisdifferentandthereforehardlycomparable.

To achieve an optimalexperimentalsetup for separation or purificationofmAbs,theinfluenceofvariousparametersonsep- aration,suchasgradientsteepness,temperatureorflowratehas tobetakenintoaccount.TheoptimizationofmAbseparationsin CEXmodewasperformedbythesystematicvariationofgradient steepnessandflowrateandtheirimpactonthepeakwidthand resolution.Thisapproachisknownasiso-resolutioncurveconcept andallowsdevelopingastepwisegradient[26].

TheworkofSnyderandco-workersshowedthatsaltgradient basedIEX systemsfollow non-linearsolventstrength(non-LSS) typemechanism[27–29].Inthefirstpartofourstudy,itwasshown thatwhenthenetchargeofaproteinislarge(e.g.suchaswith mAbs), thesocalled stoichiometricdisplacement model (SDM) givesvirtuallylinearretentiondependenceonthegradientspan [24].

Tothebestofourknowledge,theoptimizationprocedureinpH gradientmodeCEXhasnotbeenyetstudied.Here,theimpactof gradientsteepnessandtemperatureonmAbsretentiontimeand peakcapacitywasevaluatedinasystematicway.

3.1. TheeffectofpHgradienttime(gradientsteepness)onthe retention

ForCEXseparationofmAbvariants,thesolutesareelutedin orderofincreasingbindingcharge(correlatesmoreorlesswith thepI)andequilibriumconstant.ItisgenerallyassumedthatmAbs eluteclosetotheirpIinthepHgradientmode[17].Therefore,the appliedpHrangeclearlydeterminestheproteinsthatcanpossi- blybeeluted.Ontheotherhand,retentiontimesandpeakwidths dependonthegradientsteepnessasbotharefunctionofdZ/dpH.

Duetotherelativelyhighnetcharge(zvalue)ofmAbs asmall changeinpHcouldleadtosignificantshiftinretention.

Theeffectofgradientsteepness(gradienttime)onthereten- tionofintactmAbsandtheirvariantswasstudiedinasystematic way.Thegradienttime(steepness)wasvariedas10,15,20,30and 40min(atT=30C).TheretentionofthesixselectedmAbsand thevariantsoftrastuzumab,adalimumabandcetuximabshowed thesamebehaviour.Fig.1illustratestheeffectofgradienttimeon theapparentretention(kapp)ofintactmAbsandchargevariants.

Therelationbetweenkappandtgcanbeaccuratelydescribedby fittinglinearfunction(R2>0.999forallsolutes).Onthecontrary, theretentionbehaviourofmAbfragmentsinRPLCshowedamod- eratedeviationfromlinearrelationship[22].Thisbehaviourwas explainedbysomepossiblechangesinconformationandcontri- butionofdifferentretention mechanisms(hydrophobicand ion exchange interactions and/or irreversibleadsorption)[30]. Sur- prisingly,inpHgradientCEXmode,anLSStypemodelperfectly describestheretentionbehaviourofmAbs.Thereisnoneedfor logarithmicorpolynomialfitting(asitisoftenappliedinRPLCor NPLCmodes).

Assuggestedbyourobservations,theretentiontimeofintact mAbs canbepredictedfor anygradientsteepness onthebasis of only two initial gradient runs (e.g. with tg1=10min and tg2=30min)inthepHgradientmode.

3.2. Theeffectofmobilephasetemperatureonretention

The temperature dependence of analyte retention factor in liquid chromatographyis generally expressedby thevan’t Hoff equation.With regular compounds,the van’t Hoffplots (log(k) vs 1/T) follow a linear relationship. However, with ionisable compoundsandlargebiomolecules,deviationsfromlinearitywere described[31].Dependingonthestabilityofproteinssecondary structure, the molecules unfold to various extents and hence

(4)

Fig. 1.Effect of gradient time (steepness) on the apparent retention factor ofnativeantibodies(A)andantibodyvariants(B).Column:YMC BioProSP-F (100mm×4.6mm).Mobilephase“A”CX-1BufferApH5.6,“B”CX-1BufferBpH 10.2.Flowrate:0.6ml/min,gradient:0–100%Bin10,15,20,30and40min,temper- ature:30C,detection:FL(280–360nm),injectedvolume:2␮l.

interactwiththestationaryphasewithvariousstrengths[32–34].

TheeffectofmobilephasetemperatureonproteinretentioninpH gradientIEXmodehasnotyetbeenreported.

Fig.2illustratestheobtainedvan’tHofftypeplots.Thelog(k) vs1/Tplotsshowlinearbehaviourintheinvestigatedtemperature range.SimilarlytotheconclusionsdrawninsaltgradientbasedCEX separations,theimpactoftemperatureseemstobelessimportant comparedtoRPmode[24].Theslopeofthecurveswasindeed significantlylowerinIEXvs.RPLCmode.TheslopeinpHgradient IEXmodewascomprisedbetween−0.47and0.11K*103,whilefor intactmAbsinRPLCmodetheslopeistypicallyaround0.5and 1.0K*103[22].

Panitumumab (possessing the lowest pI) showed the most importantretention–temperaturedependence.Itisprobablydueto derelativelylownumberofnetchargeswhilstrunningthepHgra- dientbetweentheinitialmobilephasepH(5.6)andpanitumumab pI(6.7).Theselow netchargesformrelativelyweakinteraction withthestationaryphasecomparedtotheothermAbs.Moreover, theretentionofpanitumumabincreaseswithtemperatureproba- blyduetoamodificationofpIwithtemperature.

Finally,theslopesoflog(k)–1/Tcurves forrelatedmAbs(e.g.

chargevariantsofa givenmAb)arequitesimilar.Fig.2Bshows theseplotsforadalimumab,cetuximabandtrastuzumab,asrep- resentativeexamples.Thissuggeststhatselectivitycanhardlybe tunedwith temperature. However, temperature has significant impactonthepeakwidth(peakcapacity)–seeSection3.3–and hasaneffectontheoverallseparationquality(resolution).

Fig.2.Effectoftemperatureontheapparentretentionfactorofnativeantibodies (A)andantibodyvariants(B)(van’tHofftyperepresentation).Column:YMCBioPro SP-F(100mm×4.6mm).Mobilephase“A”CX-1BufferApH5.6,“B”CX-1BufferB pH10.2.Flowrate:0.6ml/min,gradient:0–100%Bin15min,temperature:30,40, 50and60C,detection:FL.(280–360nm),injectedvolume:2␮l.

3.3. Peakcapacity

Thevariationofpeakcapacityasafunctionofgradientsteepness andtemperaturewasalsoestimated.Thefollowingequationwas usedtoestimatepeakcapacitybasedonpeakwidthathalfheight [35]:

Pc=1+ tg

1.7·w50% (2)

A logarithmic relationship perfectly described the evolution ofpeak capacity withincreasinggradient time.Similarly tothe observationsmadeinsalt-gradientCEXmodewithtrastuzumab, adalimumab and natalizumab, the peak capacities achieved in pHgradientCEXforthesamemAbsandusingthesamecolumn and gradient steepnesswerecomparable [24]. Peakcapacity of Pc∼50–60wasobservedwitha 10minlonggradient,whilethe longest 40min gradient provided Pc∼100–120 (Fig. 3A). Since retentionalsoincreasedwithgradienttime(Fig.1),relativelylong gradientsarerequiredforhighresolutionseparations,albeitthe costofanalysistime.

Surprisingly,panitumumabandrituximabelutedwithsignifi- cantlywiderpeaksthantheothermAbs.Thepeakcapacitywas comprisedbetween40and75forpanitumumabandonlybetween 20and60forrituximab.Thisefficiencywasclearlylowerthanthe oneachievableinsaltgradientCEXmodeonthesamecolumnand usingthesamegradientsteepness[24].

Fig.3Bshowsthechangeinpeakcapacityasafunctionofmobile phasetemperatureatagivengradientsteepness.Adecreaseinpeak capacitywasobservedforhalfofthemAbswhiletheotherhalf

(5)

Fig.3.Peakcapacityasafunctionofgradienttime(steepness)(A)andtemperature (B).Column:YMCBioProSP-F(100mm×4.6mm).Mobilephase“A”CX-1BufferA pH5.6,“B”CX-1BufferBpH10.2.Flowrate:0.6ml/min,detection:FL(280–360nm), injectedvolume:2␮l.

showedtheoppositetendency.Themostdifferentbehaviourwas observedforadalimumabandnatalizumab.Foradalimumab,the peakcapacitywasreducedfrom80to60whenincreasingthetem- peraturefrom30to60C,whilefornatalizumabitwasenhanced from70 to80inthesametemperaturerange. Thisobservation suggeststhattemperaturemaybeanimportantfactorinmethod optimization.Indeed,selectivitydoesnotchangesignificantlywith temperaturebut itcan affectresolutionthrough anincrease or decreaseofpeakcapacityinpHgradientCEXmode.

ForlargeproteinsinCEXmode,itisalwayshardtopredictand explaintheirbandbroadeningprocessoccurringatdifferenttem- peratures.Ontheonehand,duetothechangesinmobilephase viscosityandsolutediffusion,anincrease inefficiency (sharper peak)isexpected.Ontheotherhand,temperaturecanhaveastrong impactonproteinconformationaswell.Undercertainconditions, thenativeconformationand/orotherintermediateconformations maybepresentduringtheanalysis.Eachofthesewillinteractdif- ferentlywiththestationaryphase,resultinginslightvariationsin retentiontimesofthedifferentspecies.Theexistenceofthediffer- entspeciesatelevatedtemperaturemayresultin“apparent”peak broadening.

3.4. Methoddevelopment,creatingatwodimensionalDryLab modelforpHgradientCEX

Linearmodels are generally employed for the simultaneous optimizationoftwoorthreevariablesinliquidchromatography.

Polynomialrelationshipoftwovariablescanbewrittenas:

y=b0+b1x1+b2x2 (3)

whereyistheresponse(retentiontimeoritstransformation),x1 andx2arethemodelvariables(e.g.tgandT),whileb0,b1,b2are themodelcoefficients.

AsobservedwithmAbs,thedependenceofretentiontime(or itstransformation)onpH,gradientsteepnessandmobilephase temperaturecanbedescribedbylinearmodels.Thisobservation suggeststhatmethodoptimizationwithgradientsteepnessand mobilephasetemperatureasmodelvariablesrequiresthemea- surementofvariableeffectsattwolevelsonly.

Gradient runs with two gradient times (as tg1=10min, tg2=30min) at two temperatures (T1=25C, T2=55C) on a 100mm×4.6mmcolumnwereperformedtobuildupthemodel.

The modelling software implements an interpretive approach, wheretheretentionbehaviourismodelledonthebasisofexperi- mentalruns,andthentheretentiontimes,peakwidths,selectivity andresolutionatotherconditionsarepredictedinaselectedexper- imentaldomain.Thisallowscalculatingthecriticalresolution,and accordingly,theoptimalseparationcanbefound.Forthispurpose, retentiontimesweretransformedintoretentionfactors,andlinear modelswerechosenforbothgradienttime(steepness)andtem- perature.Thismodellingwasperformedonarectangularregionin thetg–Tplane,determinedby2gradienttimes(steepness)and2 temperatures.Hence,thisapproachrequires4initialexperimen- talrunsfor creatingthemodel. Followingtheexecution ofthe inputexperimentalruns,data(retentiontimes,peakwidthsand peaktailingvalues)wereimportedintoDryLabandpeaktrack- ing performed. Then, the optimization was carried out onthe basisofthecreatedresolutionmap,inwhichthesmallestvalue ofresolution(Rs)ofanytwocriticalpeaksinthechromatogram was plotted as a function of gradient time and mobile phase temperature.

To establish the accuracy of this 2 dimensional linear model, the predicted and experimentally derived chro- matograms(retentiontimes)undertheoptimalconditionswere compared.

3.5. OptimizationoftheseparationofFabandFcfragmentsof cetuximabinpHgradientmode

Afastandefficientmethodoptimizationprocesswasappliedfor thedeterminationofvariantsanddegradationproductsofrecom- binantcetuximab,usingthepHgradientapproachinCEXmode.

ThenativemAbwasinitiallydigestedwithpapainandourpurpose wastoseparateasmanyvariantsoftheFabandFcfragmentsas possible,withintheshortestachievableanalysistime.Fig.4shows theobtainedchromatogramsofthefourinitialruns.Thepredicted resultsaredemonstratedinFig.5asaresolutionmap.Basedon theresolutionmap, a16mingradientwasfoundtoprovidethe highestresolution atthemobilephasetemperature ofT=25C.

Then,thepredictedoptimumconditionwassetandexperimen- talchromatogramsrecordedtoevaluatethepredictionaccuracy.

Fig. 6 shows thepredicted and experimentally observed chro- matograms,whileTable1providesthecorrespondingretention times.

AsshowninTable1,thepredictedretentiontimeswereingood agreementwiththeexperimentalones.Theaverageretentiontime relativeerrorswassystematicallyunder1.0%(seeTable1),which canbeconsideredasexcellent.Thehighest individualdeviation was1.5%.

Inconclusion,thismethodoptimizationapproachcanbecon- sideredasreliableandthesuggestedinitialexperiments(i.e.10 and30mingradientona100mmlongstandardborecolumnat 25and55C)aresuitablefordailyroutinework.Thetimespent formethoddevelopmentinthisexamplewasaround6h(2gradi- ents×2temperatures×3samples+equilibrationtime).

(6)

Fig.4. Cetuximabpapaindigestedsample.Column:YMCBioProSP-F(100mm×4.6mm).Mobilephase“A”CX-1BufferApH5.6,“B”CX-1BufferBpH10.2.Flowrate:

0.6ml/min,gradient:0–80%B,detection:FL(280–360nm),injectedvolume:2␮l.Gradienttimes:tg1=10min,tg2=30min,temperaturesT1=25C,T2=55C.

Fig.5.Cetuximabpapaindigestionresolutionmap(tg–Tmodel).Column:YMC BioProSP-F (100mm×4.6mm). Mobilephase “A”CX-1 Buffer ApH 5.6, “B”

CX-1BufferBpH10.2.Flowrate:0.6ml/min,gradient:0–80%B,detection:FL (280–360nm),injectedvolume:2␮l.Gradienttimes:tg1=10min,tg2=30min,tem- peraturesT1=25C,T2=55C.

Table1

Predictionaccuracy.ConditionsarethesameasspecifiedinFig.7.

Peak Retentiontime

Experimental Predicted Difference(min) Error(%)

1 3.47 3.42 0.05 1.37

2 3.79 3.74 0.05 1.34

3 4.18 4.14 0.04 1.01

4 4.72 4.68 0.04 0.88

5 5.20 5.12 0.08 1.50

6 5.92 5.97 −0.05 −0.89

7 6.57 6.48 0.09 1.33

8 6.92 7.00 −0.08 −1.09

9 7.39 7.48 −0.10 −1.27

10 7.76 7.82 −0.06 −0.73

11 8.31 8.39 −0.08 −0.99

12 9.03 9.13 −0.10 −1.10

13 9.85 9.98 −0.13 −1.30

14 11.09 11.14 −0.05 −0.47

Average −0.02 −0.03

3.6. GenericpHgradientCEXmethodforvariousmAbs

ThemainadvantageofpHgradientbasedseparationsusinga CEXcolumnisdescribedasamulti-productchargesensitivesepa- rationmethodforvariousmAbs[16,20,21].Inthisstudy,wetriedto checkthishypothesisbyanalyzingamixtureof10differentmAbs (possessingpIbetween6.7and9.1),withagenericpHgradient frompH5.6to10.2.

Fig.6. Comparisonofpredictedandexperimentalchromatograms.Column:YMC BioProSP-F(100mm×4.6mm).Mobilephase“A”CX-1BufferApH5.6,“B”CX-1 BufferBpH10.2.Flowrate:0.6ml/min,gradient:0–55%Bin16min,temperature:

25C,detection:FL(280–360nm),injectedvolume:2␮l.

(7)

Fig.7. GenericpHgradient.Column:YMCBioProSP-F(100mm×4.6mm).Mobile phase“A”CX-1BufferApH5.6,“B”CX-1BufferBpH10.2.Flowrate:0.6ml/min,gra- dient:0–100%Bin20min,temperature:30C,detection:FL(280–360nm),injected volume:2␮l.

BasedonSection 3.5,the pHgradientsteepnessand mobile phasetemperaturewerevariedtofindappropriateconditionsfor these10mAbsandtheirvariants.

Fig.7showstheobtainedchromatogramsof10intactmAbs, andsuggeststhatpHgradientCEXseparationisindeedadequate formulti-productmAbseparations.Theoptimalconditionsona strongcationexchanger resinwerefoundas20minlonggradi- ent(0–100%B)at30C.OnFig.7,itcanbeclearlyseenthatmAbs donoteluteexactlyintheorderoftheirpI.Theoretically,proteins shouldeluteaccordingtotheirpIinthepHgradientmode.Ahamed etal.observedthatbasicproteins(pI>8)elutedatpHverycloseto theirpI,whileacidicproteins(pI<6)elutedatslightlyhigherpH (0–0.5pHunit)thantheirpI[17].Onthecontrary,neutralproteins (6<pI<8)elutedatmuchhigherpHthantheirpIandhadaten- dencytoeluteatpH∼9regardlesstheirpI[17].Thedistribution ofchargesonthesurfaceofproteinsisgenerallyconsideredasthe reasonfortheminordeviationsbetweentheelutionpHandpI.

Forneutralproteins,thesourceofdeviationisprobablyoriginated fromthepolypeptidicchain.Indeedthehugedeviationbetweenthe elutionpHandpIofneutralproteinsoriginatedfromtheinherent natureoftheproteinstitrationcurve[17].

Inourexample,natalizumabclearlyelutesearlier,whiledeno- sumabelutesathigherpHthanexpected.Onepossibleexplanation maybethedifferences in glycosylationprofiles ofthese mAbs.

Moreover,somesupplementaryinteractions withthestationary phase canalso occurthat superposes tothe charge-interaction basedelutionmechanism.Basedontheseobservationsandthefact thatretentiontimesandpIarenotperfectlycorrelated,careshould betakenwhenevaluatingtheproteinspI,basedonapHgradient CEXexperiment.

3.7. ComparisonofgenericpHandsaltgradientCEXseparations ThegenericpHgradientmethodwascomparedtotherecently developedgenericsaltgradientmode.Theconditionsofthesalt gradientmethodaredetailedinthefirstpartofthisarticleseries [24].

Forthesake ofcomparison, thesamecolumn(strong cation exchange),instrument,flowrate,gradientsteepness,temperature,

Fig.8.Comparisonofretentionfactors(A)andpeakcapacity(B)insaltandpHgra- dientmodecationexchangechromatography.Conditionsasdefinedinthelegend ofFig.7forthepHgradient,andasdefinedinRef.[24]forthegenericsaltgradient.

injectedamountanddetectionmodewereapplied.Theonlydif- ferencewasthemobilephaseconditionsandthemodeofelution.

Thegradientprogramsweredevelopedtokeepasimilarretention rangeforallthemAbs.ThehighestretentionfactorinpHgradient modewaskapp=13.7whileinsaltgradientmodeitwaskapp=14.2.

Therefore,theseconditionsallowedafaircomparisonofthetwo modes.

First, the retention factors were compared. The kapp values observedinthepHgradientmodewereplottedagainstthekapp values observed in the salt gradient mode. Fig. 8A shows the observedplotforthe10intactmAbsandtheirmainvariants.As shown,denosumab,palivizumab,bevacizumabandadalimumab showdeviationfromthelinearfittedfunction.Thissuggeststhat thetwoCEXelutionmodesoffersomealternativeselectivityfor theseparticularmAbs.ForthesixothermAbs,nosignificantdiffer- encesinelutionorder(selectivity)wasobserved.

Exceptselectivityandretention,thepeakcapacitiesachieved withthesetwomodeswerealsocompared.Fig.8Bshowsthepeak capacityobservedforsixrepresentativemAbs,whenperforming thegenericgradientseparations.Inagreementwithourexpecta- tions,thesaltgradientmodeoffershigher peakcapacity(when applyingthesamegradientsteepness,flowrateandcolumndimen- sion).Inaverage,a25%higherefficiencywasobservedinthesalt gradientmodecomparedtothepHgradientmode.Inthecaseof rituximab,a 2.5fold higherpeak capacity wasobservedin salt gradientmode.RituximabelutedinatailedbroadpeakinpHgra- dientmodewhileitwassymmetricalandsharpinthesaltgradient mode.Foradalimumab,thetwomodesprovidesimilarefficiency.

FormostofthemAbs,thevariantswerebetterresolvedinthesalt gradientmode.

(8)

ToconcludeonthesetwoCEXmodes,thetheoreticallyexpected focusingeffectofthepHgradientmodedoesnotbringanygainin resolvingpowerorpeakcapacityforintactmAbscomparedtothe saltgradientmode.Inaddition,thesaltgradientmodecanalsobe successfullyappliedasamultiproductgenericmethodforalarge varietyofintactmAbs[24].

4. Conclusion

Inthissecondpart,thepossibilitiesofferedbyCEXpHgradient modewereevaluatedfor10differentmodelmAbs,andsystemati- callycomparedtoCEXsaltgradientapproach.

Firstof all,wehaveevaluatedwhethertheretentioncanbe modelledasafunctionofgradientsteepnessandmobilephasetem- peratureinCEXpHgradientmode.Becausetheretentionmodels werealwayslinear,onlyfourinitialexperiments(2gradientstimes attwotemperatures)wererequiredtomodelthebehaviourinCEX pHgradient.Then,only6hwererequiredtofindouttheoptimal conditionsforthecharacterizationofseveralmAbsvariants.

Next,wealsodemonstratedthattheretentiontimesobservedin CEXpHgradientwerenotsystematicallyproportionaltothemAbs pI.Thus,theapplicationofthisapproachformeasuringaccuratepI valuesshouldbeconsideredwithcaution.

Finally,our10 modelmAbsweresuccessfullyeluted inboth CEXpHgradientand saltgradient,showingthat bothmodesof elutioncanbeconsideredasmulti-productchargesensitivesep- arationmethods.These twoapproaches werealsocompared in termsofselectivityandpeakcapacity.Selectivitywerequitecom- parable (exceptfor denosumab, palivizumab,bevacizumab and adalimumab) andfor mostofthemAbs,thevariants werebet- terresolvedinthesaltgradientmode.Thepeakcapacitieswere generallyimprovedwiththeregularsaltgradientapproach.These observationsconfirmthatpHgradientapproachmaybeoflower interestthansaltgradientCEXmodeformAbscharacterization.

Acknowledgments

WeacknowledgeElsaWagner-Rousset,LauraMorel-Chevillet and Olivier Colas (Physico-Chemistry Department, Centre d’Immunologie Pierre Fabre, Saint-Julien en Genevois, France) forpIcalculationandexperimentaldetermination(IEFandcIEF) and LC-MS analysis and Stephane Tonelotto (QC Department, Centre d’Immunologie Pierre Fabre, Saint-Julien en Genevois, France)forhelpfuldiscussionsonCEX.

References

[1]A.Beck,S.S.Cianferani,A.VanDorsselaer,Biosimilar,biobetter,andnextgener- ationantibodycharacterizationbymassspectrometry,Anal.Chem.84(2012) 4637–4646.

[2]Z.Zhang,H.Pan,X.Chen,Massspectrometryforstructuralcharacterizationof therapeuticantibodies,MassSpectrom.Rev.28(2009)147–176.

[3]M.Perkins,R.Theiler,S.Lunte,M.Jeschke,Determinationoftheoriginof chargeheterogeneityinamurinemonoclonalantibody,Pharm.Res.17(2000) 1110–1117.

[4]S.Fekete,A.L.Gassner,S.Rudaz,J.Schappler,D.Guillarme,Analyticalstrategies forthecharacterizationoftherapeuticmonoclonalantibodies,TrendsAnal.

Chem.42(2013)74–83.

[5]K.G. Moorhouse, W.Nashabeh,J. Deveney, N.S.Bjork,M.G.Mulkerrin, T.

Ryskamp,ValidationofanHPLCmethodfortheanalysisofthechargehet- erogeneityoftherecombinantmonoclonalantibodyIDEC-C2B8afterpapain digestion,J.Pharm.Biomed.Anal.16(1997)593.

[6]H.Lau,D.Pace,B.Yan,T.McGrath,S.Smallwood,K.Patel,J.Park,S.S.Park,R.F.

Latypov,InvestigationofdegradationprocessesinIgG1monoclonalantibodies bylimitedproteolysiscoupledwithweakcation-exchangeHPLC,J.Chromatogr.

B878(2010)868–876.

[7]G.Teshima,M.X.Li,R.Danishmand,C.Obi,R.To,C.Huang,J.Kung,V.Lahidji,J.

Freeberg,L.Thorner,M.Tomic,Separationofoxidizedvariantsofamonoclonal antibodybyanion-exchange,J.Chromatogr.A1218(2011)2091–2097.

[8]D.Farnan,G.T.Moreno,Multiproducthigh-resolutionmonoclonalantibody chargevariantseparationsbypHgradiention-exchangechromatography,Anal.

Chem.81(2009)8846–8857.

[9]L.A.Æ.Sluyterman,O.Elgersma,Chromatofocusing:isoelectricfocusingonion exchangecolumns.I.Generalprinciples,J.Chromatogr.150(1978)17–30.

[10]L.A.Æ.Sluyterman,J.Wijdenes,Chromatofocusing:isoelectricfocusingonion exchangecolumnsII. Experimentalverification,J.Chromatogr.150(1978) 31–44.

[11]L.A.Æ.Sluyterman,J.Wijdenes,Chromatofocusing:IV.Propertiesofanagarose polyethyleneimineionexchangeranditssuitabilityforproteinseparation,J.

Chromatogr.206(1981)441–447.

[12]A. Rozhkova, Quantitative analysis of monoclonal antibodies by cation- exchangechromatofocusing,J.Chromatogr.A1216(2009)5989–5994.

[13]X.Kang,D.Frey,High-performancecation-exchangechromatofocusingofpro- teins,J.Chromatogr.A991(2003)117–128.

[14]L.Shan,D.J.Anderson,Effectofbufferconcentrationongradientchromatofo- cusingperformanceseparatingproteinsonahigh-performanceDEAEcolumn, J.Chromatogr.A909(2001)191–205.

[15]L.Shan,D.J.Anderson,GradientchromatofocusingversatilepHgradientsepa- rationofproteinsinion-exchangeHPLC:characterizationstudies,Anal.Chem.

74(2002)5641–5649.

[16]M.Talebi,A.Nordbog,A.Gaspar,N.A.Lacher,Q.Wang,X.Z.He,P.R.Haddad, E.F.Hilder,Chargeheterogeneityprofilingofmonoclonalantibodiesusinglow ionicstrengthion-exchangechromatographyandwell-controlledpHgradients onmonolithiccolumns,J.Chromatogr.A1317(2013)148–154.

[17]T.Ahamed,B.K.Nfor,P.D.E.M.Verhaert,G.W.K.vanDedem,L.A.M.vanderWie- len,M.H.M.Eppink,E.J.A.X.vandeSandt,M.Ottens,pH-gradiention-exchange chromatography:ananalyticaltoolfordesignandoptimizationofproteinsep- arations,J.Chromatogr.A1164(2007)181–188.

[18]L.Shan,D.J.Anderson,Gradientchromatofocusing.versatilepHgradientsepa- rationofproteinsinion-exchangeHPLC:characterizationstudies,Anal.Chem.

74(2002)5641–5649.

[19]Y.Liu,D.J.Anderson,Gradientchromatofocusinghigh-performanceliquidchro- matography:I.Practicalaspects,J.Chromatogr.A762(1997)207–217.

[20]J.C.Rea,G.T.Moreno,Y.Lou,D.Farnan,ValidationofapHgradientbasedion- exchangechromatographymethodforhigh-resolutionmonoclonalantibody chargevariantseparations,J.Pharm.Biomed.Anal.54(2011)317–323.

[21]L.Zhang,T.Patapoff,D. Farnan,B.Zhang,ImprovingpH gradientcation- exchange chromatography of monoclonalantibodies by controlling ionic strength,J.Chromatogr.A1272(2013)56–64.

[22]S.Fekete,S.Rudaz,J.Fekete,D.Guillarme,Analysisofrecombinantmonoclonal antibodiesbyRPLC:towardagenericmethoddevelopmentapproach,J.Pharm.

Biomed.Anal.70(2012)158–168.

[23]S.Fekete,J.Fekete,I.Molnár,K.Ganzler,Rapidhighperformanceliquidchro- matographymethoddevelopmentwithhighpredictionaccuracy,using5cm longnarrowborecolumnspackedwithsub-2␮mparticlesandDesignSpace computermodeling,J.Chromatogr.A1216(2009)7816–7823.

[24]S.Fekete, A. Beck,J. Fekete, D. Guillarme, Methoddevelopment forthe separationofmonoclonalantibodychargevariantsincationexchangechro- matography,partI:saltgradientapproach,J.Pharm.Biomed.Anal.102C(2014) 33–44.

[25]D.Ayoub,W.Jabs,A.Resemann,W.Evers,C.Evans,L.Main,C.Baessmann,E.

Wagner-Rousset,D.Suckau,A.Beck,Correctprimarystructureassessmentand extensiveglyco-profilingofcetuximabbyacombinationofintact,middle-up, middle-downandbottom-upESIandMALDImassspectrometrytechniques, mAbs5(2013)699–710.

[26]T.Ishihara,S.Yamamoto,Optimizationofmonoclonalantibodypurification byion-exchangechromatography,applicationofsimplemethodswithlinear gradientelutionexperimentaldata,J.Chromatogr.A1069(2005)99–106.

[27]R.W.Stout,S.I.Sivakoff,R.D.Ricker,L.R.Snyder,Separationofproteinsbygradi- entelutionfromion-exchangecolumns:optimizingexperimentalconditions, J.Chromatogr.353(1986)439–463.

[28]M.A.Quarry,R.L.Grob,L.R.Snyder,Predictionofpreciseisocraticretentiondata fromtwoormoregradientelutionruns.Analysisofsomeassociatederrors, Anal.Chem.58(1986)907–917.

[29]C.M.Roth,K.K.Unger,A.M.Lenhoff,Mechanisticmodelofretentioninprotein ion-exchangechromatography,J.Chromatogr.A726(1996)45–56.

[30]S.Fekete,S.Rudaz,J.L.Veuthey,D.Guillarme,Impactofmobilephasetemper- atureonrecoveryandstabilityofmonoclonalantibodiesusingrecentreversed phasestationaryphases,J.Sep.Sci.35(2012)3113–3123.

[31]S.Heinisch,J.-L.Rocca,Senseandnon-senseofhigh-temperatureliquidchro- matography,J.Chromatogr.A1216(2009)642–658.

[32]Y.Chen,C.T.Mant,R.S.Hodges,Temperatureselectivityeffectsinreversed- phaseliquidchromatographyduetoconformationdifferencesbetweenhelical andnon-helicalpeptides,J.Chromatogr.A1010(2003)45–61.

[33]C.T.Mant,Y. Chen,R.S.Hodges, Temperatureprofilingofpolypeptidesin reversed-phaseliquidchromatography:I.Monitoringofdimerizationand unfoldingofamphipathic␣-helicalpeptides,J.Chromatogr.A1009(2003) 29–43.

[34]C.T.Mant,B.Tripet,R.S.Hodges,Temperatureprofilingofpolypeptidesin reversed-phaseliquidchromatography:II.Monitoringoffoldingandstability oftwo-stranded␣-helicalcoiled-coils,J.Chromatogr.A1009(2003)45–59.

[35]U.D.Neue,Theoryofpeakcapacityingradientelution,J.Chromatogr.A1079 (2005)153–161.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

In the course of my work I was involved in the development of a Bayesian relevance analysis methodology that can be used to characterize the complex dependencies of genetic variants

Keywords: folk music recordings, instrumental folk music, folklore collection, phonograph, Béla Bartók, Zoltán Kodály, László Lajtha, Gyula Ortutay, the Budapest School of

The decision on which direction to take lies entirely on the researcher, though it may be strongly influenced by the other components of the research project, such as the

By examining the factors, features, and elements associated with effective teacher professional develop- ment, this paper seeks to enhance understanding the concepts of

Usually hormones that increase cyclic AMP levels in the cell interact with their receptor protein in the plasma membrane and activate adenyl cyclase.. Substantial amounts of

Both light microscopic and electron microscopic investigation of drops, strands, or compact layers of Physarum plasmodia prove that many of the fibrils found have con- tact

The retention of large proteins in salt-gradient mode is strongly dependent on the salt concentration (gradient steepness or gradient time) – due to the relatively high z value – and

Today, a wide variety of porous packing materials with different particle sizes are available for the separation and characterization of macromolecules [84]. The pore volume and